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Abstract

In this work, we consider singular perturbations of the boundary of a smooth domain. We describe the
asymptotic behavior of the solutionuε of a second order elliptic equation posed in the perturbed domain
with respect to the size parameterε of the deformation. We are also interested in the variationsof the
energy functional. We propose a numerical method for the approximation ofuε based on a multiscale
superposition of the unperturbed solutionu0 and a profile defined in a model domain. We conclude with
numerical results.

1 Introduction.

Various physical situations involve materials with a two-scale structure. From the macroscopic point of
view, the considered body can usually be modeled by a smooth domain ofR2 or R

3, but this does not take
into account the microscopic design of the material. We are specially interested in small inhomogeneities or
cavities located on the border of the body. If they are arranged within a periodical network, homogenization
techniques (see [1], for example) apply and a macroscopic model is valid, provided the characteristic prop-
erties of the material are modified accordingly. Such methods do not hold for local inhomogeneities, which
are in the applications usually either omitted (for the smallest ones) or integrated into the macroscopic do-
main. Naturally, the numerical approximation of such problems requires a severe mesh refinement near the
perturbation, which sometimes prevents from taking them into account in the computations.

In this paper, we deal with an elliptic partial differentialequation in a domain with a small local bound-
ary perturbation. We give the complete asymptotic expansion of its solution with respect to the size of
the perturbing pattern, derive the variation of the associated energy (topological derivative) and propose a
numerical method for the approximation of its solution based on the theoretical study.

Let us describe the geometrical setting we shall work within: Ω0 is an open bounded subset ofR
2 with

smooth boundary containing the originO. We assume, for simplicity in a first time, that the boundary∂Ω0

coincides with a straight line near the origin, precisely for |x| < r∗. We will also deal in this work with
smooth curved boundaries. On the other hand,H∞ denotes an infinite domain ofR

2, which coincides with
the upper half-plane at infinity, precisely for|x| > R∗. The perturbed domainΩε is defined for smallε by
(see Figure 1)

Ωε = {x ∈ Ω0 ; |x| > εR∗} ∪ {x ∈ εH∞ ; |x| < r∗}. (1)

Let us mention that we makeno assumption of inclusionof the perturbed domain into the original one (or
conversely). We will extend this framework to some curved smooth situations.

We defineuε as the solution inH1(Ωε) of the equation−∆uε = f in Ωε, wheref is some function in
L2(Ω0) vanishing in a neighborhoodof the origin. We consider Dirichlet boundary conditions onΓD ⊂ ∂Ωε

(which does not reach the origin) and Neumann boundary conditions elsewhere (other types of boundary
conditions can also be treated). The asymptotic analysis ofsimilar problems have been investigated by
several authors in various special cases, see [15, 16, 10, 8]. We adopt here the point of view ofmultiscale
asymptotic expansionsrather than themethod of matching of asymptotic expansions– for a comparison
of the two approaches, se [18]. It appears that the solutionuε can be approximated at first order by a
superposition of the unperturbed solutionu0 and aprofile, via cut-off functions in slow and rapid variables:

uε = ζ(x
ε )u0(x) + χ(x)W 1(x

ε ) + OH1(Ωε)(ε
2). (2)
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Figure 1: The original and pertubed domains.

The cut-off functionsζ andχ are chosen smooth, radial, and satisfying

• the functionζ(x) equals1 for |x| > R∗, and vanishes for|x| < R∗/2 ;

• the functionχ(x) equals1 for |x| < r∗/2 and vanishes for|x| > r∗.
(3)

The profileW 1 is defined as the solution in the domainH∞ of a homogeneous model problem. In the
expansion (2), the termu0 only contributes away from the origin and the information concerning the per-
turbing pattern is carried by the profile. These two contributions interact in the transition zone through the
cut-off functions.

We can base a numerical approach for the approximation ofuε on formula (2). Indeed, the computation
of the termu0 does not involve the perturbation and may therefore be done on a coarse mesh ofΩ0. If we
have a suitable approximation of the profileW 1, the superposition formula (2) gives a numerical solution
for uε. The cut-off functions are handled in the practical processby means ofpatch of elements.

Moreover, expression (2) allows to compute thetopological derivative– see [12, 13, 17] – of the energy
j(ε):

j(ε) := −
1

2

∫

Ωε

|∇uε|
2 = j(0) + ε2|∇u0(0)|2AH∞

+ O(ε2), (4)

where the real numberAH∞
only depends on the geometry ofH∞.

The paper is divided as follows. In a first section, we give thefull asymptotic expansion of the state
function in the case of a straight boundary near the origin, this is based on a multiscale asymptotic method.
We extend then these results to a curved case. As far as we know, such a curved geometry with a self-similar
perturbation has not been considered so far. Next, we derivethe leading terms in the asymptotical descrip-
tion of the energy functional. The last part is devoted to thenumerical method using patch of elements
near the perturbation: a numerical validation of our theoretical results is given in the studied model case of
the Laplace equation. We conclude the paper with comments ona possible application of the methods and
technics developped in the present paper to mechanical engineering.

2 Asymptotic expansion of the state function.

We consider the solutionuε of the following problem, posed in the geometry described byFigure 1:










−∆uε = f in Ωε,

uε = 0 onΓD,

∂nuε = 0 on∂Ωε\ΓD.

(5)

The technique we use to build an asymptotic expansion ofuε into powers of the small parameterε is adapted
from the multi-scale approach of [18].

We first write the Taylor expansion at a target precisionK of the limit termu0 at pointx = 0 (thanks to
standard elliptic regularity,u0 is a smooth function up to the boundary):

u0(x) = χ(x)

K
∑

k=0

uk(x) +RK(x) = χ(x)TK(x) +RK(x), (6)

the first terms of the Taylor polynomialTK being given byu0(x) = u0(0), u1(x) = |∇u0(0)|x1 (more
generallyuk is a homogeneous polynomial of total degreek). The limit termu0 is not necessarily defined
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in the whole domainΩε, but its Taylor part may be extended toΩε. For this reason, a better start is given
by the truncated function

ũ0(x) = χ(x)TK(x) + ζ(x
ε )RK(x) ∈ H1(Ωε). (7)

The difference betweenu0 andũ0 is small since the remainderRK is flat in the cut-off region. Let us denote
by r0ε the difference betweenuε andũ0, it naturally satisfies the following problem











−∆r0ε = ϕ0
ε in Ωε,

r0ε = 0 onΓD,

∂nr
0
ε = −χ(x)∂nTK + ψ0

ε on∂Ωε\ΓD,

(8)

where the dataϕ0
ε andψ0

ε arise from the cut-off and are supported in the ring of sizeε defined as{x ∈
Ωε ; εR∗/2 < |x| < εR∗}, they will contribute to the remainder since they are essentially of orderεK .
Thus, the principal defect in equation (8) comes from the normal derivative of the Taylor expansion ofu0,
whose leading term reads

−χ(x)|∇u0(0)|∂nx1 = −χ(x)|∇u0(0)|n1, (9)

which does not vanish only on the boundary part ofΩε which corresponds to the perturbing pattern (the
vectorn = (n1, n2) stands for the unitaryouter normal on∂Ωε). Following the ideas of [4, 5, 18], we
introduce the profileV 1 as the solution of the problem in the infinite domainH∞:











−∆V 1 = 0 in H∞,

∂nV
1 = −|∇u0(0)|N1 on∂H∞,

V 1 → 0 at infinity,

(10)

whereN1 denote the first component of the unitaryinner normal vector on∂H∞. The following lemma
state the well-posedness of such a problem.

Lemma 2.1 Problem(10)admits a unique weak solutionV 1 in the variational space

{

V ; ∇V ∈ L2(H∞) and
V

(1 + |X |) log(2 + |X |)
∈ L2(H∞)

}

. (11)

Furthermore, we have the following behaviors at infinity:

V 1(X) = O(|X |−1) and ∇V 1(X) = O(|X |−2) as|X | → ∞. (12)

The proof is given in [4]: existence and uniqueness in the variational space follows from a weighted
Poincaré-like inequality, the behavior at infinity may be proven thanks to the tool of Mellin transform.

Using the profileV 1, we are able to write the beginning of the asymptotic expansion ofuε: we set

r1ε = uε −
[

ũ0 + χ(x)ε V 1(x
ε )
]

. (13)

By construction, this remainder satisfies










−∆r1ε = ϕ0
ε + ϕ1

ε in Ωε,

r1ε = 0 onΓD,

∂nr
1
ε = ψ0

ε + ψ1
ε on∂Ωε\ΓD.

(14)

The functionϕ1
ε comes from the cut-off functionχ:

ϕ1
ε = ∆

[

χ(·)εV 1( ·
ε)
]

. (15)

Note that in the Laplacian, only derivatives ofχ are involved sinceV 1 is harmonic, and only|x| > r∗/2
has to be considered in (15). The functionψ1

ε has its support inside the ball|x| < εR∗ and is given by

ψ1
ε = −χ(x)∂nV

1(x
ε ) − χ(x)∂nTK = −χ(x)

K
∑

k=2

∂nu
k(x) = OL2(Ωε)(ε

2), (16)
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sinceV 1 stands for the term corresponding tok = 1 of the Taylor expansion (the constant termu0 does not
contribute to the normal derivative).

It is not straightforward to obtain a remainder estimate onr1ε since theL2-norm ofϕ1
ε is onlyO(1). We

need to build further terms to get the (optimal) estimate

‖r1ε‖H1(Ωε) = O(ε2). (17)

The proof will follow from Theorem 2.2 below.
To continue the construction of the expansion, we need to take into account the next terms in the Taylor

expansion ofu0 by new profiles, and add correctors for the cut-off. The technology used in [4, 5, 18] can
be extended, the main differences have been described just above for the first terms. Precisely, we get

Theorem 2.2 We assume thatf is anL2-function, with compact support insideΩ0. Then the solutionuε

of (5) admits the following asymptotic expansion forN < K

uε(x) = ũ0(x) + χ(x)

N
∑

i=1

εiV i(x
ε ) +

N
∑

i=2

εiwi
ε(x) + OH1(Ωε)(ε

N+1). (18)

The termũ0 is defined by(7), the profileV i is a counterpart for theith termui of the Taylor expansion of
u0 – see(20)– andwi

ε is a cut-off corrector satisfying‖wi
ε‖H1(Ωε) = O(1).

Proof of Theorem 2.2: We give a sketch of the proof for the complete asymptotic expansion. Supposing
the expansion built until rankN − 1, we set

rN
ε (x) = uε(x) − ũ0(x) − χ(x)

N−1
∑

i=1

εiV i(x
ε ) −

N−1
∑

i=2

εiwi
ε(x), (19)

the remainder of orderN − 1. By definition, the profilesV i satisfies











−∆V i = 0 in H∞,

∂nV
i = −∂nu

i on∂H∞,

V i → 0 at infinity.

(20)

(again, the datum is compactly supported and Lemma 2.1 ensures1 existence and uniqueness ofV 1).

Laplacian.By construction, the residual in∆rN
ε is corrected up to orderN − 1 by thewi

ε. But the term
∆[χ(x)εN−1V N−1(x

ε )] is of orderεN in L∞(Ωε) thanks to an estimate similar to (12). We define hence
wN

ε as the solution inH1(Ωε) of

−∆wN
ε = −∆[χ(x)εN−1V N−1(x

ε )] with same boundary conditions asu0. (21)

Boundary conditions.The Dirichlet boundary condition onΓD is fully satisfied byrN
ε , but the Neumann

boundary condition is not. Indeed, only theN − 1 first Neumann-traces have been taken into account so
far by the profilesV i: the leading term in∂nrN

ε on∂Ωε\ΓD is given by−∂nuN(x) = −εN∂nu
N (x

ε ), by
homogeneity. This naturally leads to the definition ofV N , according to (20).

Conclusion.The introduction of the termswN andV N allows to define the remainderrN+1
ε of orderN ,

which satisfies

• the laplacian−∆rN+1
ε is small: precisely, its leading term isεN∆[χ(x)V N (x

ε )], which is of order
εN−1 in theL2(Ωε)-norm;

• the Neumann boundary condition is satisfied up to a term inOL2(∂Ωε)(ε
N+1) thanks to an estimate

similar to (16).

1Since Neumann conditions are considered, we have to make sure that the right hand-side of (20) meets the compatibility require-
ment. This is the case here: sinceu0 is harmonic, it is also the case of the terms in its Taylor expansion.
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Using ana priori estimate on Problem (5) (independent onε), we immediately get the rought estimate
rN
ε = OH1(Ωε)(ε

N−1). To obtain the orderεN+1, we simply write

rN
ε = rN+2

ε + χ(x)εN+2V N+2(x
ε ) + εN+2wN+2

ε (x) + χ(x)εN+1V N+1(x
ε ) + εN+1wN+1

ε (x), (22)

yielding to the result from the estimates

χ(x)V k(x
ε ) = OH1(Ωε)(ε

k−1) and wk
ε = OH1(Ωε)(1). (23)

Remark 2.3 By a mere rearrangement of the terms, the expansion ofuε can read as follows

uε = ζ(x
ε )u0(x) + χ(x)

N
∑

i=1

εiW i(x
ε ) +

N
∑

i=2

εiw̃i
ε(x) + OH1(Ωε)(ε

N+1). (24)

The new profilesW i are defined byW i(X) = V i(X) +
(

1 − ζ(X)
)

ui(X) and thew̃i
ε are new correctors.

The advantage of this formulation is to involveu0 itself, instead of̃u0.
In the case of an cavity, i.e.Ωε ⊂ Ω0, the functionζ can be chosen identically equal to1, andW i = V i.

Remark 2.4 We can deplore that the correcting termswi
ε do depend onε, though weakly since they are

of orderO(1) in theH1(Ωε)-norm. It is possible to remove this feature from the asymptotic expansion by
introducing correctorszi defined in the limit domainΩ0 (with same right-hand side), and using the cut-off
functionζ. Of course, the normal trace does no more vanish on the perturbed boundary and we have to
take this into account in the definition of the profiles. The resulting expansion reads

uε(x) = ũ0(x) + χ(x)

N
∑

i=1

εiṼ i(x
ε ) + ζ(x

ε )

N
∑

i=2

εizi(x) + OH1(Ωε)(ε
N+1). (25)

or, with the previous remark,

uε(x) = ζ(x
ε )u0(x) + χ(x)

N
∑

i=1

εiW̃ i(x
ε ) + ζ(x

ε )

N
∑

i=2

εiz̃i(x) + OH1(Ωε)(ε
N+1). (26)

3 Extension to some curved boundaries.

In this section, for the lightness of the presentation, we consider the case of Dirichlet boundary conditions.
Let uε solve−∆u = f in H1

0(Ωε) while u0 solves the same equation inH1
0(Ω0). We also restrict ourselves

to the cavity case to avoid the need ofũ0, and we make the assumption that the initial domain is convexin
the neighborhood ofO. The geometrical situation is illustrated in Figure 2.

Ω0

O
•

O

ω
•

Ωε

•
O

Figure 2: Domains in the case of locally convex curved boundary .

This situation is not a mere extension of the flat one, considered previously. Indeed, if we rectify the
boundary locally nearO, the perturbation is not selfsimilar anymore in the new coordinates!

5



Following the analysis performed in [5], we introduce the profile V 1
d as the solution of the problem in

the infinite domainH∞:










−∆V 1
d = 0 in H∞,

V 1
d = −|∇u0(0)|x2 on∂H∞,

V 1
d → 0 at infinity,

(27)

wherex2 denotes the second component of the position on∂H∞. As for the Neumann case, existence and
uniqueness of such a profile follows from next lemma, similarto lemma 2.1.

Lemma 3.1 Problem(10)admits a unique weak solutionV 1
d in the variational space

{

V ; ∇V ∈ L2(H∞) and
V

1 + |X |
∈ L2(H∞)

}

. (28)

Furthermore, there is a constantC depending onlyH∞ such that

|V 1
d (X)| ≤

C

|X |
and |∇V 1

d (X)| ≤
C

|X |2
when|X | → ∞. (29)

As in [5], we approximateuε by u0 + χV 1
d ( ·

ε) and we set

rd
ε(x) = uε(x) −

[

u0(x) + χ(x)V 1
d (x

ε )
]

. (30)

This remainder solves






−∆rd
ε(x) = ∆

[

χ(x)εV 1
d (x

ε )
]

, in Ωε,

rd
ε(x) = u0(x) − χ(x)εV 1

d (x
ε ) on∂Ωε,

(31)

The difference with the flat case treated is the presence ofnon-vanishingboundary conditions on∂Ω0∩∂Ωε.
The expansions obtained in [5] and in Section 2 were justifiedwithout taking into account the short range
interaction between the profiles and the geometry of the initial domainΩ0. The flatness assumption ofΩ0

aroundO cancels the interaction between slow and rapid variable that we have to face in the curved case.
Let us emphasize the fact that the approximationu0 +εχV 1

d ( ·
ε) does not satisfy the homogeneous Dirichlet

boundary conditions on∂Ω0 ∩ ∂Ωε. However, its trace almost vanishes.
Like in the previous section, the laplacian part is easy to handle and it holds:

‖∆
[

χ(x)εV 1
d (x

ε )
]

‖L2(Ωε) ≤ Cε2.

We need to consider the boundary conditions on∂Ωε in the two natural parts: on∂Ωε∩Ω0, we immediately
getrd

ε = u2, which is naturally of orderε2 as a reminder of order2 in a Taylor expansion. We have to prove
that this estimate extends to∂Ω0 ∩∂Ωε. This proof turns out to be the most difficult part of the extension to
curved boundaries. The leading idea of the analysis is a decomposition of profiles in terms of homogeneous
functions, usually obtained from the Mellin transform, see[9, 4]. Here, we only need the weak following
statement.

Lemma 3.2 The profilV 1
d can be written as the sumV1

d +R whereV1
d is a homogeneous function of degree

−1 and the remainderR satisfies the following behavior at infinity: there is a constantC depending only
H∞ such that

|R(X)| ≤
C

|X |2
and |∇R(X)| ≤

C

|X |3
when|X | → ∞. (32)

Proof of Lemma 3.2: Fix R > 0 large enough so thatω is included into the ballB(O,R). Then, the
trace ofV 1

d on the curve∂B(O,R) ∩ H∞ is smooth and can be written as the sum of its Fourier series.
Thanks to the boundary conditions, only the sine functions appear and one gets

V 1
d (R, θ) = a0 +

∑

n≥1

an sinnθ.
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Using Poisson’s kernel, we then get that

V 1
d (r, θ) = a0 +

∑

n≥1

an

Rn

rn
sinnθ.

The behavior at infinity ofV 1
d prescribesa0 = 0 and we setV1

d(r, θ) = a1

R

r
sin θ. Note that the dependency

of the expression ofV1
d with respect toR is fictitious thanks to its homogeneity. SettingR = V 1

d − V1
d ,

leads to the stated result.

Let us specify the geometry of∂Ω0 aroundO. We assume∂Ω0 to beC2 and fix the coordinate axis such
that∂Ω0 is the graphx2 = h(x1) of a functionh in the neighborhood ofO with h(0) = h′(0) = 0. Then,
there exists a numberC > 0 and a radiusr > 0 such that forx = (x1, x2) ∈ ∂Ω0, it holds

|x| ≤ r ⇒ 0 ≤ h(x1) ≤ C|x1|
2 and|h′(x1)| ≤ C|x1|;

this property is connected to theC2 regularity of∂Ω0. We fix r∗ = r and chooseε≪ r∗: the characteristic
size of the perturbation is small with respect of the radius of curvature of∂Ω0 atO. This assumption is a
natural limitation of the method. The geometrical context is summed up in Figure 3.

Figure 3: The geometrical setting of the cavity in the convexcase.

We can now state the estimates on the boundary conditions. The termV1
d is homogeneous of order−1,

therefore it is easy to check that‖V1
d( ·

ε )‖H1/2(∂Ωε) is of orderε. Thus, we focus on the remainder

r̃d
ε (x) = rd

ε (x) + εχV1
d(x

ε ) = rd
ε + OH1/2(∂Ωε)(ε

2).

Proposition 3.3 One has
‖r̃d

ε‖H1/2(∂Ωε) ≤ Cε2. (33)

Proof of Proposition 3.3: For localization reasons (we will split the norm on subdomains of∂Ωε), we
consider theL2 andH1 norms, the result on theH1/2 norm following by interpolation. Precisely, it is
enough to prove

‖r̃d
ε‖L2(∂Ωε) ≤ Cε5/2, (34)

‖r̃d
ε‖H1(∂Ωε) ≤ Cε3/2. (35)

Thanks to the assumption made on the truncation in slow variable, the only two areas to be considered are:
(i) ε∂ω the boundary of the cavity itself, and(ii) the part of∂Ωε\ε∂ω in the support of the cut-offχ.

(i) On ε∂ω, rd
ε is by construction the remainder of order two in the Taylor expansion ofuΩ0

. Therefore, it
is smooth with anL∞-norm of orderε2 and there is a constantC > 0 such that

∫

ε∂ω

(r̃d
ε(s))2 ds ≤ Cε5,

After one derivation, one looses one order and gets
∫

ε∂ω

(∇τ r̃
d
ε (s))2 ds ≤ Cε3,
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which correspond to the stated estimates (34) and (35).

(ii) Forx = (x1, h(x1)) ∈ ∂Ωε \ ε∂ω, the remainder̃rd
ε is

r̃d
ε (x1, h(x1)) = −εχ

(

x,h(x1)
)

R

(

(

x,h(x1)
)

ε

)

.

Now, for x1 ∈ (−r∗, r∗), we take advantage of the homogeneous Dirichlet boundary conditions and write
the remainder as an integral and make the change of variabley = εs:

εR

(

(

x,h(x1)
)

ε

)

= ε

∫ h(x1)/ε

0

∂2R

(

x

ε
, s

)

ds =

∫ h(x1)

0

∂2R

(

x1

ε
,
y

ε

)

dy.

Usingχ ≤ 1 and the upper bound (32) on the profileR, we get the pointwise estimate

|r̃d
ε

(

x1, h(x1)
)

| ≤

∫ h(x1)

0

C

1 +
∣

∣

x1

ε

∣

∣

3 dy ≤
C|x|4ε3

ε3 + |x1|3
,

which leads to
∫ r∗

ε

[

r̃d
ε

(

x1, h(x1)
)]2

dx1 ≤ Cε6
∫ r∗

ε

|x1|
4

(ε3 + |x1|3)2
dx1.

After the change of variablesx1 = εy, we finally get

∫ r∗

ε

[

r̃d
ε

(

x1, h(x1)
)]2

dx1 ≤ Cε5
∫ r∗/ε

1

|y|4

(1 + |y|3)2
dy ≤ Cε5.

Let us now address the derivative. Forx =
(

x1, h(x1)
)

∈ ∂Ωε \ ε∂ω, one has

∇τ r̃
d
ε (x) = χ(x)

[

∂1R

(

x1

ε
,
h(x1)

ε

)

+ h′(x1)∂2R

(

x1

ε
,
h(x1)

ε

)]

+ ∇τχ(x)R

(

x1

ε
,
h(x1)

ε

)

.

We decompose this sum into

T1(x) = χ(x)∂1R

(

x1

ε
,
h(x1)

ε

)

,

T2(x) = χ(x)h′(x1)∂2R

(

x1

ε
,
h(x1)

ε

)

,

T3(x) = ∇τχ(x)R

(

x1

ε
,
h(x1)

ε

)

.

The study ofT3 is a corollary of (34):

∫ r∗

ε

|T3(x)|
2dx1 ≤ Cε5.

The other terms involve derivation in the fast variable and hence a loss of order. More precisely, we have:

|T1(x)| ≤

∣

∣

∣

∣

∣

∫ h(x1)/ε

0

∂2
2,1R

(

x1

ε
, s

)

ds

∣

∣

∣

∣

∣

≤
C|x1|

2ε3

ε4 + |x1|4
.

Once we integrate overx1, we obtain

∫ r∗

ε

|T1(x1)|
2 dx1 ≤ Cε3

∫ r∗/ε

1

|y|4

(1 + |y|3)2
dy.
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Finally, we write

T2(x) ≤ C|x1|
C

1 + |x1

ε |3
≤

C|x|ε3

ε3 + |x|3
,

whence
∫ r∗

ε

|T1(x1)|
2 dx1 ≤ Cε3

∫ r∗/ε

1

|y|2

(1 + |y|3)2
dy.

We treat the double products thanks to the Cauchy-Schwarz inequality to get (35).

All the tools needed to prove the main result of this section are now at our disposal.

Theorem 3.4 In the curved situation described previously , it holds:

uε(x) = u0(x) + χ(x)V 1
d (x

ε ) + OH1(Ωε)(ε
2). (36)

The boundary condition satisfies

u0(x) + χ(x)V 1
d (x

ε ) = OH1/2(∂Ωε)(ε
2). (37)

4 Variations of energy integrals for singular domain deformations.

In this section, we investigate the behavior of the Dirichlet energy with respect to singular deformations
of the boundary, our presentation is similar to [14]. We recall the definition of the Dirichlet energy of a
bounded open subset ofR

d : if f ∈ D(Rd) with supp(f) ⊂⊂ Ω0,

J(Ω0) = −
1

2

∫

Ω0

|∇uΩ0
(x)|

2
dx,

whereuΩ0
is the solution of−∆u = f in H1

0(Ω0). We consider the same class of singular deformations
than in the previous section. The notations are recalled in Figure 4. The first result is the following.

Γ−
ε

ω−
ε

ω+
ε

Γ+
ε

Ωε,Ω0 Γ−
ε = ∂Ωε ∩ Ω0 ⊂ ∂Ωε,

Γ+
ε = ∂Ω0 ∩ Ωε ⊂ ∂Ω0,

ω+
ε = Ωε \ (Ωε ∩ Ω0) ⊂ Ωε,

ω−
ε = Ω0 \ (Ωε ∩ Ω0) ⊂ Ω0.

Figure 4: The notations.

Proposition 4.1 Let ε > 0 be such thatsupp(f) ⊂⊂ Ωε anduε (resp.u0) denotes the solution of−∆u =
f in H1

0(Ωε) (resp.H1
0(Ω0)). Then, one has :

J(Ωε) = J(Ω0) −
1

2

∫

Γ−
ε

u0

∂uε

∂n
dσ +

1

2

∫

Γ+
ε

uε

∂u0

∂n
dσ. (38)

Proof of Proposition 4.1.: The proof is elementary and based on the Gauss formula. Hence, it can easily
be extended to other energy-type functionals (eigenvaluesfor instance, which express in terms of rayleigh
quotients). However, the technique cannot be extended to other shape functionals (e.g. least square fitting
to a desire state). SinceΩε = (Ωε ∩ Ω0) ∪ ω

+
ε , we write

J(Ωε) = −
1

2

∫

Ωε

|∇uε|
2 dx = −

1

2

∫

Ωε∩Ω0

|∇u0 + ∇(uε − u0)|
2 dx−

1

2

∫

ω+
ε

|∇uε|
2 dx.
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The second integral can be rewritten via the Gauss formula. One has to be careful with the outer normal
vector field. Byn, we denote the outer normal vector field of∂Ωε or ∂Ω0 depending on the context. It may
be the opposite to the outer normal field toω−

ε , ω+
ε denoted byn :

∫

ω+
ε

|∇uε|
2 dx =

∫

ω+
ε

uε(−∆uε) dx+

∫

Γ+
ε

uε

∂uε

∂n
dσ = −

∫

Γ+
ε

uε

∂uε

∂n
dσ.

We expand the first integral and get :

∫

Ωε∩Ω0

|∇u0 + ∇(uε − u0)|
2

dx =

∫

Ωε∩Ω0

|∇u0|
2

dx+ 2

∫

Ωε∩Ω0

〈∇u0,∇(uε − u0)〉dx

+

∫

Ωε∩Ω0

|∇(uε − u0)|
2 dx.

Applying Green’s formula and using the homogeneous Dirichlet boundary conditions on∂Ωε and∂Ω0, we
have :

∫

Ωε∩Ω0

|∇u0|
2

dx =

∫

Ω

|∇u0|
2

dx+

∫

Γ−
ε

u0

∂u0

∂n
dσ;

∫

Ωε∩Ω0

|∇(uε − u0)|
2 dx =

∫

Γ−
ε

u0

(

∂u0

∂n
−
∂uε

∂n

)

dσ +

∫

Γ+
ε

uε

(

∂uε

∂n
−
∂u0

∂n

)

dσ;

∫

Ωε∩Ω0

〈∇u0,∇(uε − u0)〉dx =

∫

Γ−
ε

u0

∂uε

∂n
dσ −

∫

Γ−
ε

u0

∂u0

∂n
dσ.

We now sum up all these intermediary computations, and we get:

∫

Ωε∩Ω0

|∇uε|
2

dx =

∫

Ω0

|∇u0|
2

dx +

∫

Γ−
ε

u0

∂uε

∂n
dσ +

∫

Γ+
ε

uε

(

∂uε

∂n
−
∂u0

∂n

)

dσ;

and
∫

Ωε

|∇uε|
2

dx =

∫

Ω0

|∇u0|
2

dx+

∫

Γ−
ε

u0

∂uε

∂n
dσ −

∫

Γ+
ε

uε

∂u0

∂n
dσ.

This concludes the proof.

Change of boundary conditions. The same method allows to handle other boundary conditions on the
perturbed part of the boundary. Assume that the state functionuΩε now solves the mixed problem







−∆u = f ∈ Ωε,
u = 0 ∈ ∂Ωε ∩ ∂Ω0,

∂nu = 0 ∈ ∂Ωε \ (∂Ωε ∩ ∂Ω0).
(39)

We can state the counterpart of Proposition 4.1.

Proposition 4.2 Let ε > 0 be such thatsupp(f) ⊂⊂ Ωε anduε denotes the solution of(39) in H1(Ωε) .
Letu0 be the solution of−∆u = f in H1

0(Ω0)). Then, one has :

J(Ωε) = J(Ω0) +
1

2

∫

Γ−
ε

u0

∂u0

∂n
dσ −

1

2

∫

Γ+
ε

uε

∂uε

∂n
dσ. (40)

The proof is very similar to the proof of Proposition 4.1. Thechanges appear in the Green formula .

Inserting the asymptotic expansion ofuε into formulæ (38) and (40), we easily obtain

Proposition 4.3 In the framework of Proposition4.1, the Dirichlet energy admits the following asymptotic
expansion:

J(Ωε) = J(Ω0) + ε2|∇u0(0)|2AH∞
+ O(ε2), (41)
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where the numberAH∞
called polarisation number by analogy with the polarisation matrix of Polya writes

AH∞
= −

1

2

∫

Γ−

K(y)∂NK(y) dσy +
1

2

∫

Γ+

K(y)N2(y) dσy ,

K is the normalized profile:K = V 1
d /|∇u0(0)|, cf. (10).

Proposition 4.4 In the framework of Proposition4.2, formula (41) hold with the modified polarisation
number

AH∞
= −

1

2

∫

Γ−

N2(y) dσy +
1

2

∫

Γ+

K(y)∂NK(y) dσy

with the modified boundary conditions.

5 Numerics.

5.1 Strategy.

As already mentioned, the solutionuε of the model problem (5) is difficult to approximate from a numerical
point of view: the refinement needed near the perturbation for a reasonable precision prevents (at least
for small values ofε) to computeuε directly. The asymptotic expansion, see Theorem 2.2, suggests the
following numerical strategy.

Writing the expansion (24) ofuε at order1, we get

uε(x) ≃ ζ(x
ε )u0(x) + εχ(x)V 1(x

ε ). (42)

For simplicity, we consider here the case of an cavity (Ωε ⊂ Ω0) and thanks to Remark 2.3, the cut-
off function ζ may be chosen identically equal to1. A natural approximation ofuε reads thenuε(x) ≃
u0(x) + εχ(x)V 1(x

ε ).

• the limit termu0 may be computed accurately in a pretty coarse meshindependently ofε ;

• the profileV 1 does not depend onε, but only on the geometry of the patternH∞. Its approximation
is not straightforward, since it is defined on an unbounded domain. Various techniques are avail-
able for the numerical resolution of such a problem in an unbounded domain with an unbounded
boundary. The basic idea consists in bounding the domain by an artificial boundaryΣ on which we
impose a suitable boundary condition. This condition should take into account the behavior at infinity
V 1(X) → 0 as|X | → 0.

(i) Simplest choice: impose a homogeneous Dirichlet conditionV = 0 onΣ = B(0, R) ∪ ∂H∞.
In this case, the radiusR of the ball has to be large enough. Depending on the target precision,
this naive – but easy to implement – solution may be acceptable.

(ii) Use the knowledge concerning the behavior at infinity of the profile V 1: rather than0, we
impose the conditionV = R−1 sin θ onΣ, i.e. the leading term in the expansion at infinity of the
profileV 1. The results are much better and we used this method in the themodel computations
shown in next section.

(iii) Numerous more accurate artificial boundary conditions are available, most of them developed
in the framework of wave propagation: local transparent conditions (see [6, 7]) or non-local “ex-
actly absorbing” conditions using an integral representation (localized finite element method [11]).

The functionsu0 andV 1 being computed, it remains to perform the superposition ofu0(x) with the cor-
recting termεχ(x)V 1(x

ε ). Since the mesh used for the approximations do not coincide,we need to transfer
V 1( ·

ε) onto the mesh whereu0 has been computed. This step can be facilitated by using a regular mesh for
V 1 (e.g. cartesian in polar coordinates, except near the perturbing pattern). The functionχ is replaced in
the computations by the use of a patch of elements:V 1 is not taken into account except in this patch.

The obtained approximation is close touε up to orderO(ε2). For small values ofε, we expect the
method to work fine; for largerε, the results may be inaccurate, but in that case the perturbation can be
incorporated directly to the initial mesh without harsh refinement. Of course, from a practical point of view
smallandlargehave to be adapted to the considered situation.
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5.2 Numerical results.

We present some numerical results which validate our approach. The considered problem is the following

uε ∈ H1(Ωε), −∆uε = f in Ωε, and∂nu = 0 on∂Ωε, (43)

wheref(x, y) = 2π2 cos(πx) sin(πy) andΩε is the square(−1/2, 1/2) × (0, 1) with a semicircular hole
of radiusε, centered at(0, 0). Figure 5 and Table 1 show, forε = 1/32 the solutionuε (top-left picture), the
difference betweenuε and the limit termu0 (top-right picture), the difference betweenuε and the corrected
limit term u1 = u0 + εV 1( ·

ε) (bottom-right picture2 ). The bottom-left graph represents, for various values
of ε, the norm of the errors (L2, H1 andL∞-norms).

The efficiency of the correction by the first profile clearly appears in these results: for example, with
ε = 1/128, theL∞-norm ofuε − u1 is about40 times less than theL∞-norm ofuε − u0.

In Figure 6 and Table 2 , we present the same results in the Dirichlet case for a curvedΩ0:

uε ∈ H1(Ωε), −∆uε = f in Ωε. (44)

The same conclusions arise; the gain inL∞-norm is here around50.

ε ‖uε − u0‖H1(Ωε) ‖uε − u1‖H1(Ωε) Gain
ε = 1/2 7.9168e-01 3.6946e+00 0.2
ε = 1/4 4.6937e-01 8.9397e-01 0.5
ε = 1/8 2.4354e-01 1.9181e-01 1.3
ε = 1/16 1.2286e-01 1.9593e-02 6.3
ε = 1/32 6.1569e-02 5.4704e-03 11.3
ε = 1/64 3.0802e-02 4.1649e-03 7.4
ε = 1/128 1.5403e-02 2.5574e-03 6.0
ε = 1/256 7.7017e-03 1.2696e-03 6.1
ε = 1/512 3.8509e-03 6.3292e-04 6.1

Table 1: Computations for the Neumann problem (43).

ε ‖uε − u0‖H1(Ωε) ‖uε − u1‖H1(Ωε) Gain
ε = 1/2 9.9264e-01 8.2636e-01 1.2
ε = 1/4 6.1395e-01 2.0264e-01 3.0
ε = 1/8 3.3907e-01 4.7275e-02 7.2
ε = 1/16 1.7746e-01 9.1492e-03 19.4
ε = 1/32 9.0685e-02 2.0483e-03 44.3
ε = 1/64 4.5827e-02 5.7374e-04 79.9
ε = 1/128 2.3034e-02 2.0183e-04 114.1
ε = 1/256 1.1547e-02 1.0518e-04 109.8
ε = 1/512 5.7810e-03 9.2734e-05 62.3

Table 2: Computations for the Dirichlet problem (44).

6 Extension to linear elasticity and possible application to mechani-
cal engineering.

It turns out that the presented results naturally extend to linear elasticity. Indeed the technique relies on the
construction of the profiles, which requires essentially a variational framework for the unbounded problem.

2The profileV
1 has been computed on a (quasi-)regular mesh, independentlyof the value ofε, and it has been projected onto the

initial grid for the computation ofu1.
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Figure 5: Computations for the Neumann problem (43).
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uε for ε = 1/32 uε − u0 for ε = 1/32
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Figure 6: Computations for the Dirichlet problem (44).
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(uε)x for ε = 1/32 (uε − u0)x for ε = 1/32 (uε − u1)x for ε = 1/32

Figure 7: Computations for linear elasticity (45).

Of course as counterpart of one profile for the Laplace equation, two profiles have to be introduced here,
since the unknown is a two-dimensional vector. Precisely, writing the equations in the Naviers form:















−µ∆uε − (λ+ µ)grad div uε = f in Ωε,

uε = 0 onΓD,
∑2

j=1 σij(uε)nj = gi on∂Ωε\ΓD,

(45)

with f andgi vanish near the perturbation, we have the first order formula(in the inclusive case, for sim-
plicity)

uε(x) ≃ u1(x)
def.
= u0(x) + εχ(x)

[

α1V
1
1(

x
ε ) + α2V

1
2(

x
ε )
]

. (46)

• The profilesV1
ℓ (ℓ = 1, 2) solve the homogeneous problem

−µ∆V1
ℓ − (λ+ µ)grad div V1

ℓ = 0 in H∞ and
2
∑

j=1

σij(V
1
ℓ )nj = Gℓ,i on∂H∞, (47)

with G1 = (N1, 0) andG2 = (0,N1) (N1 is the first component of the outer normal on∂H∞).

• the coefficientαℓ is given byαℓ = −σℓ1(u0).

The presented techniques have applications in civil engineering. With colleagues from computational
mechanics, we are interested in investigating the influenceof surface defects on the initiation of a crack and
its propagation in a material (typically concrete). The goal is to predict where the material should break.
Basically, the mechanical behavior splits into three phases: a first elastic one before the crack initiation,
next the apparition of microcracks, and last the development of macrocracks responsible for the rupture.
We propose to treat the first step with the tools of multiscalecorrection, to predict where the first cracks
will occur. The superposition technique is based on the linearity of the operator. Hence it is justified only
in the first phase. We handle the second and third phases with acontinuum damage model and a strong
discontinuity approach (see[3]).

The superposition technique has been inserted into the maincode for crack initiation. The numerical
tests are being carried out and first results have been presented in the conference [2] without proceedings,
a paper is under redaction. We present in figure 7 the first component of the solutionuε and of the errors
uε − u0 anduε − u1 for the valueε = 1/32. The data for the computation are the following:λ =
0.5769, 2µ = 0.7692 andf corresponds tou0 = [1/2 + 1/2 sin(πx), (−λ cos(πx) sin(2πy))/(λ+ 2µ)];
the boundary conditions are homogeneous Neumann on the top and bottom sides,uε = 0 on the left side
anduε = (1, 0) on the right side.

Of course, we would like to take into account the surface defects in the second phase as well, but the
description is no more linear. It is very challenging to extend our ideas to this situation which involves a
damaged phase and hence nonlinearities. Such an extension is out of reach with the methods presented in
this work.
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Giens 200313 (2004) 461–473.

[4] G. CALOZ , M. COSTABEL, M. DAUGE, G. VIAL . Asymptotic expansion of the solution of an
interface problem in a polygonal domain with thin layer.Asymptotic Analysis50(1, 2) (2006) 121–
173.

[5] M. DAMBRINE , G. VIAL . On the influence of a boundary perforation on the dirichlet energy.Control
and Cybernetics34(1) (2005) 117–136.

[6] B. ENGQUIST, A. MAJDA. Absorbing boundary conditions for the numerical simulation of waves.
Math. Comp.31(139) (1977) 629–651.

[7] D. GIVOLI . Nonreflecting boundary conditions.J. Comput. Phys.94(1) (1991) 1–29.

[8] A. I L’ LIN . Matching of asymptotic expansions of solutions of boundary value problems.Translations
of Mathematical Monographs(1992).

[9] V. A. K ONDRAT′EV. Boundary value problems for elliptic equations in domainswith conical or
angular points.Trans. Moscow Math. Soc.16 (1967) 227–313.

[10] D. LEGUILLON, E. SANCHEZ-PALENCIA . Computation of singular solutions in elliptic problems
and elasticity. Masson, Paris 1987.

[11] M. L ENOIR, A. TOUNSI. The localized finite element method and its application to the two-
dimensional sea-keeping problem.SIAM J. Numer. Anal.25(4) (1988) 729–752.
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