Apprentissage non-supervisé dans les modèles linéaires gaussiens. Application à la biométrie dynamique de l’iris

Author : Valérian Némesin

Abstract

La famille de modèles dite des filtres de Kalman permet d’estimer les états d’un système dynamique à partir d’une série de mesures incomplètes ou bruitées. Malgré leur relative simplicité de modélisation, ces filtres sont utilisés dans un large spectre scientifique dont le radar, la vision, et les communications. Ce succès repose, pour l’essentiel, sur l’existence d’algorithmes de filtrage et de lissage exacts et rapides, i.e. linéaires au nombre d’observations, qui minimisent l’erreur quadratique moyenne.

Dans cette thèse, nous nous sommes intéressés au filtre de Kalman couple. Celui-ci intègre, par rapport au modèle original, de nouvelles possibilités d’interactions entre états cachés et observations, tout en conservant des algorithmes exacts et rapides dans le cas linéaire et gaussien. Nous étudions plus particulièrement le problème de l’estimation non supervisée et robuste des paramètres d’un filtre de Kalman couple à partir d’observations en nombre limité. Le manuscrit décrit ainsi plusieurs algorithmes d’apprentissage par estimation du maximum de vraisemblance selon le principe EM (Expectation-Maximization). Ces algorithmes originaux permettent d’intégrer des contraintes a priori sur les paramètres du système étudié, comme expressions de connaissances partielles sur la physique de l’application ou sur le capteur. Ces systèmes contraints réduisent l’ambiguïté liée au problème d’identifiabilité du filtre de Kalman couple lors de l’estimation des paramètres. Ils permettent également de limiter le nombre de maxima locaux de la fonction de vraisemblance en réduisant la dimension de l’espace de recherche, et permettent d’éviter parfois le piégeage de l’algorithme EM.

Il est important de noter que l’ensemble des algorithmes proposés dans ce manuscrit s’applique directement au filtre de Kalman original, comme cas particulier du filtre de Kalman couple. Tous les algorithmes sont rendus robustes par la propagation systématique de racines-carrés des matrices de covariance au lieu des matrices de covariance elles-mêmes, permettant ainsi d’éviter les difficultés numériques bien connues liées à la perte de positivité et de symétrie de ces matrices. Ces algorithmes robustes sont finalement évalués et comparés dans le cadre d’une application de biométrie de l’iris à partir de vidéos. Le suivi de la pupille est exploitée pour enrôler et identifier en temps-réel une personne grâce à son iris-code.