Influence of a boundary perforation on the Dirichlet energy.

M. Dambrine and G. Vial

Abstract. We consider some singular perturbations of the boundarysofi@oth domain. Such
domain variations are not differentiable within the claaktheory of shape calculus. We mimic the
topological asymptoti@and we derive an asymptotic expansion of the shape funatidarins of a
size parameter. The two-dimensional case of the Dirichietgy is treated in detail. We give a full
theoretical proof as well as a numerical confirmation of #sults.
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1 Introduction

The classical shape calculus presented for example in B,8]1s based on a perturbation approach
in functional space of diffeomorphisms. This requires saagilarity on the class of domains to be
considered: For exampl& -deformations of the boundary of sméll-norm. A deformation of small
L°°-norm cannot be seen as perturbation in that framework éviae iHausdorff distance between
the two domains is by definition small. Another limitation thie classical shape calculus is the
impossibility to deal with changes of topology. The so-edlltopological asymptotic” [8, 4, 6, 15, 12]
has been introduced to deal with the possibility of nucteeti The question this method address is
the following: How does a shaping function behave when a dbtadiuse is dug at a fixed poini/
inside a body? One should notice that the small paramétethen a physical size parameter and not
a pseudo-time (or a distance in spaces of diffeomorphisikes)r the classical methods.

In this paper, we consider the same question on a model shapintion, except that the poiit’
lies on the boundary of the domain. Hence, the problem wedeni this paper is a singular bound-
ary perturbation. Such problems have been studied by MaayhNazarov in [9] in the situation
where the material is removed at a corner point. Our geon#ayimit case of the latter; we present
here an alternative method to solve the problem with thestobklassical shape calculus. Our way
to deal with it is directly inspired of the work of Sokolowdki, 15]. A similar problem where angles
are rounded was considered in [14] with a different appro@ulr work has two main motivations: In
the one hand, to generalize the topological asymptoticddtundary case and, in the other hand to
consider a singular case where the classical shape calsuiosdirectly operant.

More precisely, letf be aC>-function with compact support iiR?. As shaping function, we
consider the Dirichlet energy on the bounded domair3 of classC> in R? such that Supp C Q.
The Dirichlet energy is defined as

5@ =5 [V = [ ju=—3 [ [vup. &)
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whereu is the solution intH} (€2) of the Poisson’s equationAu = f in Q.

The main originality of the deformations we consider is ittsxgale: Let()y be an admissible
domain, we introduce a scale parameter (0, £¢) and a reference smooth domain denoted bffor
convenience, we assume thats star-shaped with respect to its gravity ceribecthosen as a point in
the boundanp), of 2¢. We denote byw the image ofv by the homothety of cent& and ratios.
The perturbed domaifl, is defined as

Q. =0\ ew. (2)

The following figure explicits the geometrical setting.

QO w Qg = Qo\&d

Figure 1: The geometrical setting.

For a fixede, this deformation is not smooth as angular points appeaeadhtersection ofw and
0. In the Hausdorff sense, this is however of ordeHence it is a perturbation of the identity in
this weak sense but not in any smooth sense. This means ¢heladsical differential shape calculus
can not provide Taylor-like formula in order to describe bt@havior ofs — J(€2.) for smalle. Our
goal in this work is to obtain an asymptotical expansio/ (2. ) starting from.J ().

The leading term of the asymptotics depends of the shapirgi@in./. Let us consider two simple
cases: The area and the perimeter. It is clear that the psetim is of order one for the perimeter and
of order two for the area. This fact shows that the parameienot appropriate to the classical shape
calculus since both the area and the perimeter are diffat@atwith respect to the shape.

This paper is organized in the following way. First we es&bhln asymptotic expansion of the
Dirichlet energy with respect ta This is done in two steps: First we derive an asymptotic egjosn
of the solutionu. of Poisson equation inside(¢); then we apply this result to obtain the behavior of
the cost function. The complete proof of the expansion isgmed in a third section. In a last part of
this work, we present some numerical work to illustrate #suitts of section 2.

2 The asymptotic expansion.

2.1 Asymptotic expansion of the state function

This section is devoted to the asymptotic expansion in pewet of the solutionu, to the Poisson’s
equation—Aw. = f in H}(€2.), starting fromu, solution of the same equation §ty. This is a now
classical question (see [6]) and we follow the method intoedi in that paper; the complete expansion
is written in Theorem 1 and justified in the proof of that ré¢ske section 3).

For convenience and in order to simplify the computationsassume for a while that the bound-
ary 0€)q is flat aroundO. The general smooth case is much more complicated. Thadsigihosen
asO, the axis are taken as the tangent and norm8&iitat O oriented such th&® locally lies in the
upper half plane aroun@.
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Even a localized perturbation of the domain induces a variaif the solution of Poisson’s equa-
tion in the whole domain. This variation is not supportedaljcaroundO but nevertheless mainly
concentrated around it. Hence, the first step is to consitdove-up around) — that is the center of
the hole dug in the domain. We introduce the scaledgsly variabley = /¢ (herex = (z1,z2) and
y = (y1,y2) belong taR?). This canonical change of variables maps the Béll, <) into the unit ball
and introduces the right scale to study our equations intigyely ofe.

Sincew is star-shaped with respectd its boundary has a parametrizatign®), 9), 6 € [0, 2]
in polar coordinates. The functignis non-negative, and smooth because of the regularity gggum
on . Letdw™ denotedw N {z2 > 0}. To fix the scale we assume thab) = p(27) = 1. Passing
to the limit ass — 0, 2. tends in this blow-up to the limit domain

Qoo = {(r,0),7 > p(f) andb € (0,7)}. (3)
Qoo
dw™
,,,,,,,,, \
w

Figure 2: The limit domain.

We consider the new problem satisfied by the differemee u. — ug:

—Au = 0inQ;,
u = 00nof \ cow™,
u = —up(ey) onedwt.

From the regularity assumptions on bt and f, uq is known to belong t@>° (). Therefore, we
can write a Taylor formula foug: Forz = ey € 09, we get:

[ue — uo)(ey) = —uo(ey) = — |uo(O) + Y %D(i)UO(O)[ey, eyl +oe) = =) dwily),
i=1 i=1

with an obvious definition ofv;. Since—A(u. — ug) = 0 in Q, the differenceu. — uy is the
harmonic extension of its trace 2. The idea is to approximate this harmonic function by harimon
extensions of the approximated boundary conditions. Beggiwe have the following lemma. It can
be proven by symmetry with respect to the ling = 0 and the image method (see [17] or [13] for
details).

Lemma 1 There exists a unique functidn defined o)., by

AV, = 0in Qu, (4)
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and the boundary conditions:

Vily) = 00ndy \ dw™, (5)
Vily) = wifory e dw®, (6)

with the following expansion as an asymptotic series atitgfwith smooth functiong?, and ¥ )

Vily) ~ > _¢n(0)lyl™ and VVi(y) ~ > ®L(0)y|™" as|y| — +oo. 7

n>1 n>2

The functions(V;), calledprofiles describe the behavior af in the neighborhood of. Since they
are defined in the infinite domai,,, we need to truncate them: Lgt: R? — R be aC>-cut-off
function such that

|z] <1/2= x(x)=1 and |z|>1= x(z)=0. (8)

We now state the main result of this section: It is a two-sealamptotic expansion af. at every
order. In fact, we need only the order two version but for itsof we use a bootstrapping method that
requires the complete expansion.

Theorem 1 (Complete expansion of the state function).et 2y be aC> admissible domain with
O € 09y. For any admissible reference domairand anye € (0, ¢g), we define?. by (2) andu,. as
the solution inH} (€2.) of the Poisson’s equation Au. = f.

Then, for alln € N, there exists a functios;, defined orf2. such that

n

ue () = uo(x) + x(2) [Z e'Vi (%)

i=1

+ Z el (2) + 25 (z), 9)

where the profild/; solves the Dirichlet problerd)-(6). The functions:’ are solutions of

—Aut = inQ., (10)
u'(z) = 0ondf, (11)

wherey’ arises from derivatives of the cut-off function, $8&) and remarki.

Moreover, if®. ., denotes a given diffeomorphism mappidginto (2., there exists a constant,
independent of such that
||Zfloq);;0||H1(QsO) < C£n+1_ (12)

We first give some remarks and comments on this result.

Remark 1 The remaindet,, and the functions:.* depend of the choice of the cut-off functipnThe
termsu’ are corrector terms that compensate the cut-off effect awfdlye origin point, they are not
of the same nature than the singular profiles which are isidrand noty dependant. Let us precise
the construction of the first one: By definition, we have

A% = eAX(0)Vi(2) + 2(VX(@) VVA(2)). (13)

Thanks to the expansiq(¥) at infinity of Vi (y), we obtainAz; = c%¢; + o(e?). The termyp; is
corrected byu! while the leading terms will be handled at the next steps.
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Remark 2 The fact that these functions are controlledH§(<2.,) independently of is crucial for
the applications to shape calculus we have in mind. Thezefwe have to transport the functions on
a domain independent of the parametan order to remove all dependency with respect twf our
upper bounds even hidden in the functional spaces.

Remark 3 Another important implication of this result for the resttbis work is the following con-
statation. Whereas the state function is continuous witipeet to the parameter, its gradient is
not continuous: The main-order discontinuity is completigscribed by the first singular profilg .
Hence this first singular profile will appear for shape functinvolving the gradient of the state.

For the application to the shape functional we consider is paper, we only need the second
order expansion. We can be more explicit for the functiansand w, involved in the problems
defining the profiles: Foy € 0w™, we have

w1 (y) = _<VUO(O)7y> = _Eanu()(o)y27
2

wa(y) = —%DQuo(O)(y,y)-

Sketch of the proof of Theorem 1. The proof itself is postponed to Section 3. First we rewrite
everything on the fixed domaf, . Let . ., be a diffeomorphism mappir@. into €2.,. We set

n n—1
27 () = ue(w) —uo(x) — x(2) Y Vi (£) =Y "l (a). (14)
i=1 i=1

Our task is to find an estimation 6f = 25 o ®-! in H'(Q.,). This estimate must be uniform

£,€0

with respect te. This will be done through the use of the classical estimiateslliptic equations in
Sobolev spaces. If we apply the Laplace operator to the:fast get

Az, = gnyinf,
2 = 00ndf. \ 0wt
2 = wponedw”
The problem solved by;, writes
Lov = gayo @It inQ, (15)
v = 00N, \ cpdw™,
v = wpo @;;Q onepdw™,

whereL. is the elliptic operator obtained fromA after transport (see Section 3 for its expression)
andw,, is the rest in the boundary condition after tixth order Taylor approximation

wn(x) = UO(SC) - [Z 6i‘/% (%) = 5nrn(x>€)a (16)
i=1
Vwy,(z) = Vug(z) — [Z S vA YA (%) = 8”_1Rn(x,€), a7
i=1
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wherer,, andR,, are smooth bounded functions with linfitvhena — 0. The right-hand side in (15)
arises from the cut-off function; it is supported in the dasuhere the derivatives of the truncation
function y are supported and satisfies (see section 3 for details)

Hgn,xHLQ(QE) = O(5n+1)o
To use classical estimates, we precise., to obtain uniform constants of ellipticity and continuity
for £.. Then we need to obtain uniform estimates forkHé2-norm of the trace and for tHé'-norm
of the right hand side. The estimates obtained this way dr@ptimal and we use a bootstrap method
to recover the desired estimates.

2.2 Asymptotic expansion of the shaping function.

We consider the Dirichlet energy of this problem that is tinectional J defined on the class of open
subsets of R? by (1). Considering the perturbatiofis defined formerly, we seek an asymptotic
expansion of the real-valuated function

jle) = J ()

around0. Obviously, the classical differential shape calculusncarbe applied directly. However, if
we fix for a whiled > 0, the Taylor expansion gf(d + ) with respect ta can be computed. Then a
continuity argument allows to pass to the limit> 0. In the following lines, we will use indifferently
cartesian or polar coordinates.

The deformation field. Let R be the maximal size of acceptable perturbations. {Lie¢ a cut-off
function distinct fromy and depends af. such that

|z| <e/3or|z] >2R/3 = {(x) =0ande/2 < |z| < R/2 = {(x) = 1.

We define the deformation field in polar coordinatesVas= 6p(f)u,. Hereu, is the unit radial
vector of the polar coordinates. The cut-off functi9iis needed to first avoid the singularity at the
origin and to leave invariant the boundai$2, away from the poin©O. In the annulug/2 < r < R/2
where the deformations take place, the vector field is cahsi@ng the radial lines. The family of
deformed domains is thehi [2(¢)] = Q.4+, WhereT; stands for the flow of the vector fieM. Hence
for t = 0 we haveQ2(0) = Q..

The starting point. We have:
5
ie+8) = i)+ | DIV, 18)
0

whereD J(2(t); V) is the classical shape derivative (see [2] for more detailthe justification of the
derivation in the smooth case). An additional difficulty &ised here by the presence of two singular
points at the intersection dt + ¢)dw™ and 9Qy. The angles in the domaifi(¢) are of opening
less thanr. Therefore the solutions. ., areH?(€2..) (see [11], [5], [1] for details on equations in
domain with corners). Henc&u.;, V) € H Q) and(Vu.,;, V) € H/%(9Q.,,) and that is
enough to allow this differentiation.

1

DI V) = — /8 Vs (V.n(t) oy
e+t
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Notice that, in fact, the integrand vanishes outside of #leB(O, ¢ +t). Let us explicit this integral.
The normal component & (¢) writes simply

1 2

<V,n(t)> - T(,O')Q <5117»7 —pu, +p u9> [

op
PP

We now turn to the term in gradient af ;. We know from Theorem 1 that for € dw™
Vueyi((e +1)y) = [Vuo(O) + o(e + 1)] + [VVi(y) + o(e + )]

Since the problem solved by, has homogeneous Dirichlet boundary conditions, the gnadse
normal to the boundaryWuq(0) = 9,uo(O)n and we get forr € (¢ + t)dw™

oV | —2—
11€+t

X
Bntig(0) + Vi [ ——
uo(0) + 02V e+t

Vueys (z) = ) +o(e + t).

In order to regroup all the dependencydnug, we introduce the normalized profik, defined as
V1/0nuo(O); it solves

—AV; = 0inQq, (19)
Vily) = 00n0Q \ Ow™; (20)
Vily) = yafory e owtie Vi (p(d),0) = p(0)sind ford € (0,7). (21)

Then a straightforward computation leads to

(1o (5)) = (w0 ()

To simplify the notations in the following lines, we confalibi; (9) for Vy (y) if y = (p(0),0) € dw™.
For convenience, we rewrite the shape derivative as anraiteg a fixed (with respect to the pseudo-
time t) boundarydw™. First, we notice that the dilatation of ratig/(¢ + ) maps(e + t)0w™ onto

dw™. The arc-lengthicy,+ is given bydo = (p?(9) + (p’)2(6))1/2 df. We get:

Vuers(x)* = |0p10(0) +o(e +1).

1
DJ(Qa-i-t; V) = __/ ’vua-i-t’Q <V7 n(t)> da(e+t)8w+§
(e+t)OwTt

_[0nu0(O)

=Ty /B N [(1 +0V1(y))* + (011 (y))* + oe + t)} (V,n(t)) (e + t)dog,+,

e+ 8)[0nuo(O)P / [+ 2110 + @1(0)) + ofe +1)] P(0)ab.
2 0

g U 2
_ EX0I00OW 14 (y) 4 ofc + 1),

Here A(p) is a shape-dependent number, an important point is thae# dot depend on the pseudo-
time ¢. This is caused by the particular choice of the deformatield fihat forces all the deformed
boundaries to be dilation of the same original one. If thigperty of self-similarity is not fulfilled
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caused by the assumption of flathesso6X, aroundO, the first singular profilé’; would change
during the deformations fromto ¢ + 6 and the computation would be much more delicate to perform.
Hence we have:

|00 (0)?

je+0) = o)+

/5 (A(p) + ole + 1)) ( + t)dt
0

= j(e) + 6%|0,u0(0))? [@ + o(e + 5)} .

Now we pass to the limit — 0 in this formula. Using the well-known continuity of this fational
with respect to the shape (see [3] for example) to seejthat— ;j(0) whene — 0, we get the wanted
expansion.

Theorem 2 (Asymptotic behavior of the shape function)The shaping functiod behaves like

J(Qs) = J(Q0) + 6%0,u0(0) 2 A(w) + 0(6?) (22)
with
L[ 2 2] 2
Aw) = 1 [ [+ 02100 + @i0)] o). 23

Remark 4 The quantity4(w) depends only of the geometry of the hole we dug and not at tikof
position on the center of the hole and of the state functiamplalys exactly the same role than the
so-called polarization matrix. By analogy, we call it thelgmization number.

Remark 5 Formulae(22) and (23) correspond to the results stated in Th. 4.19h though the singu-
lar profiles used by these authors are not written in the same Wur approach underlines the links
between the shape gradient — which is not defined for the pregggular perturbation of the domain
— and the leading term in the asymptotic of the functional[9lrthe termd,,uo(O) derives from the
expansion into singular functions. It turns out that the [dayxpansion of.y at point O coincides
with the singular expansion at a corner point in the limit eaghere the opening equats hence
Onup(0) is nothing but the first singular coefficientaf at O.

3 Complete proof of Theorem 1.

As the leading line of that proof as been explained in Se@jame just provide the complete technical
arguments in this section. For convenieri¢ewill denote any non negative constant (independent
of ¢).

Construction of the diffeomorphism @, ., and geometrical preliminaries. We take advantage of
the geometry and hence we use the polar coordinates. Wendbardiffeomorphismd, ., under the
form

. ., (reie) = P(r, 9)6”.

For r big enough, we searcR(r) = r and we requireP(ep(0),0) = 9p(0). The idea is to use an
interpolation polynomial for the smatlwith conditions at- = £ and a smooth connection up to order
2to P(r) = r at some point to be determined.
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First consider the following fact of calculus. Letb, c be three real numbers such tiiat a <
b < c. The polynomialP, ;  defined by

b—a 3
P[a,b,c](X) = (CL —6)3 (X - C) + X.

satisfies the interpolation conditions:

Papela) =b, Pgypqlc) =c, P[/a,bﬂ](c) =1, P['O’hb’c} (c) =0.
Moreover, if3b — 2a < c thenVz € [a, c],

2a +c—3b
_— >

c—a

L= Py () > Plyq(a) > Py q(a) =

a,b,c a,b,c

0, (24)

and P, is a bijection from[a,c] into [b,c]. For anyf € (0,7), we can choose = ep(0),
b = gop(f) andc = 3epl|p|lc := Ro and satisfy to the conditioBb — 2a < c. Let P(r,0) be
Plep(6),c0p(6),Ro) (T)- It Writes:

(€0 —&)p(0)
(Ro—ep(6))°
We define a increasing functiaf on [e, +00) by

6o, 0) = { P(r,0) ifre (e, Ry,

T if r > 2¢eg.
Let ®. ., be the diffeomorphism dR? \ B(0,¢) into R* \ B(0, <) defined in polar coordinates
by

P(r,0) = (r — Ro)® +r. (25)

(26)

(1)8780 (Tv 9) - (¢a (7“, 9) 79) . (27)
Far away from (i.e. for r > 2¢), ®. ., is nothing but the identity and therefore we get.,(.) =
Q,. Moreover, we have, . (2. N B(0, Ry)) = Q, N B(0, Ro).
To obtain bounds on the coefficients 6f we need the derivatives df. .,. The non-trivial case
is |z] < Ry. Letx € Q. N B(0,2¢) and let¥ be the change of coordinates application that is
U(r,0) = (rcosf,rsinf). We consided, ., = ¥ o 55750 o ¥~ the diffeomorphismb. ., to deal
with cartesian coordinates and we get at the poiat (r cos 0, rsin 6):

DO..o(z) = DV |bepy oW (2)] D, [0 ()] DU [a],

~ [cosO —¢e(r,0)sind\ (9,¢-(r,0) O\ [ 99 Sin‘ag
~ \sin€  ¢(r,0)cosb ppe(r,0) 1 sin cosf | .
r

”
Hence, we get
o< (r,0)0,¢<(r,0) -1 .
Do, = Do, =
det £,€0 r and det S0 e (r,0)0r e (1, 0)

By construction ofs., we have both

50,0(9) < d)E(T’a) < @

Ry — r — ¢’

(26 — 3e0)p(0) + Ro
Ry —ep(0)

< Orge < 1.
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Hence, we have the upper bounds,

gop(6
| det D®, .| < % and| det D®-! (@, ., (2))] < —2F ©)

e — 28
0 ~ Ry — 3e0p(0) (25)

Moreover, in this proof, we use of the surfacic jacobian= det (D®. || {(D®. ) 'n.||) on the
boundary of the holes. Here the boundaries where are hotiottenceJ. = ¢y/c the ratio of the
dilatation.

Uniform ellipticity of L£(¢). Taking advantage of the geometrical configuration, we vinigeprob-
lem (15) solved by = zo@;&o in polar coordinates (we are only interested in the ecaseR, where
the operatotZ. is not the Laplace operator):

/N2
(P + (')

r2

/ /!

P
p D7
T T

1
2%+ 507+ 0,0 =gyo® L inQ,NB(0,Ry). (29)

By construction,P and its derivatives are uniformly bounded and there existdanstants\ and A
such that for alk < 3 we have

ai j(e,2)6:&; > AE[> and Y " Jag (e, z)* < A

for all z € Q., and allé € R2. This very classical result (ellipticity is preserved bgrtsport) is
simply caused by the continuity of the eigenvalues of therimat; ;) with respect tcs. Moreover
there exists also a third constant which dominates the caaftiin the order one derivatives &f

Estimate of the boundary condition HZ;HHI/Q(QEO). The natural way to control a norm in &hl/2

space on a boundary is to compute Henorm of an well-chosen extension. This is not appropriate
for this problem since thH'/2-norm is non-local and hence we can not take advantage ofifipost

of Z,. The boundary termi = w o <I>;§O of the problem (15) is a piecewigE® continuous function
and belongs td1!(952.,). Since this trace vanishes outsiBéO, <), theH!-norm is an integral over
9, N OB(0,e0) and we have|Z] [|y1/2 (o, ) < (12 ]l11(0.,)- We will estimate it to derive a bound

on ||ZZ ||i1/2. Inside B(0, p), that function isC> and vanishes outside this ball, hence we get:

HéfLH%Il(aQEO) :/ |25 4|V, 25 |2 :/ |wno¢;;0|2+|V7(wno¢;;0)|2.
994N OB(0,20) 092, NOB(0,50)

We transport this on the bounda®§2. in order to use our assumptions. The expression of the toainsp
of a tangential derivative can be found for example in theeagjx of [2].

HgfLHI%Il(aQSO) = / ’wn\QJg + I with
gOwt

1:/
gOw™T

Remember that. = det (D®. .| "(D®P..,) 'n.||) = eo/e is the surfacic jacobian and that
denotes the unit normal vector &2, pointing to the exterior. The first term of the sum is

€0
/ w[2J, = / 2 ()2 dor = 20 |2
00:NIOB(0,e) edwt €

2
Je.

_1 1
[D®zone|

£,€0

Vw, — (Vw,,n)n —

£,€0 £,€0

(DO Vw,, DO} n5>n5]
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By (17) and Cauchy-Schwarz inequality, we have
1< [ CUDIREZ < el Rallie D,
eOwt €

Hence we get
1% /20,y < Ce™ (30)

Estimation of the norms of g, ,. We give here more details on the definition of the correctérs
We will show, by induction, thay, , = Az;, has an expansion in integer powerseoflt is clear for
n = 1 thanks to (13) and (7). Let us assume the following exparfsionhz _;:

AZ;_l = €nSOn—1 + €n+1SOLl}_1 + €n+280£12]_1 —+ - 5 (31)

with functionssom independent of. Let us now considet; : By construction, we obviously have

n—1

Az = Azf

n n—

| =" AT = e TIA( Vi(2))

S entigll | ANV, (2) 4+ 267 V- VVR(2).
i>1

SinceAx andVy are supported in an annuldty < |z| < Rs, the second term of the above right-
hand side is governed by the behavior of the profiles at igfiritdeed, thanks to relations (7) we
obtain the following expansion:

Az = ZgnJri(pz}_l _ ZgnJri 0

i>1 i>1
which yields to (31) at rank, with ¢, = (pg”_l + Q[L”. We can deduce the estimate fgr, :

Ignallrz@.) < Cx)e™ . (32)

Now the real right-hand sidg, o ®. ., has the sam&? norm thang,, since®. . is nothing but the
identity on the support of,.. Hence the jacobian is justand

lgn,x © (I)s,€o||L2(QEO) < C(X)5n+1~ (33)

The bootstrap. Applying classical elliptia priori estimates i), to the solution of (15), we obtain
from (30) and (33) the first estimate

< C(Q,)e"

¥n €N, ||Z |l o)
We also have
7 (2) = 25 19(2) = " X (@) Vg (£) = " P2x (@) Vasa (£) — "l (2) + "2 ().
Using uniform estimates on both the profiles and the correate obtain
HEfLHHl(QEO) < C(Qey)e™t + Ce™ Tt 4 Ce™ P2  Ce™ 4 2 < Ce™

This is the expected upper bound (12) and the proof is corghlet



4 THE PARTICULAR CASE OF CIRCULAR HOLES. 12

4 The particular case of circular holes.

The general case developed in Section 2 applies to the garticase where is a ball. However,
in this specific case, the computations can be carried oupledety: The singular profiles and the
polarization number(p) can be computed explicitly. We think these results can hasetipal use
hence we present them in this section. This explicit comjmrtawill be used for the numerical
validation as well.

The singular profiles. We introduceQ . = {y = (y1,¥2),y2 > 0, ly| > 1} the limit domain. From
the regularity assumptions on bdth and f, ug is known to beC®(€)g). Therefore, we get that for
alln > 1:

up(ey) = Y 'wily) + ™25 (e, y)- (34)
=1

The functionsu,, are defined by the derivatives @f. Namely, one has for the fist orders:

1
wi(y) = (Vuo(0),y) andws(y) = §D2uo(0)-[y,y]-
Using the polar coordinates in.,, we get directly:
w1 (0) = |Opup|sin 6.

The second termw, can also be described. The matfi¥ v is a hessian and therefore is symmetric.

Because of the state equation , the mafiug(0) writes D?uq(0) = (Z _ba> Then, we get

1 -
wa(0) = 5(6089 sin 6) (Z b > (COS 9) = b+ 2asin 26.

—a /) \sind
To respect the boundary conditions (5), thesatisfy
w;(0) = 0 andw;(7) = 0. (35)
Therefore, we get that= 0 and thaidet D?u((0) = —a? and

1

wa(0) = SV~ det D%ug(0) sin 26.

Taking advantage of the specific form of thenamelyw; () = ¢; sin i6 and of the geometry, we use
an inversion to pose the problem in the unit ball then thedeoikernel to solve

“Au = 0inQ., (36)
u = 0ony; =0, [yl >1,
u = w;(f#)ond € [0,n].

The obtained singular profiles are
sin 76

‘/i(rv 6) =G

(37)

ri
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This is in particular the case for= 1, 2. We get

sin 6 To

andvl(.%'l,.%'g) = 55— (38)
72 + 23

Vi(r,0) = 0yup(O)

sin 20
5

Vo(r,0) = % — det D?ug(0) (39)

r

Note that, obviously, these functions satisfy the annodrehavior at infinity.

The polarization number. We apply formula (23) in the particular cag) = 1. We use (38) and
get

Aw) = 3 /OW [+ 011(0)° + (001(6))?] o,

1 (7 1 /7

- / (14 cos 20)? + (sin 20)? df = = / (14 cos20) df.

4 Jo 2 Jo

Hence, we have -

An example of geometry with complete explicit quantities. We consider the case of the upper
half-disk: g = {(r,0), 6 € [0,7] andr < 1}. For this particular domain, we consider Poisson’s
equation with the right hand sid&r, §) = —sin 6. This right hand side has not a compact support
in Q. However, this assumption is not necessary and was maderigecience and we still have the
expected behavior. We can carry out the computations dtkyalic

ug(r,0) = ésin 9(7“2 -r),
Dans(O) =
n WO - 97
T
o) - "
J(8h) 144°
201 _ .2 3 2
ue(r,0) = lsin@E A=)+ 1+e)F" —r7)
3 (I+e)r
_ ™ T2 T3 4
J(Q:) = T 3¢ " 9¢ + O0(eY).

We recover the expression (40) and the expansion (22).

5 The numerical validation.

In this section, we present some numerical experimentschwiliustrate the expansion (22). We
consider the squar®, = (—3, %) x (0,1), on the boundary of which we dig a semi-circular hole:
The domairf2, is the defined as

Qe ={z€Q; |z| >}
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As before, we denote bys — resp.ug — the solution inH} (€2.) — resp.H} (Qo) — of —Awu = f with

1 if |21 < 2 and|zs — 4] < 4,
f(x1,m0) = .

0 otherwise.
The dataf has a compact support f&s (for 6 < %), but it is not smooth as required in the previous
sections. Actually, it is sufficient fof to be smooth near = 0 since we only use the regularity of
near this point.

We used the finite element library INA (see [7]) to compute an approximation of bathand
ug for § = 2= with i = 2, ..., 10. The figure 3 shows the high order (isoparamefrictype) meshes

g =

Figure 3: TheQg-mesh of the domaif, for § = 0.25 andé = 0.125.

used for the valued = 1/4 (8 elements, 561 degrees of freedom) ang 1/8 (12 elements, 825
degrees of freedom). We emphasize the fact that the geomnasryo be approximated in a precise
way, since the asymptotic phenomenon we want to observedgdie the error of ordei0—1° in
figure 5). The use of high-order elements is particularlypteld in the case of domain with curved
boundaries.

The figure 5 presents the results of the computations (doreaatculator at th&cole Normale
Supérieure de Cachan Bretagne, IBM Risc6000). In the tabléhe left, the values of (Q25) for
§=27%(i=2,...,10) are given, and can be compared wit{f2,). The graph on the right shows —
in logarithmic axes — the evolution of(€2s) with respect of. Since it is a straight line of slope2,
the numerical results validate the dependenc?iof the expansion (22).

In order to highlight the factorl(w) = 7, we have done a computation with the following right-
hand side:

f(z1,22) = 21 cos(mxy) sin(mxs),

for which we know the exact solution for= 0: ug(x1,x2) = cos(mz1) sin(mzse) (however, we do
not have any explicit expression for the solutigy). In this case,

71.2

Onup(0,0) = —m and J(p) = e
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g J ()
0.25 —5.4441191.10 ¢ 10°
0.125 —5.4897622.10 % ~
0.0625 —5.4997119.10 % g’ Siope 2
0.03125 —5.5021303.10 % &
0.015625 —5.5027309.10% 5
0.0078125 —5.5028808.10 % 210°
0.00390625 | —5.5029183.10 2 =
0.001953125 | —5.5029277.10 2 107}
0.0009765625 | —5.5029300.10 2
0 —5.5029307.10 % et 10° 10° 10° 1

Value of the radiug

Figure 4: Comparison betweek((2s) and.J () with respect taj (logarithmic axes).

In Table 1, we show the evolution of the quantity

J(95) — J(S0)

£0) = 520,10(0,0)2

with respect t@. We clearly see the convergencedtppredicted by formula (22).

5 1) | _E0)

0.25 —1.664808 | 1.301116
0.125 —2.236814 | 1.495258
0.0625 —2.407592 | 1.551334
0.03125 —2.452308 | 1.565902
0.015625 —2.463619 | 1.569580
0.0078125 —2.466455 | 1.570502
0.00390625 —2.467165 | 1.570730
0.001953125 —2.467342 | 1.570783
0.0009765625 | —2.467386 | 1.570778
0 —2.467401 | 1.570796

Table 1: Quantities/ (25) and&(9) = %{é%’,}.
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