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Abstract

We study the bending of a thin plate, stiffened with a thin elastic layer, of thickness δ. We describe the
complete construction of an asymptotic expansion with respect to δ of the solution of the Kirchhoff-Love
model and give optimal estimates for the remainder. We identify approximate boundary conditions, which
take into account the effect of the stiffener at various orders. Thanks to the tools of multi-scale analysis,
we give optimal estimates for the error between the approximate problems and the original one. We deal
with a layer of constant stiffness, as well as with a stiffness in δ−1.

AMS subject classification: 74K20, 35C20.
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1 Introduction
The structures studied in engineering are often made of materials covered with thin layers. Their mathe-
matical modelling is a problem of outstanding practical importance. However, from a numerical point of
view, such problems require the discretization of the thin layer which needs very thin meshes and may lead
to very expansive calculations.
An alternative well-known approach consists in deriving approximate boundary conditions that incorpo-
rate in an approximate way the effect of the thin layer and permit to remove the mesh constraints on the
discretization. More precisely, we seek an approximate problem posed on the interior domain (i.e, not in-
cluding the thin layer) but taking into account its effect via these new conditions.
The idea of introducing this type of boundary conditions which can be substituted to the thin layer has
been widely used in numerous studies, mainly in electro-magnetics and mechanics, see for instance [6, 3]
for the Helmholtz equation in acoustics, [2, 8] for Maxwell equations, and [12, 11, 13, 7, 14] in structure
mechanics, see also [16, 1, 15].
It is also worth noting that there is a hierarchy in these boundary conditions: the greater the order, the better
the approximation. Moreover, they lead to non standard boundary value problems in which the boundary
conditions involve tangential derivatives of order greater or equal to that of the interior differential operator.

The purpose of this paper is to describe the application of an asymptotic method, for identifying approximate
boundary conditions within the framework of linear elasticity. To begin with, we consider a two-dimensional
model; referred as the Kirchhoff-Love model, for an elastic plate surrounded by a thin elastic layer. The
middle surface of the plate is denoted by Ω+. The boundary of Ω+ consists of two disjoints parts, Γ0 and
Γ, assumed to be smooth. For δ > 0 sufficiently small, the elastic layer Ωδ

− derives from a uniform dilation
of Γ0 in the normal direction, with thickness δ:

Ωδ
− = {x+ r n(x) ; x ∈ Γ0 and 0 < r < δ},
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Figure 1: The plate and the thin layer.

where n(x) denotes the normal vector at point x on Γ0, outer from Ω+; the external boundary of the domain
Ωδ
− is Γδ and the whole domain is Ωδ = Ω+ ∪ Γ0 ∪ Ωδ

− (see figure 1).
These two elastic bodies are perfectly “bonded” along their common boundary Γ0, thus forming together
an elastic multi-structure, viewed as an elastic plate of middle surface Ωδ . This plate is clamped along its
interior boundary Γ and is motion free on its exterior boundary Γδ . The equations given by the Kirchhoff-
Love model for the displacement wδ (which stands for the bending of the plate) read as follows (see [10, 9])

D+∆2wδ
+ = f in Ω+,

D−∆2wδ
− = 0 in Ωδ

−,

[wδ] = 0 ; [∂nw
δ] = 0 on Γ0,

M+(wδ
+) = M−(wδ

−) ; T+(wδ
+) = T−(wδ

−) on Γ0,

M(wδ) = 0 ; T (wδ) = 0 on Γδ,

wδ = 0 ; ∂nw
δ = 0 on Γ,

(1)

where ∂n denotes the normal derivative along n = (n1, n2) and [ ] the jump across Γ0; the loading f
belongs to L2(Ω+) (we will see that further regularity is required for the asymptotic analysis). The trace
operators M and T denote respectively the bending moment and the shear force, and have the following
expressions:

M = D
[
∆ + (1− ν)

(
2n1n2∂12 − n2

1∂
2
2 − n2

2∂
2
1

)]
,

T = D
[
∂n∆ + (1− ν)∂τ

(
(n2

1 − n2
2)∂12 + n1n2(∂2

2 − ∂2
1)
)]
,

where D = 2E
3(1−ν2) , E being the Young’s modulus and ν ∈ (0, 1

2 ) the Poisson’s ratio; ∂τ denotes the
tangential derivative. We assume that the elastic coefficients E and ν are piecewise constant: E = E+ in
Ω+ and E− in Ωδ

−; ν = ν+ in Ω+ and ν− in Ωδ
−. The Poisson’s ratio is independent of δ and we will

successively consider the two cases for the Young’s modulus:

• the coefficients E+ and E− are independent of δ ;

• the coefficient E+ does not depend on δ and E− = O(δ−1).

The second case is more interesting because it stands for a layer which is at the same time very thin and
very stiff.
Hence, D is piecewise constant, and we set

D+ =
2E+

3(1− ν2
+)

and D− =
2E−

3(1− ν2
−)
.

The relations along Γ0, which formally express the continuity of the displacement w, of M , T and ∂n along
the common portion of the two boundaries are called transmission conditions. The first condition along Γ0

2



shows in particular that we are modelling a situation where the inserted portion of the layer is “perfectly
bonded” to the plate : we are thus excluding situations where the inserted portion could slide along, or part
away from, the plate.
As was already pointed out, our aim is to identify and justify boundary conditions on Γ0 for problem (1),
which approximate the effect of the thin layer. We use the technique of multi-scale expansions (see [17,
18, 4]) to build an asymptotic expansion (in powers of δ) of wδ , solution of (1), as δ tends to 0; then we
have to estimate the remainder after cut-off at a given order. The approximate boundary conditions are
then obtained by considering the series given by its asymptotic expansion, truncated at a given order. The
conditions satisfied by this approximation on Γ0 give the desired boundary condition.

The article is organized as follows. First, we set the variational framework used to solve problem (1) and we
give the expressions of the operators in local coordinates on the boundary Γ0. Then we build the asymptotic
expansion of wδ and give optimal estimates of the remainder, based on a priori estimates. Finally, we derive
and justify approximate boundary conditions for problem (1) from the first terms of the expansion.

In the following, for m ∈ N, Hm(ω) denotes the standard Sobolev space of order m in the open set ω,
endowed with its natural norm ‖ · ‖m,ω:

‖w‖2
m,ω =

∑
|α|≤m

‖∂αw‖2
L2(ω) .

2 Outline of the results
We expose here the main results of our paper (for detailed statements, error estimates, and proofs, see
sections below). Basically, we sum up the approximate boundary conditions obtained for Problem (1), i.e.
such that the solution w̃+ of

D+∆2w̃+ = f+ in Ω+,

Approximate boundary condition (ABC) on Γ0,

w̃+ = 0 ; ∂nw̃+ = 0 on Γ,

gives an approximation of wδ
+.

2.1 Case of a constant Young’s modulus
When the coefficients E+ and E− do not depend on δ, problem (1) converges towards the limit case
δ = 0. This boundary value problem can be seen as the order 0-approximate problem for (1). The boundary
condition on Γ0 is merely the Neumann conditions inherited from the stiffener:

(ABC) : M+(w̃+) = 0 and T+(w̃+) = 0 on Γ0.

Of course such an approximation is not accurate since it simply omits the effect of the thin layer.
A better approximation of wδ

+ is given by the first order condition

(ABC) : M+(w̃+) + δQ0(w̃+) = 0 and T+(w̃+) + δP0(w̃+) = 0 on Γ0,

where the operators P0 and Q0 are given in the local coordinates (s is the arclength, c(s) the curvature, ∂s

and ∂n the tangential and normal derivatives, respectively)

Q0 = −D−
[
2(1− ν−)∂s (∂s∂n − c(s)∂s)− (1− ν2

−)c(s)
(
∂2

s + c(s)∂n

)]
,

P0 = −D−
[
(1− ν2

−)∂2
s

(
∂2

s + c(s)∂n

)
+ 2(1− ν−)∂s [c(s) (∂s∂n − c(s)∂s)]

]
,

Here, the approximate boundary condition depends the thickness δ of the layer and, through P0 and Q0,
takes nontrivially into account the effect of the stiffener. Tangential derivatives of w̃+ and ∂nw̃+ are in-
volved, they may be interpreted as the bending and torsion contributions of the thin layer. The wellposed-
ness of this problem, as well as optimal error estimates in strong energy norm, are given in section 5.
Higher order conditions may also be derived, but technicality increases drastically and their mechanical
interpretation gets less clear.
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2.2 Case of a Young’s modulus in δ−1

It is more natural to consider a Young’s modulus blowing up in the stiffener as δ goes to 0. Actually the
right scaling is E− ∼ δ−1, where the mechanical coefficient exactly compensates the thickness of the layer.
It turns out that the limit as δ → 0 of Problem (1) involves itself the operators P0 and Q0 defined above and
the associated zero-order approximate boundary conditions is nontrivial, it writes

(ABC) : M+(w̃+) +Q0(w̃+) = 0 and T+(w̃+) + P0(w̃+) = 0 on Γ0,

It is worth noticing that the major effect of the stiffener contained in operators P0 and Q0 is now seen since
order 0 whereas it only appears at order 1 for a constant Young’s modulus. This corresponds to the natural
physical idea that the high rigidity of the stiffener emphasizes its effect on the plate. Besieds, a condition of
order 1 is derived in section 6, which involves higher order tangential operators, see (24).

2.3 Behavior in the stiffener
The approximate boundary conditions presented previously give information about the global mechanical
behavior of the stiffened plate. Indeed, they provide a hierarchy of approximate problems which replaces
the effect of the stiffener with more or less accuracy. Nevertheless, such approximate problems only give a
representation of the displacement inside the plate, and nothing in the stiffener.
Actually the asymptotic expansion built in section 4.2 (and leading to the approximate boundary conditions
just under discussion) also gives a precise description inside the stiffener. Precisely, the displacement in
the layer admits the following asymptotic behavior in local coordinates (we do not give any sense to the
convergence of the series, the notation only means that the error is small when truncating at a fixed order)

wδ
−(x) =

∑
`≥0

δ`P`(r)ψ`(s),

where (r, s) are the normal-tangential coordinates in Ωδ
−, P` is a polynomial of degree less than `, and ψ`

are smooth functions on the boundary Γ0. Such an expression has the particularity to be cartesian in the
Frénet coordinates, with polynomial dependence towards the normal variable. This allow to easily obtain
bounds on the displacement and its derivatives and can therefore be useful for addressing local properties of
the material such as crack initiation (in this case, the dependence of the tangential functions ψ` needs also
to be precised).

3 Preliminaries

3.1 Existence, uniqueness, a priori estimate
In order to obtain remainder estimates for the asymptotic expansion in section 4.2, we will consider more
general right hand-sides in the problem (1):

D+∆2wδ
+ = f+ in Ω+,

D−∆2wδ
− = f− in Ωδ

−,

[wδ] = 0 ; [∂nw
δ] = 0 on Γ0,

M+(wδ
+) = M−(wδ

−) + g1 ; T+(wδ
+) = T−(wδ

−) + g2 on Γ0,

M(wδ) = h1 ; T (wδ) = h2 on Γδ,

wδ = 0 ; ∂nw
δ = 0 on Γ.

(2)

We define the following functional space

W =
{
ψ ∈ H2(Ωδ) ; ψ = ∂nψ = 0 on Γ

}
.

Let w ∈W be a solution of the problem (2). Integrating by parts, we get for ψ ∈W ,∫
Ωδ

D
(
∆2w

)
ψ dx = a(w,ψ) +

∫
∂Ωδ

[
T (w)ψ −M(w)∂nψ

]
dσ,
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where the bilinear form a is given by

a(w,ψ) =
∫
Ωδ

D
[ (
∂2
1w + ν∂2

2w
)
∂2
1ψ + 2(1− ν)∂12w ∂12ψ +

(
∂2
2w + ν∂2

1w
)
∂2
2ψ
]
dx. (3)

The variational formulation of problem (2) reads

∀ψ ∈ V, a(w,ψ) = 〈F,ψ〉, (4)

with the linear form F :

〈F,ψ〉 =
∫

Ω+

f+ ψ dx+
∫

Ωδ
−

f− ψ dx+
∫

Γ0

(g2 ψ − g1 ∂nψ) dσ +
∫

Γδ

(h2 ψ − h1 ∂nψ) dσ.

The following theorem gives a coarse estimate – but sufficient for our purpose – for problem (4)

Theorem 1 Let f+ ∈ L2(Ω+), f− ∈ L2(Ωδ
−), g1, g2 ∈ L2(Γ0) and h1, h2 ∈ L2(Γδ). There exists a unique

solution wδ ∈ W for Problem (4). Moreover, we have the following a priori estimate, with a constant C,
independent of δ ∈ (0, 1):∥∥wδ

∥∥
2,Ωδ ≤ C

(
‖f+‖0,Ω+

+ ‖f−‖0,Ω− + ‖g1‖0,Γ0
+ ‖g2‖0,Γ0

+ ‖h1‖0,Γδ
+ ‖h2‖0,Γδ

)
. (5)

PROOF. This is a straightforward application of the Lax-Milgram lemma: the form F is obviously continu-
ous on W , its norm in W ′ being bounded by the right hand-side of inequality (5). Furthermore the bilinear
form a is continuous and coercive on W : thanks to Dirichlet conditions on Γ, a Poincaré inequality holds
in Ωδ , independent of δ (since the measure of the domain Ωδ is uniformly bounded for 0 < δ < 1).

We have seen that equations (1) define a well-posed problem in H2(Ωδ), for fixed δ ∈ (0, 1). In the next
section, we focus on the asymptotic analysis of the solution wδ when the thickness δ of the layer goes to 0.

3.2 Expressions of the operators in local coordinates
Depending on the thickness δ, the functional setting of our problem is not suited for giving a precise meaning
to an asymptotic expansion of the solution. Hence, the first step of the analysis is a scaling inside the thin
layer in order to remove the dependence of the space domain on the small parameter δ. So, we will perform
a dilation in the normal direction of the layer Ωδ

− (of ratio δ−1) to get a fixed geometry. To achieve this
goal, the use of Frénet coordinates is needed. The operators involved in problem (1) can be expanded into
powers of δ, which is the first step towards the construction of an asymptotic expansion for wδ .

3.2.1 Frénet coordinates

We denote by t and n the vectors respectively tangent and normal on Γ. They are directly orthogonal:

t =
(

n2

−n1

)
and n =

(
n1

n2

)
.

We recall the Frénet formulæ defining the curvature c(s) at the point on Γ0 with arclength s.

dt
ds

= −c(s)n and
dn
ds

= c(s) t.

We denote by c(s, r) the curvature on Γr = {x+ rn(x) ; x ∈ Γ0} at point (s, r); we have the identity

c(s, r) =
c(s)

1 + rc(s)
.

As a mere consequence of the Frénet formulæ, we get the expressions of the cartesian derivatives ∂1 = ∂
∂x1

and ∂2 = ∂
∂x2

in the local coordinates:(
∂1

∂2

)
=

(
n2

(1+rc(s)) n1
−n1

(1+rc(s)) n2

)(
∂s

∂r

)
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We deduce the expression of the bilaplacian

∆2 =
1

(1− rc(s))
∂s

[
1

(1 + rc(s))
∂s

(
1

(1 + rc(s))2
∂2

s −
rc′(s)

(1 + rc(s))3
∂s

)
+ c(s, r)∂r + ∂2

r

]

+c(s, r)∂r

[
1

(1 + rc(s))2
∂2

s −
rc′(s)

(1 + rc(s))3
∂s + c(s, r)∂r + ∂2

r

]

+∂2
r

[
1

(1 + rc(s))2
∂2

s −
rc′(s)

(1 + rc(s))3
∂s + c(s, r)∂r + ∂2

r

]

as well as the expressions of the trace operators M and T :

M = D
[
ν∆ + (1− ν) ∂2

r

]
,

T = D

[
∂n∆ + (1− ν)

1
1 + rc(s)

∂s

(
− c(s)

(1 + rc(s))2
∂s +

1
(1 + rc(s))

∂rs

)]
.

3.2.2 Expansion of the operators into powers of δ

Thanks to Frénet coordinates, the thin layer reads in a tensorial way:

Ωδ
− ' Γ0 × (0, δ).

Introducing the scaled variable – or fast variable – y = r
δ , we obtain a fixed domain Γ0 × (0, 1). We notice

that the normal dilation is performed in the Frénet variables, not in the physical domain Ωδ
− itself. Indeed,

since we did not assume any convexity, the domain Ω1
− might not be well-defined (nevertheless, we could

work in Ωδ0
− for δ0 sufficiently small).

Let W δ denote the function defined in Γ0 × (0, 1) by

W δ(s, y) = wδ(s, r).

The dilation r 7→ y maps the exterior layer Ω−
δ into a fixed domain; the small parameter δ is now involved

in the equations. Hence, the biharmonic operator expands into powers of δ:

∆2 =
1
δ4
A−4 +

1
δ3
A−3 +

1
δ2
A−2 +

1
δ
A−1 +A0 + δA1 + · · ·

The first terms are given by – we write c for c(s)

A−4 = ∂4
y ;

A−3 = 2c ∂3
y ;

A−2 = 2∂2
s

(
∂2

y

)
+ c2 ∂2

y − yc ∂3
y − c2 ∂2

y(y∂y) ;

A−1 = ∂2
s (c ∂y)− 2yc ∂2

s

(
∂2

y

)
− yc′ ∂s(∂2

y) + c ∂y(∂2
s )− y c3 ∂2

y

−c3 ∂y(y∂y) + y2 c3 ∂3
y − 2c ∂2

y(y ∂2
s )− c′ ∂2

y(y ∂s) + c3 ∂2
y(y2 ∂y) ;
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A0 = ∂4
s − 2yc ∂2

s (c ∂y)− y ∂2
s (c2 ∂y) + 3y2c2 ∂2

s

(
∂2

y

)
− yc′ ∂s(c ∂y)

+3y2cc′ ∂s(∂2
y)− 2c2 ∂y(y ∂2

s )− yc2 ∂y(∂2
s )− cc′ ∂y(y ∂s) + c4 ∂y(y2 ∂y)

+yc4 ∂y(y∂y) + y2c4 ∂2
y − y3c4 ∂3

y + 3c2 ∂2
y

(
y2 ∂2

s

)
+ 3cc′ ∂2

y

(
y2 ∂s

)
−c4 ∂2

y

(
y3 ∂y

)
;

A1 = −2y∂2
s (c ∂2

s ) + 2yc ∂4
s − y ∂2

s (c′ ∂s) + y2 ∂2
s (c3 ∂y) + 2y2c ∂2

s (c2 ∂y)

+3y2c2 ∂2
s (c ∂y)− 4y3c3 ∂2

s

(
∂2
)
− yc′ ∂3

s + y2c′ ∂s(c2 ∂y)

+3y2cc′ ∂s(c∂y)− 6y3c2c′ ∂s(∂2
y) + 3c3 ∂y(y2 ∂2

s ) + 2yc3 ∂y(y ∂2
s )

−y2c3 ∂y(∂2
s ) + 3c2c′ ∂y(y2 ∂s) + yc2c′ ∂y(y ∂s)− c5 ∂y(y3 ∂y)

−yc5 ∂y(y2 ∂y)− y2c5 ∂y(y ∂y)− y3c5 ∂2
y + y4c5 ∂3

y

−4c3 ∂2
y

(
y3 ∂2

s

)
− 6c2c′ ∂2

y

(
y3 ∂s

)
+ c5 ∂2

y

(
y4 ∂y

)
.

The trace operators also expand into powers of δ:

M =
1
δ2
M−2 +

1
δ
M−1 +M0 + δM1 + δ2M2 + · · ·

T =
1
δ3
T−3 +

1
δ2
T−2 +

1
δ
T−1 + T 0 + δT 1 + δ2T 2 + · · ·

with

M−2 = D−∂
2
y ;

M−1 = D−ν−c∂y ;

M0 = D−ν−(∂2
s − yc2∂y) ;

M1 = D−ν−(−2yc∂2
s − yc′∂s + ν−y

2c3∂y) ;

M2 = D−ν−(3y2c2∂2
s + 3y2cc′∂s − y3c4∂y) ;

T−3 = D−∂
3
y ;

T−2 = D−c∂
2
y ;

T−1 = D−
[
∂y(∂2

s )− ∂y

(
yc2∂y

)
+ (1− ν−)∂y(∂2

s )
]

;

T 0 = D−
[
∂y

(
−2yc ∂2

s − yc′ ∂s + y2c3 ∂y

)
+ (1− ν−)∂s (c ∂s)

+(1− ν−)(2yc ∂y ∂
2
s + yc′ ∂ys)

]
;

T 1 = D−
[
∂y

(
3y2c2 ∂2

s + 3y2cc′ ∂s − y3c4 ∂y

)
+ (1− ν−)∂s

(
−2yc2 ∂s + y2c2 ∂ys

)
+(1− ν−)yc ∂s (c ∂s) + (1− ν−)y2c2 ∂s (∂ys) + (1− ν−)y2c ∂s (c ∂ys)

]
;

T 2 = D−
[
∂y

(
−4y3c3 ∂2

s + 6y2cc′ ∂s + y4c5 ∂y

)
+ (1− ν−)∂s

(
−3y2c3 ∂s − y3c3 ∂ys

)
−(1− ν−)yc ∂s

(
2yc2 ∂s

)
− (1− ν−)y2c2 ∂s (c ∂s)− (1− ν−)yc ∂s

(
y2c2 ∂ys

)
−(1− ν−)y2c2 ∂s (yc ∂ys)− (1− ν−)y3c3 ∂s (∂ys)

]
.

The expansions into powers of δ given in this section are formal (we do not give a sense to the convergence
of the series). This point of view is generally adopted in multi-scale analysis; it allows to build (and prove
the convergence of) the asymptotic expansion, see next sections.

4 Construction of the asymptotic expansion
First, we consider the case where the Young’s modulus is independent of the thickness δ. In the previous
section, we have introduced the scaled variable y = r

δ , which maps the geometry onto a fixed domain; the
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small parameter δ is now involved only in the equations, see the expansions of the operators in section 3.2.2.
We aim here at describing an algorithmic procedure to build the terms of the asymptotic expansion of the
solution of problem (1).
Since the expansions of the operators ∆2, M and T only involve integer powers of δ (see §3.2.2), we seek
an expansion of the form

wδ
+ =

∑
n≥0

δnwn
+ and W δ

− =
∑
n≥0

δnWn
−, (6)

we recall that the function W δ
− denotes the transform of wn

− in semi-scaled variables (s and r stand for the
tangential and normal variables, respectively):

wδ
−(s, r) = W δ

−(s, δ−1r).

Inserting the ansatz (6) into the equations (1) and identifying the terms with same power of δ, we obtain

D+∆2wn
+ = f+ if n = 0 and 0 else in Ω+,

A−4Wn
− = −

∑
k + ` = n − 4

k ≥ −3

AkW `
− for 0 ≤ y ≤ 1,

Wn
− = wn

+ ; ∂nW
n
− = ∂nw

n−1
+ on Γ0,

M+(wn
+) =

∑
k+`=n

MkW `
− on Γ0,

T+(wn
+) =

∑
k+`=n

T kW `
− on Γ0,

M−2(Wn
−) = −

∑
k+`=n−2

MkW `
− on Γ−,

T−3(Wn
−) = −

∑
k+`=n−3

T kW `
− on Γ−,

wn
+ = 0 ; ∂nw

n
+ = 0 on Γ.

(7)

4.1 The first terms of the expansion
We detail here the construction of the first terms of the expansion. In the equations (7), the transmission
conditions for the normal derivatives, as well as the operators M and T , involve different order terms,
thanks to the shift in the powers of δ. It allows an alternative resolution in each subdomain Ωδ

− and Ω+.
The operator T being of order 3, we need to know W `

− for ` = 0, 1, 2, 3 to define the term T+(w0
+). For

this reason, we start by looking for the first four exterior terms.

For n = 0, equations (7) give the following problem for the exterior part W 0
−

D−∂
4
yW

0
−(s, y) = 0 for 0 ≤ y ≤ 1,

D−∂
3
yW

0
−(s, 1) = 0,

D−∂
2
yW

0
−(s, 1) = 0,

(8)

which leads to W 0
−(s, y) = α0(s)y + β0(s), where α0 and β0 are functions of the arclength s. Taking into

account the transmission condition for the normal derivatives on Γ0, we deduce ∂nW
n
−(s, 0) = 0, whence

W 0
−(s, y) = β0(s).

At order 1, the equations satisfied by W 1
− are the same as before, see (8). Thus

W 1
−(s, y) = α1(s)y + β1(s).
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At order 2, a non-zero right hand-side appears, due to the terms M0W 0
− and M−1W 1

−: W 2
− solves the

problem 
D−∂

4
yW

2
−(s, y) = 0 for 0 ≤ y ≤ 1,

D−∂
3
yW

2
−(s, 1) = 0,

D−∂
2
yW

2
−(s, 1) = −D−θ

0
−(s, 1),

withD−θ
0
−(s, y) = M0W 0+M−1W 1 = D−

[
ν−∂

2
sβ

0(s) + ν−c(s)α1(s)
]

(which, here, does not depend
on the transverse variable y). Thus, we can find two functions of the arclength α2 and β2 such that

W 2
−(s, y) = − 1

2θ
0
−(s, 1)y2 + α2(s)y + β2(s).

We now look at order 3; we set

ζ1
−(s, y) = T 0W 0

− + T−1W 1
− + T−2W 2

−,

θ1−(s, y) = M1W 0
− +M0W

1
− +M−1W 2

−.

Then W 3
− solves 

D−∂
4
yW

3
−(s, y) = 0 for 0 ≤ y ≤ 1,

D−∂
3
yW

3
−(s, 1) = −ζ1

−(s, 1),

D−∂
2
yW

3
−(s, 1) = −θ1−(s, 1),

so that it reads

W 3
−(s, y) = −ζ1

−(s, 1)
(

1
6y

3 − 1
2y

2
)
− 1

2θ
1
−(s, 1)y2 + α3(s)y + β3(s),

where the functions α3 and β3 have to be determined.

We now write the problem solved by the first interior term:
D+∆2w0

+ = f+ in Ω+,

M+(w0
+) = θ0+(s) ; T+(w0

+) = ζ0
+(s) on Γ0,

w0
+ = 0 ; ∂nw

0
+ = 0 on Γ,

(9)

where the data (θ0+, ζ
0
+) is defined by

θ0+(s) =
(
M−2W 2

− +M−1W 1
− +M0W 0

)
(s, 0)

= D−
[
−θ0−(s, 1) + θ0−(s, 0)

]
= 0,

ζ0
+(s) =

(
T−3W 3

− + T−2W 2
− + T−1W 1 + T 0W 0

)
(s, 0)

= D−
[
−ζ1

−(s, 1) + ζ1
−(s, 0)

]
= 0,

by definition of θ1 and ζ1, since these functions do not depend on y. As a consequence, problem (9) is
nothing but the bi-harmonic problem in Ω+ with homogeneous Dirichlet conditions on Γ and homogeneous
Neumann conditions on Γ0; it uniquely defines w0

+. The transmission conditions on Γ0 allow to determine
the functions β0 and α1:

β0(s) = w0
+

∣∣
Γ0

et α1(s) = ∂nw
0
+

∣∣
Γ0
.

Coming back to the exterior part, we set

φ2
−(s, y) =

(
A−3W 3

− +A−2W 2
− +A−1W 1

− +A0W 0
−
)
(s, y),

ζ2
−(s, y) =

(
T 1W 0

− + T 0W 1
− + T−1W 2

− + T−2W 3
−
)
(s, y),

θ2−(s, y) =
(
M2W 0

− +M1W 1
− +M0W 2

− +M−1W 3
−
)
(s, y),

9



so that W 4
− solves the problem

D−∂
4
yW

4
−(s, y) = −φ2

−(s, y) for 0 ≤ y ≤ 1,

D−∂
3
yW

4
−(s, 1) = −ζ2

−(s, 1),

D−∂
2
yW

4
−(s, 1) = −θ2−(s, 1).

Thus W 4
− admits the following expression

W 4
− = − 1

2

(
1
12y

4 − 1
3y

3 + 1
2y

2
)
φ2
−(s, y)− ζ2

−(s, 1)
(

1
6y

3 − 1
2y

2
)
− 1

2θ
2
−(s, 1)y2 + α4(s)y + β4(s).

The term W 4
− being known, we can define w1

+ as the solution of the interior problem
D+∆2w1

+ = 0 in Ω+,

M+(w1
+) = ζ1

−(s, 1)− θ1−(s, 1) + θ1−(s, 0) on Γ0,

T+(w0
+) = φ1

−(s, 1)− ζ2
−(s, 1) + ζ2

−(s, 0) on Γ0,

w1
+ = 0 ; ∂nw

1
+ = 0 on Γ.

To determine completely W 1
−, we need to precise the function β1. This can be done thanks to the transmis-

sion condition of order 0 across Γ0: for y = 0, W 1
− = w1

+. Finally

β1(s) = w1
+|Γ0 and α1(s) = ∂nw

0
+|Γ0 .

We have seen in this section the way we can define a few terms of the asymptotic expansion: we first
compute the first four exterior terms (W `

−)0≤`≤3 (up to an affine function in y), which are needed to write
the problem solved by the first interior term w0

+. the knowledge of the latter allows to fix completely the
first exterior term.

4.2 The complete expansion: remainder estimates
The procedure described in the previous section can be generalized at any order; it leads to the identification
of all the terms in the asymptotic expansion (6). Using a priori estimates, we can prove the following result.

Theorem 2 We assume the curve Γ0 – defining the boundary of domain Ω+ – and the right hand-side f
infinitely smooth. Then the solution wδ of problem (1) admits the asymptotic expansion

wδ =
∑
n≥0

δnwn, (10)

where wn|Ω+(x) = wn
+(x) and wn|Ωδ

−
(s, r) = Wn

−(s, δ−1r). The terms wn
+ and Wn

− do not depend on the
parameter δ and are defined by problems (12) and (13) below.
The identity (10) is valid in the sense of asymptotic expansions, i.e. for any integerN , there exists a constant
CN such that the remainder of order N

rN (δ) = wδ −
N∑

n=0

wn

satisfies the (optimal) estimate∥∥rN
+ (δ)

∥∥
2,Ω+

+ δ
3
2
∥∥rN

− (δ)
∥∥

2,Ωδ
−
≤ CN δN+1. (11)

PROOF. We assume the terms of the expansion built up to order N − 1. We can write the problem solved
by the exterior term WN

− :
D−∂

4
yW

N
− (s, y) = −φN−2

− (s, y) for 0 ≤ y ≤ 1,

D−∂
3
yW

N
− (s, 1) = −ζN−2

− (s, 1),

D−∂
2
yW

N
− (s, 1) = −θN−2

− (s, 1),

(12)
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where the right hand-sides φN−2
− , ζN−2

− , and θN−2
− are given by

φN−2
− (s, y) = D−

∑
k+`=N−4

AkW `
−,

ζN−2
− (s, y) =

∑
k+`=N−3

T kW `
−,

θN−2
− (s, y) =

∑
k+`=N−2

MkW `
−.

(these quantities only involve W `
− for ` ≤ N − 1). Problem (12) then determines the term WN

− , up to an
affine function in y, denoted by αN (s)y + βN (s).
In the same way, we can define – up to an affine function in y – the terms W `

− for ` = N + 1, N + 2 and
N + 3. It allows to write the problem solved by wN

+ :

D+∆2wN
+ = 0 in Ω+,

M+(wN
+ ) =

∑
k+`=N

MkW `
− on Γ0,

T+(wN
+ ) =

∑
k+`=N

T kW `
− on Γ0,

wN
+ = 0 ; ∂nw

N
+ = 0 on Γ.

(13)

It is a bi-harmonic problem with homogeneous Dirichlet conditions on Γ and non-homogeneous Neumann
conditions on Γ0, which uniquely defines the term wN

+ .
The transmission conditions across Γ0: WN

− = wN
+ and ∂yW

N
− = ∂nw

N−1
+ fix the functions αN and βN :

αN (s) = ∂nw
N−1
+ |Γ0 and βN (s) = wN

+ |Γ0 .

Thus, starting from the knowledge of (wn
+,W

n
−) for n ≤ N − 1, we have built the terms wN

+ and WN
− .

We now prove the remainder estimate (11): by construction, the remainder of order N satisfies

D+∆2rN
+ (δ) = f in Ω+,

D−∆2rN
− (δ) = O(δN−3) in Ωδ

−,

[rN (δ)] = 0 ; [∂nr
N (δ)] = O(δN ) on Γ0,

M+(rN
+ (δ)) = M−(rN

− (δ)) +O(δN−1) on Γ0,

T+(rN
+ (δ)) = T−(rN

− (δ)) +O(δN−2) on Γ0,

M−(rN
− (δ)) = O(δN−1) ; T−(rN

− (δ)) = O(δN−2) in Γδ,

rN
+ (δ) = 0 ; ∂nr

N
+ (δ) = 0 in Γ,

(14)

In order to use the a priori estimate (5) given in theorem 1, we first need to lift the jump of the normal
derivative across the interface Γ0. If we denote by τN this jump, we have τN = O(δN ).
Let then zN

+ be the solution in H2(Ω+) of the bi-harmonic problem in Ω+ with Dirichlet conditions on Γ
D+∆2zN

+ = 0 in Ω+,

zN
+ = 0 ; ∂nz

N
+ = τN on Γ0,

zN
+ = 0 ; ∂nz

N
+ = 0 in Γ.

The function zN
+ satisfies the following estimate∥∥zN

+

∥∥
2,Ω+

= O(δN ).

In the same way, let zN
− be the solution of the exterior problem

D+∆2zN
− = 0 in Ωδ

−,

zN
− = zN

+ ; ∂nz
N
− = 0 on Γ0,

M−(zN
− ) = 0 ; T−(zN

− ) = 0 on Γδ.

11



We can estimate the norm of zN
− too: ∥∥zN

−
∥∥

2,Ωδ
−

= O
(
δN− 3

2
)
,

the factor δ−
3
2 is due to the fact that the domain Ωδ

− depends on δ.

Coming back to problem (14), we can apply a priori estimate (5) to the function

r̃N (δ) = rN (δ)− zN ,

which belongs to H2(Ωδ): we get ∥∥r̃N (δ)
∥∥

2,Ωδ ≤ C δN− 5
2 ,

because the L2-norm of the exterior right hand-side is the limiting term; it is of order δN−2 (we gain a factor
δ1/2 thanks to the measure of the domain Ωδ

−). We deduce the estimate for the remainder of order N :∥∥rN
+ (δ)

∥∥
2,Ω+

+
∥∥rN

− (δ)
∥∥

2,Ωδ
−
≤ C δN− 5

2 . (15)

We can easily improve is, writing

rN (δ) = rN+4(δ) +
N+4∑

n=N+1

δnwn.

Estimate (15) applied to the remainder of order N + 4 gives∥∥rN+4
+ (δ)

∥∥
2,Ω+

+
∥∥rN+4

− (δ)
∥∥

2,Ωδ
−
≤ C δN+ 3

2 ,

and bounding the norms of wn in Ω+ (it is of order δn) and in Ωδ
− (in δn− 3

2 ), we finally get for rN (δ)∥∥rN
+ (δ)

∥∥
2,Ω+

+ δ
3
2
∥∥rN

− (δ)
∥∥

2,Ωδ
−
≤ C δN+1,

which is the stated estimate.

Remark 1. The expansion obtained in theorem 2 does not belong globally to H2(Ωδ), but only piecewise
in Ω+ and Ωδ

−. It is possible to “repair” this drawback (see previous proof), but we loose a power of δ in
the estimate.

Remark 2. The use of multi-scale analysis leads to optimal estimates, as we have seen in theorem 2. The
error is due to the first omitted term but truncating the series, it is generically non-zero and estimate (11) is
optimal.

Remark 3. Expansion (10) is a two-scale expansion: the interior terms wn
+ are naturally in the original

cartesian variables, whereas the terms in the layer involve the semi-scaled variables (s, y = δ−1r). There
is no corner-layer term in the interior domain Ω+, it only appears in Ωδ

−. The obtained expansion allows to
describe more precisely the corner-layer in the stiffener: each term Wn

− has a tensorial structure:

Wn
−(s, y) =

n∑
`=0

y`φ`(s),

where the function φ` only depends on the arclength s. The dependence with respect to the transverse
variable is polynomial. This remark can be used at a numerical level: the use of high-degree finite elements
is particularly adapted to the approximation in the stiffener, even if we only use one row of elements in the
thin layer (the elements hence become anisotropic).
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5 Approximate boundary conditions
Even if one might approximate numerically wδ , solution of (1), the computations become awkward when
δ is very small. One would rather replace the effect of the stiffener by a boundary condition on Γ0, called
approximate boundary condition.
In the present section, we will see how to identify such a condition using the asymptotic expansion obtained
earlier. This method also leads to a validation of the approximate boundary condition.
The idea is to approximate wδ by the series given by its asymptotic expansion (truncated at a given order).
The condition satisfied by this approximation on Γ0 gives the desired boundary condition.

5.1 Condition of order 0
Here, we only keep one term of the asymptotic expansion of wδ . We recall the problem solved by the first
interior term w0

+ (see 4.1) 
D+∆2w0

+ = f+ in Ω+,

M+(w0
+) = 0 ; T+(w0

+) = 0 on Γ0,

w0
+ = 0 ; ∂nw

0
+ = 0 on Γ,

The first approximate boundary condition is obvious: it is nothing but the homogeneous Neumann condi-
tions on Γ0. This is not surprising, since it corresponds to the limit case without stiffener (δ = 0). The
exterior boundary condition is simply imposed on Γδ = Γ0. Thus, we obtain a model where the effect of
the thin layer is completely neglected.
The remainder estimate proved in theorem 2 allows to evaluate the difference between the solution wδ

+ of
the initial problem, and w0

+, solution of the 0-order approximate problem:∥∥wδ
+ − w0

+

∥∥
2,Ω+

= O(δ).

5.2 Condition of order 1
As was already pointed out, the approximate problem of order 0 does not take into account the effect of the
thin layer. This model is of no interest since our aim is to obtain an approximate problem that incorporates
this effect. For this reason, we must go further in the asymptotic expansion and derive the condition of order
1. To this end, we keep the first two terms of the expansion: we define w[1] as

w[1] = w0 + δw1.

Using again the results of section 4.1, we set

Q0 = −D−
[
2(1− ν−)∂s (∂s∂n − c(s)∂s)− (1− ν2

−)c(s)
(
∂2

s + c(s)∂n

)]
,

P0 = −D−
[
(1− ν2

−)∂2
s

(
∂2

s + c(s)∂n

)
+ 2(1− ν−)∂s [c(s) (∂s∂n − c(s)∂s)]

]
,

so that w1
+ solves 

D+∆2w1
+ = 0 in Ω+,

M+(w1
+) +Q0(w0

+) = 0 on Γ0,

T+(w1
+) + P0(w0

+) = 0 on Γ0,

w1
+ = 0 ; ∂nw

1
+ = 0 on Γ.

We deduce the following relations for w[1]
+ on Γ0:

M+

(
w

[1]
+

)
+ δQ0

(
w

[1]
+

)
= O(δ2) on Γ0,

T+

(
w

[1]
+

)
+ δP0

(
w

[1]
+

)
= O(δ2) on Γ0.
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To obtain the approximate boundary condition of order 1, we choose to omit the O(δ2) term in the expres-
sions given above. Doing so, we obtain the new approximate problem

D+∆2w = f in Ω+,

M+(w) = −δQ0(w) on Γ0,

T+(w) = −δP0(w) on Γ0,

w = 0 ; ∂nw = 0 on Γ.

(16)

As can be seen, the approximate problem of order 1 differs from that of order 0 by the appearance of the
operators P0 and Q0 in the formulation of the boundary conditions posed on Γ0, which is the common
portion of the boundaries of the plate and the stiffener. These operators express the effect of the thin layer :
they depend on the physical characteristics of the material constituting this later.

Theorem 3 Let X be the space

X =
{
w ∈ H2(Ω+) ; w ∈ H2(Γ0) and w = ∂nw = 0 in Γ

}
.

Problem (16) is well posed in X , it is associated with the variational form

∀ψ ∈ X, a(w,ψ) + δ b(w,ψ) =
∫

Ω+

fψ dx, (17)

where the bilinear and linear forms a and b are respectively given by (3) et

b(u, v) = 2D−(1− ν−)
∫

Γ0

γτ (w)γτ (ψ) dσ +D−(1− ν2
−)
∫

Γ0

γµ(w)γµ(ψ) dσ, (18)

with
γτ = ∂2

s − c(s)∂n and γµ = ∂s∂n − c(s)∂s. (19)

It is remarkable that the expression a(w,w) + δ b(w,w) described above, which is the total energy of the
plate Ω+, is nothing but the sum of the strain energy of the plate in bending in the Kirchhoff theory a(w,w),
and of the strain energy ”inherited” from the stiffener. Indeed, δ b(w,w) involves tangential derivatives of
the traces of w and ∂nw, which stand, respectively, for the energy in bending and in torsion of the thin layer.
Let then wδ

1 be the variational solution of (16).
In order to estimate the difference between wδ

+, interior part of the solution of the original problem (1), and
wδ

1, we could use an a priori estimate on problem (16), and apply it for the function wδ
1 −w

[1]
+ . This method

leads to (combining this estimate with that of the remainder wδ
+ − w

[1]
+ )∥∥wδ

+ − wδ
1

∥∥
2,Ω+

≤ C δ
3
2 .

The loss of the factor δ1/2 is due to the a priori estimate, which does depend on δ. A better way consists
in determining the asymptotic expansion of the function wδ

1 and compare it with the expansion obtained
in theorem 2 for wδ

+. Since probl?me (16) does not involve any layer, it is easy to build the asymptotic
expansion of its solution.

Theorem 4 We assume that the curve Γ0 – defining the boundary of the domain Ω+ – and the right hand-
side infinitely smooth. The following asymptotic expansion holds for the solution wδ

1 of problem (16):

wδ
1 =

∑
n≥0

δnwn
1 , (20)

The terms (wn
1 )n do not depend on the parameter δ and are built according to equations (22) below.

The equality (20) is valid in the sense of asymptotic expansions, i.e. for every integer N , there exists a
constant CN such that the remainder

rN (δ) = wδ
1 −

N∑
n=0

wn
1

satisfies the (optimal) estimate ∥∥rN
+ (δ)

∥∥
2,Ω+

≤ CN δN+1. (21)
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PROOF. Inserting the polynomial ansatz (20) in the equations (16), we get
D+∆2wN

1 = f ou 0 in Ω+,

M+(wN
1 ) = −Q0(wN−1

1 ) on Γ0,

T+(wN
1 ) = −P0(wN−1

1 ) on Γ0,

wN
1 = 0 ; ∂nw

N
1 = 0 on Γ.

(22)

This problem defines wN
1 from wN−1

1 (under the convention w−1 = 0). The remainder estimate is proven
by the same way as in theorem 2.

It is straightforward to check that the first terms of the expansions (10) and (20) are the same:

w0
+ = w0

1 and w1
+ = w1

1.

The following terms w2
+ and w2

1 do not generically equal, so that we get an optimal estimate for the differ-
ence wδ

+ − wδ
1.

Theorem 5 The difference between the interior part of the solution of the transmission problem (1), and
the solution of the 1-order approximate problem, cf. (16) – satisfies∥∥wδ

+ − wδ
1

∥∥
2,Ω+

≤ C δ2.

This estimate is generically optimal.

PROOF. One only needs to use the estimates (11) and (21) at order 2.

The latter result illustrates the efficiency of the multi-scale analysis for the study of problems depending on
a small parameter. It shows that problem (16) is an approximation of the original problem (in the interior
domain Ω+) up to O(δ2). The major interest of replacing the original problem by the approximate one is, as
we already mentioned, the complexity of discretizing the original problem. Since approximate problem (16)
does not involve the thin layer, we can use a coarser mesh, independent of the parameter δ.

6 Case where the Young’s modulus depends on the thickness
Until now, we have made the assumption that the Young’s modulus E is piecewise constant in Ωδ , inde-
pendent of the thickness δ. In this section, we suppose that it behaves as δ−1 in the thin layer (E+ still
independent of δ). This expresses that the elastic material constituting the layer Ωδ

− must be more rigid
than that constituting the plate Ω+.
More precisely, we suppose that the Young’s modulus E equals δ−1E− in the layer, and E+ in Ω+, with
E− and E+ independent of δ.

With much less details, we carry out the construction and the analysis of the approximate boundary con-
ditions. The rule brought out above gives a hierarchy of approximate boundary conditions in the present
case too. Indeed, the techniques developed in the previous sections still apply in this situation. The only
difference is the shift of one power of δ for the operators in the stiffener. This shift only really affects the
transmission conditions for M and T across the interface Γ0 – see problem (7). In order to define the first
interior termw0

+, we need here to determine the first five terms in the stiffener, instead of the first four terms,
previously. No extra difficulty appears.

Applying the basic Ansatz used in section 4, one can check that the first interior term w0
+ solves the follow-

ing problem: 
D+∆2w0

+ = f in Ω+,

M+(w0
+) +Q0(w0

+) = 0 on Γ0,

T+(w0
+) + P0(w0

+) = 0 on Γ0,

w0
+ = 0 ; ∂nw

0
+ = 0 on Γ
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This allows to write the approximate problem of order 0, that is:
D+∆2wδ

0 = f, in Ω+

M+(wδ
0) = −Q0(wδ

0) in Γ0,

T+(wδ
0) = −P0(wδ

0) in Γ0,

wδ
0 = 0 ; ∂nw

δ
0 = 0 in Γ.

(23)

Hence, a simple inspection of the above equations reveals that, unlike in the previous case, the operators
P0 and Q0 appear in the right-hand sides of their formulations. Indeed, this is in sharp contrast with the
analysis made before, where it was found that these operators were not involved until order 1.
We thus realize that the effect of the thin layer, in the present case, is seen at order 0 via the new boundary
conditions posed on Γ0 and is completely embodied by the operators P0 and Q0. Indeed, one observes that
these operators depend solely on the elastic material constituting the layer, through its characteristics E and
ν.
In the previous analysis, where the thin layer characteristics were assumed to be constant, the limit problem,
as δ → 0 (which corresponds to the approximate problem of order 0) was simply obtained by omitting the
thin layer. As it can be seen, a completely different limit behavior occurs if the Young’s modulus of the thin
layer approaches +∞ sufficiently rapidly as δ → 0 (i.e. if it behaves like δ−1 ). This difference comes from
the fact that, in this situation, the material constituting the thin layer is more rigid than that constituting the
plate: the high rigidity of the layer emphasizes its effect on the displacement.
In order to get a “limit” problem that takes into account the effect of the thin layer as its thickness goes
to zero, it turns out to be sufficient to compensate this thickness by a specific increase as δ → 0. The
appropriate scaling is just E = δ−1E−.
As has been already done in the previous section, we can go further in the construction of the approximate
boundary conditions and obtain the approximate problem of order 1. Indeed, a condition of higher order
leads to a better approximation of the exact solution of the initial problem. Following the same procedure,
we obtain that the second term w1

+ of the asymptotic expansion satisfies
D+∆2w1

+ = f in Ω+,

M+(w1
+) +Q0(w1

+) +Q1(w0
+) = 0 on Γ0,

T+(w1
+) + P0(w1

+) + P1(w0
+) = 0 on Γ0,

w0
+ = 1 ; ∂nw

1
+ = 0 on Γ,

where the differential operators P1 and Q1 are defined by

Q1 = −D−

[
1
2

(3ν− + 1) (ν− − 1) ∂2
s

[
∂2

sw
0
+ + c(s)∂n

]
+ 3(1− ν−)∂s

[
c(s)

(
∂s∂nw

0
+ − c(s)∂s

)]
+

1
2

(3ν− + 1) (ν− − 1) c(s)∂s [∂s∂n − c(s)∂s]

−1
2

(2ν− + 1)
(
ν2
− − 1

)
c2(s)

(
∂2

s + c(s)∂n

)]
,

P1 = −D−

[
1
2

(3ν− + 1) (ν− − 1) ∂s

[
c(s)∂s

(
∂2

s + c(s)∂n

)]
− 3(1− ν−)∂s

[
c2(s) (∂s∂n − c(s)∂s)

]
− 1

2
(3ν− + 1) (ν− − 1) ∂3

s [∂s∂n − c(s)∂s]

+
1
2

(2ν− + 1)
(
ν2
− − 1

)
∂2

s

[
c(s)

(
∂2

s + c(s)∂n

)]]
.

We immediately deduce the approximate problem of order 1 :
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
D+∆2wδ

1 = f in Ω+,

M+(wδ
1) = −Q0(wδ

1)− δQ1(wδ
1) on Γ0

T+(wδ
1) = −P0(wδ

1)− δP1(wδ
1) on Γ0

wδ
1 = 0 ; ∂nw

δ
1 = 0 on Γ

(24)

As we can see, the approximate problem of order 1 differs from that of order 0 by the additive terms
δQ1(wδ

1) and δP1(wδ
1) that lead to a better approximation. These two problems are well-posed in ad hoc

variational spaces (at least for small values of δ for the second one) and define two solutions wδ
0 (actually

not depending on δ), and wδ
1. With the same tools as above, we can show that they lead to approximations

of the solution wδ
+ of 1, with the optimal estimates:∥∥wδ

+ − wδ
0

∥∥
2,Ω+

≤ C δ,∥∥wδ
+ − wδ

1

∥∥
2,Ω+

≤ C δ2.

Physical interpretation. Within the framework of the linearized elasticity, the mechanical interpretation of
the solutions of the above approximate problems is natural: they solve the two dimensional Kirchhoff-love
model of a plate Ω+ clamped along its part of boundary Γ and subjected to an applied body force f acting
on its interior. The remaining portion of the boundary Γ0 is no longer free but subjected to external actions
that represent the effect of the thin layer: the new additive terms (Q0(wδ

1) and P0(wδ
1) for the first problem

andQ0(wδ
1)+δQ1(wδ

1) , P0(wδ
1)+δP1(wδ

1) for the second one) have the physical interpretation of inserted
moments and forces, all of which acting on the part of the boundary Γ0.

Finally, it is worth noting that the derivation of higher order approximate conditions can be achieved by
following the same procedure. This way, we obtain a hierarchy of boundary value problems giving in each
case a model that incorporates the effect of the thin layer at different order of accuracy. However, the explicit
calculations become more and more intricate.

7 Conclusion
We have derived and validated approximate boundary conditions for the problem of reinforcement of a thin
plate. The use of multi-scale asymptotic analysis led us to optimal estimates of the errors between the
solution of the original problem, and the solutions of the problems with approximate boundary conditions.
The technique we developed here can apply to various situations of the same kind, for example the case of
Dirichlet conditions (which is actually simpler), or Neumann conditions without any embedding (compati-
bility conditions then appear, making the analysis harder).
An interesting perspective is to investigate the situation where the plate has corners, which is generally the
case in numerical applications. Our analysis can not directly apply because of the loss of regularity at each
step of the construction of the expansion. We need to take into account the singularities arising from the
corners, and treat them in a different way, using ideas from [5, 17, 18, 4].
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[18] G. VIAL. Efficiency of approximate boundary conditions for corner domains coated with thin layers.
CR. Acad. Sci. 340 (January 2005) 215–220.

18


