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Abstract

We consider the solution of an interface problem posed in a bounded domain coated with
a layer of thicknessε and with external boundary conditions of Dirichlet or Neumann type.
Our aim is to build a multi-scale expansion asε goes to0 for that solution.

After presenting a complete multi-scale expansion in a smooth coated domain, we focus
on the case of a corner domain. Singularities appear, obstructing the construction of the
expansion terms in the same way as in the smooth case. In orderto take these singularities
into account, we construct profiles in an infinite coated sectorial domain.

Combining expansions in the smooth case with splittings in regular and singular parts
involving the profiles, we construct two families of multi-scale expansions for the solution in
the coated domain with corner. We prove optimal estimates for the remainders of the multi-
scale expansions.

1 Introduction

The interface problem investigated in this paper originates from an electromagnetic model for
bodies coated with a dielectric layer. In many practical situations, the layer thicknessε is small
compared to the characteristic lengths of the body and the domain has corner points.

The problem is of practical importance and has been widely studied in the mathematical lit-
erature, in particular with respect to the question of approximately replacing the effect of the thin
layer by effective boundary conditions (cf. e.g. [4], [9], [12], [13], [5], [3]). The usual technique
is to build the first terms of an asymptotic expansion of the solution of the problem in powers of
the thicknessε . In the previous works, the body is required to have a smooth boundary, which is
often not true for the situations encountered in the applications.

The purpose of our paper is to provide anε -expansion for corner domains in the two-dimen-
sional case. We point out the arising mathematical difficulties and the difference from the smooth
case in the structure of the asymptotics. Our method has similarities with [7], [6], and [20] in
which asymptotic problems involving singularities are discussed. A detailed comparison of the
effect of the thin layer with impedance boundary conditions, together with numerical simulations
can be found in [25]. Similar problems can arise in other applications, for instance in elasticity for
bonded joints, see [10].

Although we have restricted ourselves to the case of the Laplace operator with Dirichlet and
Neumann boundary conditions, our study keeps the fundamental features useful for the applica-
tions. The basic tools introduced in this paper have a wider range of applications.

∗ Université de Rennes 1, IRMAR, Campus de Beaulieu – 35042 Rennes cedex, France.
† ENS Cachan Bretagne, Campus de Ker-Lann – 35170 Bruz, France.



G. Caloz et al. – Asymptotic expansion in a polygonal domain with thin layer. 2

Our paper is organized as follows:
After a precise formulation of the problems that we are goingto investigate, we present an

outline of our results, in both situations of a smooth domainand a corner domain. Each time, we
consider Dirichlet or Neumann external boundary conditions.

Section 2 is devoted to the smooth case: We improve results of[9] by the proof of an optimal
remainder estimate. Moreover, the treatment of external Neumann boundary conditions requires
in our case to deal with compatibility conditions on the data, which is not the case in [9], since
the domains considered there are unbounded. The description of the structure of theε -expansion
in the interior domain and its coating, together with uniform estimates is one of the fundamental
tools for the study of the coated corner domains.

After recalling some well-known results about the splitting in regular and singular parts of the
solution of Dirichlet or Neumann problems in a corner domain, we build in Section 3 new objects
calledprofilesand denoted byKλ . These objects enter theε -expansion as contributions in the
rapid variablex

ε . They substitute for the singular partssλ of the limit problem.
In Section 4, relying on the results of the two previous sections, we achieve our goal, which

consists in the construction of two families of multi-scaleε -expansions of the solution of our
problem in a coated domain with corner. This result is outlined in formulas (1.5)-(1.7) and fully
provided in Theorems 4.12 and 4.13.

We draw a few conclusions in Section 5 before developing in the appendix the proof of a
uniform (in ε ) a priori estimate for the transmission problem with a smooth thin layer.

We denote byHs(Ω) the standard Sobolev space, endowed with its natural norm
∥∥ ·

∥∥
s,Ω

.

1.1 Formulation of the problem

As already mentioned we consider both smooth and corner situations. Let us first define the domain
of interest in the smooth case. LetΩint ⊂ R2 be a bounded domain with smooth boundaryΓ .
For any t ∈ Γ let n(t) denote the unit outward normal att . For ε > 0 small enough, letΩε

ext

be the layer of uniform thicknessε aroundΩint given by

Ωε
ext = {x ∈ R2; x = t+ sn(t), t ∈ Γ, s ∈ (0, ε)}. (1.1)

Ωint

ε Γε

ext

Γ
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ext

•
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ext
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Figure 1: The smooth and corner domains with thin layerΩε .
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The “corner case” involves the situation whereΩint is a polygonal domain ofR2 . By a stan-
dard argument of localization, it is enough to consider one corner at a time: In order to simplify the
presentation, we deal with a single corner point in the domain. Now Ωint ⊂ R2 is a bounded do-
main whose boundaryΓ is smooth except at the originO : We assume that inside a neighborhood
of O , Γ coincides with a plane sector of openingω ( 6= 0, π, 2π ). Let us fix some notations:

Definition 1.1 Let V ′ ⊂ V be the two balls centered inO with radii 0 < ρ′ < ρ such that
Ωint ∩ V is a sector. Letχ ∈ C∞

0 (V) be a cut-off function,χ ≡ 1 in V ′ .

We assume that, for0 < ε ≤ ε0 small enough, insideV the external boundary ofΩε
ext is a

sector of openingω too, at a distanceε from Γ , with vertexOε ∈ V ′ , see Figure 1. OutsideV ,
the external layerΩε

ext is defined as (1.1) above in the smooth case.
In both regular and corner cases, the whole domainΩint ∪ Γ ∪ Ωε

ext is denoted byΩε and its
boundary (the “external” boundary) byΓε

ext .

Let α be a fixed positive real number. We are interested in the following transmission problem:
Find uε , defined byuε,int in Ωint anduε,ext in Ωε

ext satisfying the equations




α∆uε,int = fint in Ωint,

∆uε,ext = fext in Ωε
ext,

uε,int − uε,ext = 0 on Γ,

α∂nuε,int − ∂nuε,ext = g on Γ,

external b.c. onΓε
ext,

(Pε)

where∂n denotes the normal derivative (outer forΩint , inner forΩε
ext ). The right-hand sidesfint

and g do not depend onε and fext is supposed to be the restriction toΩε
ext of an ε -independent

function. All data are supposed to be smooth enough. The external boundary conditions (b.c.)
which we consider are either Dirichlet or Neumann conditions.

1.2 Dirichlet external b.c.

Here the external b.c. in (Pε) is uε,ext = 0 on Γε
ext . Problem (Pε) is a well-posed elliptic problem

in H1
0(Ω

ε) whose variational formulation is

α

∫

Ωint

∇uε,int · ∇vint dx+

∫

Ωε
ext

∇uε,ext · ∇vext dx =

−
∫

Ωint

fint vint dx−
∫

Ωε
ext

fext vext dx+

∫

Γ
gv dσ, ∀v ∈ H1

0(Ω
ε). (1.2)

Existence and uniqueness of a weak solution directly followfrom the Lax-Milgram lemma. We
also have an a priori estimate with a constantC independent ofε :

∥∥uε

∥∥
1,Ωε ≤ C

[∥∥fint

∥∥
0,Ωint

+
∥∥fext

∥∥
0,Ωε

ext

+
∥∥g

∥∥
0,Γ

]
. (1.3)

The limit problem asε→ 0 is the following Dirichlet problem without the thin layer:
{
α∆u0

int = f in Ωint,

u0
int = h on Γ,

(P0)



G. Caloz et al. – Asymptotic expansion in a polygonal domain with thin layer. 4

with f = fint and h = 0 .
In the smooth case the interior part expansion of the solution of problem (Pε) has the simple

form, cf. [9],
uε,int(x) = u0

int(x) + εu1
int(x) + · · · + εNuN

int(x) + O(εN ), (1.4)

eachuk
int being independent ofε . We will see that the termuk

int solves a Dirichlet problem on
Ωint with f = 0 and h = hk with hk the trace of differential operators acting on the previous
termsu`

int for ` < k .
In the case of a corner domain, the expansion (1.4) is not valid anymore, because the generic

presence of singularities prevents the above traceshk to belong to the right trace spaceH
1

2 (Γ) .
Let (r, θ) be polar coordinates centered at the originO such that−ω

2 ≤ θ ≤ ω
2 in Ωint ∩V . The

singularities of the Dirichlet problem (P0) take the form

sλ =

{
rλ cos(λθ) if λ = qπ

ω with q odd,

rλ sin(λθ) if λ = qπ
ω with q even,

(q ∈ N).

The main result of our paper is completeε -expansions foruε,int , see Theorems 4.12 and 4.13.
In the special situation where the support of the datafint , fext , and g is disjoint from the corner
point O , and whereπ

ω is not an integer, the first of our expansions takes the form: For each fixed
integerN > 0 , and the cut-off functionχ of Definition 1.1:

uε,int(x) = u0,N
int (x) + εu1,N−1

int (x) + ε2u2,N−2
int (x) + · · ·

+ ε
2π
ω u

2π
ω

,N− 2π
ω

int (x) + ε1+
2π
ω u

1+ 2π
ω

,N−1− 2π
ω

int (x) + ε
3π
ω u

3π
ω

,N− 3π
ω

int (x) + · · ·

+ ε
π
ω (c1 + c′1ε+ · · · )χ(x)K

π
ω (x

ε )

+ ε
2π
ω (c2 + c′2ε+ · · · )χ(x)K

2π
ω (x

ε ) + · · · + O(εN ),

(1.5)

with the following features

• The termsuλ,µ
int are independent ofε . The exponentλ is an integer or a number of the

form qπ
ω + p with q ≥ 2 , p ≥ 0 integers. The exponentµ indicates thatuλ,µ

int = O(rµ)
as r → 0 . In the above expansionµ = N − λ , which means in particular that these terms
depend on the given precisionN of the expansion.

• The numberscq , c′q, . . . are real coefficients independent ofN .

• The profilesX 7→ Kλ(X) are defined forλ = qπ
ω in a model infinite sector with layer

of thickness1 , see Figure 2, p.14. They solve a transmission problem with zero data and
behave likesλ asR→ ∞ . In expansion (1.5), only those withλ ≤ N are involved.

In the general case, new profiles are produced by the Taylor expansion of the data. Ifπω is an
integer, terms involvinglog ε may also appear. The different terms in (1.5) satisfy the following
energy estimates:

∥∥uλ,µ
int

∥∥
H1(Ωint)

= O(1) and
∥∥χ(·)Kλ( ·

ε)
∥∥

H1(Ωint)
= O(ε−λ). (1.6)

There are fundamental differences between the expansions (1.4) and (1.5): Non-integer powers of
ε appear and a new scale is introduced in the functionsKλ . A disturbing feature of expansion
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(1.5) is its dependency on the given precisionN : To go from N to N + 1 , everything has to
be reorganized, eachuλ,N−λ has to give up a few singularities to become auλ,N+1−λ and these
singularities are transformed into termsKν .

This is the reason why we have constructed another type ofε -expansion, by a mere rearrange-
ment of terms inside the former expansion (1.5). This rearrangement relies on the asymptotic
structure at infinity of the “canonical” profilesKλ , which consists of a finite number of homoge-
neous functionsKλ,λ−` of positive degreeλ− ` with integer` . Setting

Yλ := Kλ −
∑

`
Kλ,λ−`,

we find the new asymptotics foruε :

uε,int(x) = u0
int(x) + εu1

int(x) + ε2u2
int(x) + · · ·

+ ε
2π
ω u

2π
ω
int(x) + ε1+

2π
ω u

1+ 2π
ω

int (x) + ε
3π
ω u

3π
ω

int(x) + · · ·

+ ε
π
ω (c1 + c′1ε+ · · · )χ(x)Y

π
ω (x

ε )

+ ε
2π
ω (c2 + c′2ε+ · · · )χ(x)Y

2π
ω (x

ε ) + · · · + O(εN ),

(1.7)

where, now, the termsuν , for ν = 0, 1, . . . are no more “flat” nor regular, but they are independent
of the target precisionO(εN ) . Moreoveru0

int is the solution of problem (P0). As opposed to the
profiles Kλ , the Yλ tend to zero at infinity and, ifλ is not integer, have a boundedH1 energy on
Ωint : ∥∥χ(·)Yλ( ·

ε)
∥∥

H1(Ωint)
= O(1). (1.8)

They deserve the appellation ofcorner layeralthough they do not decrease exponentially, but as
a negative power of the distance to the origin. The expansion(1.7) fits better the standard idea of
asymptotic expansion, where one only adds terms inO(εν) with ν ∈ (N,N + 1] to get from a
remainder inO(εN ) to a remainder inO(εN+1) .

1.3 Neumann external b.c.

The external b.c. in (Pε) is now ∂nuε,ext = 0 . Since the problem has now the constant functions
in its kernel, a compatibility condition is needed on the right-hand side:

−
∫

Ωint

fint dx+

∫

Γ
g dσ −

∫

Ωε
ext

fext dx = 0. (1.9)

Since we want (1.9) to be satisfied for everyε > 0 , it requires

−
∫

Ωint

fint dx+

∫

Γ
g dσ = 0 and ∀ε > 0,

∫

Ωε
ext

fext dx = 0. (1.10)

Under the assumptions (1.10), we can ensure uniqueness of a solution to the Neumann interface
problem by imposing the following mean-value property:

∫

Ωint

uε,int dx = 0. (1.11)

A expansion similar to (1.4) holds in this situation,u0
int solving the interior Laplace problem

in Ωint with homogeneous Neumann boundary conditions onΓ . In the corner case, we have
expansions analogous to (1.5) and (1.7). The main new difficulty is the construction of a suitable
variational space for the profiles.
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2 Asymptotics for a smooth coated domain

This section is devoted to the smooth case whose understanding is necessary for the treatment of
a corner domain. In other words, we first focus on the situation “layer without corner” before
treating in the next sections the situation “corner withoutlayer” and, next, ”corner with layer” we
are interested in.

In the smooth case the curveΓ is supposed infinitely differentiable. Let`Γ be its length. The
layer can be represented as the product[0, `Γ) × (0, ε) thanks to the decomposition

Ωε
ext = {x(t) + sn (x(t)) ; x(t) ∈ Γ ands ∈ (0, ε)},

where t denotes the arclength onΓ . The introduction of the stretched variable

S = ε−1s

maps[0, `Γ)×(0, ε) onto [0, `Γ)×(0, 1) . The parameter does not appear anymore in the geometry,
but in the equations through the expression of the Laplace operator in the layer (in the following
formula, c(t) is the curvature at the point ofΓ of arclengtht ):

∆ext = ε−2∂2
S +

ε−1c(t)

1 + εSc(t)
∂S +

1

1 + εSc(t)
∂t

(
1

1 + εSc(t)
∂t

)
. (2.1)

Expanding (2.1) into powers ofε , we obtain the formal expansion∆ext = ε−2
[
∂2

S +
∑

` ε
`A`

]
.

More precisely we can write

∆ext = ε−2
[
∂2

S +

L−1∑

`=1

ε`A` + εLRL
ε

]
for all L ≥ 1. (2.2)

Here the differential operatorsA` = A`(t, S; ∂t, ∂S) haveC∞ coefficients int , polynomial inS
of degree`−2 , and contain at most one differentiation with respect toS . Note that, in particular,
A1 = c(t)∂S . The operatorsRL

ε also haveC∞ coefficients int and S , bounded inε . There
holds

∂n = ε−1∂S

in the layer. Finally, for a functionvext defined inΩε
ext , we denote byVext the function such that

vext(x) = Vext(t, S), (t, S) ∈ [0, `Γ) × (0, 1).

2.1 Dirichlet external b.c.

After the change of variabless 7→ S in Ωε
ext , problem (Pε) becomes





ε−2
[
∂2

SUε,ext +
∑

`≥ 1
ε`A`Uε,ext

]
= F ε

ext in [0, `Γ) × (0, 1),

ε−1∂SUε,ext = α∂nuε,int − g on [0, `Γ) × {0},
Uε,ext = 0 on [0, `Γ) × {1},

α∆uε,int = fint in Ωint,

uε,int = Uε,ext onΓ,

(2.3)
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where F ε
ext(t, S) = f̃ext(t, Sε) with f̃ext(t, s) = fext(x) . If the function fext is sufficiently

smooth, the Taylor expansion of̃fext in the variables at s = 0 leads to the expansion for all
L ∈ N

F ε
ext(t, S) =

L∑

`=0

ε`F `
ext(t)S

` + εL+1F (L+1)
rem with F `

ext(t) =
1

`!
∂`

sf̃ext(t, 0) (2.4)

andF (L+1)
rem smooth and bounded. Inserting the Ansatz

uε,int =
∑

n∈N

εnun
int and Uε,ext =

∑

n∈N

εnUn
ext (2.5)

in equations (2.3), we get the following two families of problems, coupled by their boundary
conditions onΓ (corresponding toS = 0 ):





∂2
SU

n
ext = Fn−2

ext (t)Sn−2 −
∑

`+p = n
A`U

p
ext for 0 < S < 1,

∂SU
n
ext = α∂nu

n−1
int − g δn

1 for S = 0,

Un
ext = 0 for S = 1,

(2.6)

{
α∆un

int = fintδ
n
0 in Ωint,

un
int = Un

ext on Γ.
(2.7)

In the casesn = 0 and n = 1 , the problems (2.6)-(2.7) are simple to solve. From (2.6) with
n = 0 we obtainU0

ext = 0 and (2.7) yields thatu0
int solves the interior Laplace problem (P0) with

f = fint and h = 0 . At step n = 1 , we find successively thatU1
ext = (S − 1)[α∂nu

0
int|Γ − g]

and thatu1
int solves problem (P0) with f = 0 andh = −α∂nu

0
int + g .

The whole construction follows from a recurrence argument.Suppose the sequences(un
int)

and (Un
ext) known until rankn = N−1 , then the Sturm-Liouville problem (2.6) uniquely defines

UN
ext whose trace is inserted into (2.7) as a Dirichlet data to determine the interior partuN

int .
Note that the variablet only appears as a parameter in equations (2.6) which are thusone-

dimensional. Therefore there is no elliptic regularization in the tangential direction:Un
ext is not

more regular thanα∂nu
n−1
int , which implies that we loose regularity at each step. However, an

assumption of infinite smoothness on the right-hand sidesfint, fext , and g ensures that the con-
struction can be performed. This is not true in the case of a corner domain, as we will see later on,
and the loss of regularity will be a major difficulty.

Theorem 2.1 Let fint belong toC∞(Ωint) , fext to C∞(Ωε0

ext) for an ε0 > 0 , and g to C∞(Γ) .
The solutionuε of (Pε) with Dirichlet external b.c. has a two-scale expansion which can be written
for eachN ∈ N in the form

uε =
N∑

n=0

εnun + rN+1
ε , with un|Ωint

= un
int and un|Ωε

ext
(t, s) = Un

ext(t, ε
−1s). (2.8)

The remainders satisfy, with a constantCN independent ofε ≤ ε0 :

∥∥rN+1
ε

∥∥
1,Ωint

+
√
ε
∥∥rN+1

ε

∥∥
1,Ωε

ext

≤ CN εN+1. (2.9)
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Proof: By construction, the remainderrN+1
ε is solution of problem (Pε)





α∆rN+1
ε,int = 0 in Ωint,

∆rN+1
ε,ext = εN−1

[
−

∑N

`=0
RN+1−`

ε U `
ext + F (N−1)

rem

]
in Ωε

ext,

rN+1
ε,int − rN+1

ε,ext = 0 on Γ,

α∂nr
N+1
ε,int − ∂nr

N+1
ε,ext = g δN

0 − εNα∂nu
N
int on Γ,

rN+1
ε,ext = 0 on Γε

ext.

(2.10)

If we denote the data of this system byfN+1
ε,ext and gN+1

ε , we find the estimates

∥∥fN+1
ε,ext

∥∥
0,Ωε

ext

= O
(
εN− 1

2

)
and

∥∥gN+1
ε

∥∥
0,Γ

= O(εN ).

Using the a priori estimate (1.3), we immediately obtain

∥∥rN+1
ε

∥∥
1,Ωε ≤ C εN− 1

2 . (2.11)

Moreover by definition,

rN+1
ε = εN+1uN+1 + εN+2uN+2 + rN+3

ε . (2.12)

Since for every integern ,
∥∥un

∥∥
1,Ωint

= O(1) and
∥∥un

∥∥
1,Ωε

ext

= O(ε−
1

2 ) , we obtain the stated
result from (2.11) and (2.12).

Remark 2.2 The estimate (2.9) is optimal, sinceuN+1 does not vanish, in general. �

Observing the inductive solution of problems (2.6)-(2.7) we can write the relations between its
interior termsun

int without mention of the exterior termsUn
ext . We can also give an expression of

Un
ext as a function of the interior termsun

int only. This is done thanks to the introduction of four
series of partial differential operators, according to:

Proposition 2.3 Let n ∈ N , n ≥ 1 . The interior solutionun
int of problems(2.6)-(2.7)solves the

Dirichlet problem(P0) with f = 0 and h = hn where

hn = gng +
∑

k+`=n

(
hku`

int + Hk,`F `
ext

)∣∣
Γ
. (2.13)

Here gk is a differential operator int of order ≤ k−1 , Hk,` a differential operator int of order
≤ k − 2 − ` (with the convention thatHk,` = 0 if k − 2 − ` < 0 ) and hk a partial differential
operator hk(t; ∂t, ∂n) of order ≤ k . The coefficients of the operators are smooth functions onΓ
depending on the geometry ofΓ . The first terms are given byg0 = 0 , g1 = I , g2 = −1

2c(t)I ,

h0 = 0, h1 = −α∂n, h2 = α
2 c(t)∂n, and H0,0 = H1,0 = 0, H2,0 = −1

2I. (2.14)

The exterior partUn
ext is given by a similar formula as(2.13), with operatorsgk , hk , and Hk,`

replaced by operatorsak , bk , and Bk,` which are polynomial of degree≤ k in the variableS :

Un
ext = ang +

∑

k+`=n

bku`
int + Bk,`F `

ext. (2.15)
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The first terms are given bya0 = 0 , a1 = (1 − S)I , a2 = 1
2c(t)(S

2 − 1)I ,

b0 = 0, b1 = (S − 1)α∂n, b2 = −1
2 c(t)(S

2 − 1)α∂n, (2.16)

and B0,0 = B1,0 = 0 , B2,0 = 1
2(S2 − 1)I

As practical consequences of the above formulas we obtain:

Corollary 2.4
(i) If fint ≡ 0 , fext ≡ 0 , and g 6= 0 , the series(2.8)starts withεu1 .

(ii) If fint ≡ 0 , fext 6= 0 , and g ≡ 0 , the series(2.8)starts in general withε2u2 .

(iii) More precisely, if fint ≡ 0 , g ≡ 0 , and ∂k
nfext|Γ ≡ 0 for k = 0, . . . , ` − 1 with ∂`

nfext|Γ
non identically0 , the series(2.8)starts withε`+2u`+2 .

2.2 Neumann external b.c.

If we consider the boundary condition∂nuε,ext = 0 on Γε
ext in problem (Pε), a similar algorithmic

construction can be done. Due to compatibility conditions,the situation is more complex than in
the Dirichlet case.

The compatibility conditions (1.10) in the exterior part can be written as

0 =

∫ ε

0

∫

Γ

[
1 + sc(x)

]
fext(x+ sn(x)) dxds = ε

∫ 1

0

∫

Γ

[
1 + εSc(t)

]
F ε

ext(t, S) dt dS, (2.17)

where c(t) denotes the curvature ofΓ at the point of arclengtht and n(x) the unitary outer
normal toΩint ; see (2.4) for the behavior ofF ε

ext with respect toε . Since we want (2.17) to be
satisfied for everyε > 0 , we shall assume

∀` ≥ 0

∫

Γ

[
F `

ext(t) + c(t)F `−1
ext (t)

]
dt = 0 (with the conventionF−1

ext = 0 ). (2.18)

Note that for analyticFext , relation (2.18) is a consequence of (2.17).
We now explain the construction of the first terms in the iterative procedure. Starting from

the same Ansatz (2.5), we get again problems (2.6) (whose third line is replaced by the Neumann
condition ∂nU

n
ext = 0 ) and (2.7). At stepn = 0 , U0

ext(t, ·) solves a totally homogeneous one-
dimensional Neumann problem, henceU0

ext(t, S) is a function of the arc lengtht , denoted by
β0(t) which cannot be determined at this stage.

For n = 1 , we get (note thatA1U
0
ext = c(t)∂Sβ0(t) = 0 )





∂2
SU

1
ext = 0 for 0 < S < 1,

∂SU
1
ext = α∂nu

0
int − g for S = 0,

∂SU
1
ext = 0 for S = 1,

which is solvable ifα∂nu
0
int = g on Γ . Thus, letu0

int be solution of the Neumann problem:
α∆u0

int = fint in Ωint and α∂nu
0
int = g on Γ (whose data satisfies the compatibility condi-

tion (1.10)). Thenβ0(t) is determined asu0
int|Γ , thanks to the continuity condition acrossΓ .

Let us now present the general construction: Let us assume that the termsUk
ext anduk

int were
built for k < n , satisfying the condition onΓ :

∀t ∈ [0, `Γ), α∂nu
n−1
int (t) = Φn−1(t) (Hn−1)
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whereΦn−1 is defined as

Φn−1(t)
def.
= g δn

0 −
∫ 1

0

(
Fn−2

ext (t)Sn−2 −
∑

`+p=n

A`U
p
ext(t, S)

)
dS.

The construction ofUn
ext andun

int consists of three steps.

• Step 1. Definition ofUn
ext up to a constant.Thanks to assumption (Hn−1), the problem





∂2
SU

n
ext = Fn−2

ext (t)Sn−2 −
∑

`+p = n
A`U

p
ext for 0 < S < 1,

∂SU
n
ext = α∂nu

n−1
int − g δn

0 for S = 0,

∂SU
n
ext = 0 for S = 1

(2.19)

satisfies the compatibility condition. Thus,Un
ext can be determined up to a constant (ofS ) βn(t) .

• Step 2. Compatibility condition forUn+1
ext and construction ofun

int . Let us consider prob-
lem (2.19) at rankn+ 1 . The right-hand side

Fn−1
ext (t)Sn−1 −

∑

`+p =n+1

A`U
p
ext

is well defined sinceA1β
n(t) = 0 (rememberA1 = c(t)∂S ). The compatibility condition is

nothing but (Hn ): It readsα∂nu
n
int = Φn .

If we insert the previous condition (Hn ) into the interior problem at rankn , we obtain
{

α∆un
int = fintδ

n
0 in Ωint,

α∂nu
n
int = Φn onΓ.

(2.20)

Therefore, we can uniquely determineun
int with the condition

∫
Ωint

un
int = 0 , provided the com-

patibility condition for this Neumann problem is fulfilled:

Lemma 2.5 The interior Neumann problem(2.20)is compatible.

Proof: For n = 0 , Φn = g and it directly follows from the compatibility condition for
problem (Pε), see (1.10). Forn ≥ 1 , we must show that the integral ofΦn over Γ vanishes.
Thus, the condition to be satisfied is the following:

−
∫

Γ
Φn(t) dt =

∫

Γ

∫ 1

0

[
Fn−1

ext (t)Sn−1 −
∑

`+p=n+1

A`U
p
ext(t, S)

]
dS dt = 0. (2.21)

In the sum, we isolate the term corresponding to` = 1 and p = n ; integrating the first equation
of (2.19), we obtain an expression for∂SU

n
ext which can be used to obtain

∫

Γ

∫ 1

0
A1U

n
ext(t, S) dS dt =

∫

Γ

∫ 1

0

∫ 1

S
c(t)

[
− Fn−2

ext (t)Y n−2 +
∑

`+p=n

A`U
p
ext(t, Y )

]
dY dS dt.

(2.22)
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Inverting the integrals inS and Y yields

∫

Γ

∫ 1

0
A1U

n
ext(t, S) dS dt =

∫

Γ

∫ 1

0

[
− c(t)Fn−2

ext (t)Y n−1 +
∑

`+p=n

Y c(t)A`U
p
ext(t, Y )

]
dY dt.

(2.23)
Using equality (2.18), we can deduce from (2.23) the compatibility condition (2.21) if

∑

`+p=n

∫ 1

0

∫

Γ

[
Sc(t)A` + A`+1

]
Up

ext(t, S) dt dS = 0. (2.24)

From (2.1) and (2.2), it follows thatB` = Sc(t)A`−1 + A` is nothing but the operator of rank̀
in the formal expansion

Tε
def.
= [1 + εSc(t)][ε2∆ext − ∂2

S ] − εc(t)∂S =
∑

`≥2

ε`B`.

But for any smooth functionϕ defined onΓ , (2.1) gives
∫

Γ
Tεϕ(t) dt = ε2

∫

Γ
∂t

[
(1 + εSc(t))−1∂tϕ

]
dt = 0,

sinceΓ is a closed curve. Therefore
∫
ΓB`ϕ = 0 for every ` ≥ 2 and every smooth functionϕ .

This implies (2.24).

• Step 3. Complete determination ofUn
ext . The continuity requirementUn

ext = un
int determines

βn(t) = un
int|Γ .

We have just shown that the construction of the termsUn
ext and un

int can be achieved by
induction. We can obtain a similar result as Theorem 2.1:

Theorem 2.6 Let fint ∈ C∞(Ωint) , fext ∈ C∞(Ωε0

ext) for an ε0 > 0 , and g ∈ C∞(Γ) satis-
fying the assumptions(1.10). The solutionuε of (Pε) with external Neumann b.c. determined by∫
Ωint

uε,int dx = 0 has a two-scale expansion which can be written for eachN ∈ N in the form

uε =

N∑

n=0

εnun + rN+1
ε , with un|Ωint

= un
int and un|Ωε

ext
(t, s) = Un

ext(t, ε
−1s).

The remainders satisfy, with a constantCN independent ofε ≤ ε0 :

∥∥rN+1
ε

∥∥
1,Ωint

+
√
ε
∥∥rN+1

ε

∥∥
1,Ωε

ext

≤ CN εN+1. (2.25)

Remark 2.7 For external Neumann boundary conditions we also have a statement like Proposition
2.3, with the following distinctive feature: Iffint ≡ 0 , g ≡ 0 , andfext 6= 0 , the series (2.8) starts
in general withεu1 instead ofε2u2 for external Dirichlet b.c., and more precisely, if∂k

nfext|Γ ≡ 0
for k = 0, . . . , `− 1 and ∂`

nfext|Γ 6= 0 , then (2.8) starts withε`+1u`+1 . �
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2.3 Uniform a priori estimates

Since the transmission problem (Pε) is elliptic, the solutionuε has an optimal piecewise regularity
depending on the regularity of the data and satisfies correspondingly a priori estimates. In fact, it
is even possible to prove that such estimates areuniform with respect toε . Using techniques of
differential quotients like in [1] or [2] we prove in the appendix the following local estimates: We
assume thatΩint is a smooth domain or a corner domain as introduced in§1.1. We fix a point
A ∈ Γ , A 6= O if O is the corner ofΩint . Let BR be the ball of centerA and radiusR . We
chooseR small enough, so that in particular,O 6∈ BR . Let ρ be fixed,0 < ρ < R .

The following result applies both to Dirichlet and Neumann boundary conditions:

Theorem 2.8 With the above assumption onR and ρ , let m ≥ 1 be an integer. Forε small
enough, we consider the solutionuε of problem(Pε) with a right-hand side satisfying the regular-
ity assumptionsfint ∈ Hm−1(Ωint ∩BR) , fext ∈ Hm−1(Ωε

ext ∩BR) , and g ∈ Hm− 1

2 (Γ ∩BR) .
Then

uε,int ∈ Hm+1(Ωint ∩Bρ) and uε,ext ∈ Hm+1(Ωε
ext ∩Bρ).

Moreover, there exists a constantC , independent ofε , f , and g such that

∥∥uε,int

∥∥
m+1,Ωint∩Bρ

+
∥∥uε,ext

∥∥
m+1,Ωε

ext
∩Bρ

≤ C
[∥∥fint

∥∥
m−1,Ωint∩BR

+
∥∥fext

∥∥
m−1,Ωε

ext
∩BR

+
∥∥g

∥∥
m− 1

2
,Γ∩BR

+
∥∥uε

∥∥
0,Ωε∩BR

]
.

(2.26)

As a consequence, for a smooth domainΩint there holds the following global estimate for the
solutionuε ∈ H1(Ωε) of problem (Pε) with a right-hand side satisfying the regularity assumptions
fint ∈ Hm−1(Ωint) , fext ∈ Hm−1(Ωε

ext) , and g ∈ Hm− 1

2 (Γ) :

uε,int ∈ Hm+1(Ωint) and uε,ext ∈ Hm+1(Ωε
ext).

Moreover, there exists a constantC independent ofε such that

∥∥uε,int

∥∥
m+1,Ωint

+
∥∥uε,ext

∥∥
m+1,Ωε

ext

≤ C
[∥∥fint

∥∥
m−1,Ωint

+
∥∥fext

∥∥
m−1,Ωε

ext

+
∥∥g

∥∥
m− 1

2
,Γ

+
∥∥uε

∥∥
0,Ωε

]
. (2.27)

For external Dirichlet b.c., one can remove the contribution
∥∥uε

∥∥
0,Ωε in the right hand side of

(2.27).
When comparing (2.27) with the expansions given in Theorems2.1 and 2.6, we can remark

that uniform estimates are corroborated by the fact that thedegree inS = s
ε inside the exterior

stretched partUn
ext is less thann , see Proposition 2.3.

3 Corner singularities and profiles at infinity

From now on we consider the corner case. In this section, we prepare for the special treatment
needed by the corner pointO of Ωint . Now the solutionuε has singular parts, not only atO , but
also at the external vertexOε . We refer to [17], [11], or [8] for singularities of ellipticboundary
value problems and to [23] for interface problems.
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Examining problems (2.6)-(2.7) and their solution via Proposition 2.3 we see that the singu-
larities of problem (P0) are of importance: The application of formula (2.13) presupposes that the
traces ofhku`

int on Γ are at least inH1/2(Γ) . Since the operatorhk is of degreek in general,
u`

int should belong toHk+1(Ωint) . But the presence of singularities stops the regularity at the
level of H1+ π

ω , in general.
We propose the following strategy in order to overcome this:We use the standard splitting of

u0
int into regular and singular parts, andreplacethe singular parts byprofilessuitably constructed,

so as to solve the whole transmission problem in a neighborhood of O .

3.1 Dirichlet and Neumann corner singularities

Before constructing and investigating these profiles, we describe the singularities of the interior
problem (P0), see [11]. We first introduce the following notations.

Definition 3.1 (i) The set of singular exponents for the Dirichlet problem(P0) is

S =
{ qπ

ω ; q ∈ Z, q 6= 0
}
. (3.1)

The singular function associated with the Dirichlet problem corresponding toλ ∈ S is

sλ =

{
rλ cos(λθ) if λ = qπ

ω with q odd,

rλ sin(λθ) if λ = qπ
ω with q even,

(3.2)

where (r, θ) are polar coordinates centered inO such that the plane sector−ω
2 ≤ θ ≤ ω

2
coincides withΩint in a neighborhood ofO .

(ii) The set of singular exponents for the Neumann problem(2.20) is S ∪ {0} . The singular
function associated with the Neumann problem corresponding to λ ∈ S is

sλ =

{
rλ sin(λθ) if λ = qπ

ω with q odd,

rλ cos(λθ) if λ = qπ
ω with q even.

(3.3)

The singularity associated withλ = 0 is s0 = log r .

(iii) For any positive numberK let S(K) denote the finite setS ∩ (0,K) .

We recall the result of splitting into singular and regular part of the solutions of the Dirichlet
problem (P0), in the situation where the data are“flat” in O , i.e. belong to some weighted spaces
of Kondrat’ev type, see [17]:

Definition 3.2 Let γ ∈ R andm ∈ N . Let

Hm
γ (Ωint) = {v ∈ L2

loc(Ωint); rγ+|β|∂βv ∈ L2(Ωint), |β| ≤ m}.

We denote byHm−1/2
γ+1/2 (Γ) the trace space ofHm

γ (Ωint) . Finally H∞
γ is defined as

⋂
m∈N

Hm
γ .

Theorem 3.3 Let m ∈ N andK ≥ 0 be a real number such thatK 6∈ S , and let the data satisfy

fint ∈ Hm−1
−K+1(Ωint) and h ∈ H

m+1/2
−K−1/2(Γ).
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Then the solutionu0
int ∈ H1(Ωint) of the Dirichlet problem(P0) admits the following decomposi-

tion:
u0

int = u0,K + χ
∑

λ∈S(K)

cλ sλ with u0,K ∈ Hm+1
−K−1(Ωint) and cλ ∈ R. (3.4)

Here χ is a smooth cut-off function as introduced in Definition 1.1.

Remark 3.4 (i) If m ≥ 1 , the regular partu0,K is a O(rK) .

(ii) For the Neumann problem there holds a similar decompositionlike (3.4) with an extra constant
term corresponding toλ = 0 . In fact there are two “singular” functions associated withλ = 0 ,
namely 1 and log r . The latter does not belong toH1(Ωint) . However, we will have to take it
into account as far as singularities at infinity will be concerned. �

3.2 Introduction to the profile analysis

As already mentioned, the solution algorithm of Proposition 2.3 does not apply because of the
singularities in the splitting (3.4). An essential ingredient to obtain anε -expansion for problem
(Pε) in this case is the construction ofprofilessolving an associated problem on an infinite domain,
see [6] or [7].

O

Gext

G

Qint

Qext

ω

~n

~n

1

O′

Figure 2: The infinite domainQ .

Focusing on the corner pointO , we perform the dilatationx 7→ X = x
ε . When ε goes to

0 , the domainΩε becomes an infinite sectorQ (see Figure 2):Q consists of an interior plane
sectorQint of openingω and of a straight layerQext of thickness1 . Let Gext be the external
boundary ofQ andG denote the common boundary ofQint andQext .

A standard feature of the singularitiessλ is to solve the Dirichlet (or Neumann) problem on
the sectorQint of openingω with zero data, and to be homogeneous of degreeλ . The associated
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profiles Kλ are solution of complete transmission problem (P∞)




α∆Kint = fint in Qint,

∆Kext = fext in Qext,

Kint − Kext = 0 on G,

α∂nKint − ∂nKext = g on G,

external b.c. onGext,

(P∞)

for zero datafint , fext andg . The external b.c. is of courseKext = 0 for Dirichlet and∂nKext = 0
for Neumann. Moreover,Kλ has to imitatesλ at infinity, namely

Kλ(X) − sλ(X) = O(Rλ), R→ ∞. (3.5)

In this§3, we prove the existence ofKλ solving the homogeneous (P∞) problem together with
condition (3.5) for external Dirichlet and Neumann conditions. For each case, this requires three
steps:

(i) An algorithmic part providing an asymptotic series̆Kλ , solution of a model transmission
problem (̆P∞) with zero data,

(ii) Truncating this asymptotic series solution, we define the functionKλ on the infinite sector
Q thanks to a variational formulation,

(iii) The expansion of the latter solution at infinity.

Throughout this section we use the following cut-off “at infinity”:

Definition 3.5 Let ρ0 be the distanceOO′ between the internal and external corners ofQ . Let
ψ be a smooth cut-off function equal to1 for |X| ≥ 2ρ0 and 0 for |X| ≤ ρ0 .

3.3 Existence of Dirichlet profiles

3.3.1 Variational formulation

We need a variational framework for problem (P∞) . Our variational spaceV is defined as

V =

{
v ; ∇v ∈ L2(Q),

v

〈X〉 ∈ L2(Q) andv|Gext
= 0

}
, (3.6)

endowed with the natural norm
∥∥v

∥∥2

V
=

∥∥∇v
∥∥2

0,Q
+

∥∥〈X〉−1v
∥∥2

0,Q
,

where the weight is〈X〉 := (|X|2 + 1)1/2 . This is a standard space for the solution of exterior
problems, see [22]. The variational formulation is: Findu ∈ V such that

∫

Qint

∇uint · ∇vint dx+

∫

Qext

∇uext · ∇vext dx =

∫

Qint

fintvint dx+

∫

Qext

fextvext dx+

∫

G
gv dσ, ∀v ∈ V. (3.7)
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Proposition 3.6 If 〈X〉 f ∈ L2(Q) and 〈X〉 1

2 g ∈ L2(G) , then problem(P∞) admits a unique
solution v ∈ V .

Proof: The bilinear forma associated with the variational formulation of (P∞) is obviously
continuous onV . For the ellipticity, we use the polar coordinates centeredin O′ (see Figure 2),
denoted by(ρ, ϕ) . Thanks to the Dirichlet conditions inGext , we can write a Poincaré inequality
in the variableϕ : There exists a constantC independent ofρ and v such that

∫ ω
2

−
ω
2

|v(ρ, ϕ)|2 dϕ ≤ C2

∫ ω
2

−
ω
2

|∂ϕv(ρ, ϕ)|2 dϕ.

Multiplying this inequality byρ−1 and integrating, we get
∥∥ρ−1v

∥∥
0,Q

≤ C
∥∥∇v

∥∥
0,Q

, which gives
the coercivity of the bilinear form onV .

The same technique shows that the prescribed conditions forf and g ensure the continuity of
the linear form associated to the right-hand side.

3.3.2 Algorithmic construction of kernel elements

We recall that for any fixedλ > 0 in S , we are looking for a solutionKλ of (P∞) with fint =
fext = g = 0 , behaving at infinity likesλ . This is possible becausesλ does not belong toV . We
proceed by constructing a series of terms decreasing more and more at infinity, until they belong
to the variational spaceV , which allows the determination ofKλ .

θ =
ω

2
+ 1

θ =
ω

2

θ = −ω

2

θ = −ω

2
− 1

R

θ

R

θ

R

θ

R = 0

R = 0

Q̆+
ext

Q̆int

Q̆−

ext

Figure 3: Definition of(R, θ) coordinates, after polar transformation in the interior domain.

The first step involves an algorithmic construction in singular function spaces. It is more
canonical to define these spaces on a new domainQ̆ instead ofQ , see Figure 3:

Definition 3.7 In Qint , we denote by(R, θ) the polar coordinates centered inO . Thus, consid-
ering (R, θ) as new variablesQint is transformed into

Q̆int = {(R, θ); R > 0, θ ∈ (−ω
2 ,

ω
2 )},
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andG becomes
Ğ = {(R, θ); R > 0, θ = ±ω

2 }.

We consider the exterior layer(s)̆Qext = Q̆+
ext ∪ Q̆−

ext around Q̆int

Q̆+
ext = {(R, θ); R > 0, θ ∈ (ω

2 ,
ω
2 + 1)} and Q̆−

ext = {(R, θ); R > 0, θ ∈ (−1− ω
2 ,−ω

2 )}.

Thus, in the exterior layerR and θ are the tangential and normal coordinates. Forλ ∈ R , we
set

Sλ(Q̆int) =
{ ∑

`≥0, finite

Rλ log`Rv`(θ) ; v` ∈ C∞[−ω
2 ,

ω
2 ]

}
,

Sλ(Ğ) =
{ ∑

`≥0, finite

c±` R
λ log`R for θ = ±ω

2 ; c+` , c
−
` ∈ R

}
,

Sλ(Q̆ext) =
{ ∑

`≥0, finite

θ` ϕ`(R) ; ϕ` ∈ Sλ(Ğ)
}
.

(3.8)

Let Q̆ the union ofQ̆int , Ğ , and Q̆ext . We denote bySλ(Q̆) the space of functions, continuous
inside Q̆ and whose restrictions tŏQint and Q̆ext belong toSλ(Q̆int) and Sλ(Q̆ext) , respec-
tively.

It is important to note thatθ does not represent any more an angular variable inQ̆ext . Rather,
(R, θ) are cartesian coordinates. The change of variables defined on Q̆+

ext by

(R, θ) 7−→ X = (R cos ω
2 , R sin ω

2 ) + (θ − ω
2 )(− sin ω

2 , cos
ω
2 )

and accordingly onQ̆−
ext , mapsQ̆ext either onto a subset ofQext (if ω < π ) or a superset of

Qext (if ω > π ). Nevertheless, inside the support ofψ , cf. Definition 3.5, this correspondence is
one to one. This is the reason why we can introduce:

Definition 3.8 We assume that the cut-offψ = ψ(R) in Definition 3.5 does not depend onθ . For
λ ∈ R , let Sλ(Q) be defined as the space of functionsu such that

∃ ŭ ∈ Sλ(Q̆), u(X) = ψ(R) ŭ(R, θ).

A direct consequence of the definition is:

Lemma 3.9 For any λ < 0 , the spaceSλ(Q) is contained in the variational spaceV .

The problem inQ̆ corresponding to problem (P∞) can be written as




α∆XK̆int = f̆int in Q̆int,

(∂2
θ + ∂2

R)K̆ext = f̆ext in Q̆ext,

K̆int − K̆ext = 0 on Ğ,
α
R∂θK̆int − ∂θK̆ext = ğ on Ğ,

K̆ext = 0 on θ = ±(ω
2 + 1),

(P̆∞)

Problem (̆P∞) can be solved in the sense of “asymptotic series at infinity”:
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Proposition 3.10 Let λ ∈ S . Let sλ
0 denote the extension of the singularitysλ in (3.2) by 0 on

Q̆ext . The functionsλ
0 belongs toSλ(Q̆) . We initialize the series̆Kλ,µ for µ = λ+2, λ+1 , and

λ by setting
K̆λ,λ+2 = K̆λ,λ+1 = 0 and K̆λ,λ = sλ

0 .

Then there exists̆Kλ,λ−` ∈ Sλ−`(Q̆) , ` = 1, 2, . . . , satisfying the following sequence of equa-
tions: 




∂2
θ K̆

λ,λ−`
ext = −∂2

RK̆
λ,λ−`+2
ext θ ∈ ±(ω

2 ,
ω
2 + 1),

∂θK̆
λ,λ−`
ext = α

R∂θK̆
λ,λ−`+1
int θ = ±ω

2 ,

K̆
λ,λ−`
ext = 0 θ = ±ω

2 ± 1,

(3.9)

{
∆K̆

λ,λ−`
int = 0 in Qint,

K̆
λ,λ−`
int = K̆

λ,λ−`
ext for θ = ±ω

2 ,
(3.10)

for all ` ≥ 0 . The degree inθ of K̆λ,λ−` in Q̆ext is equal to` . For each integerp ≥ 0 the
partial sum

∑p
`=0 K̆λ,λ−` solves(P̆∞) for

f̆int = 0, f̆ext = −∂2
R

[
K̆

λ,λ−p
ext + K̆

λ,λ−p+1
ext

]
, ğ = −α∂nK̆

λ,λ−p
int . (3.11)

Proof: The termsK̆λ,λ−` are built by induction. For̀ = 0 , the algorithm is initialized with
K̆

λ,λ
ext = 0 and K̆

λ,λ
int = sλ solving the homogeneous Dirichlet problem inQint . Then we solve

alternatively problems (3.9) and (3.10): If̆Kλ,λ−n are constructed forn = 0, . . . , ` − 1 , the
exterior problem (3.9) is a one-dimensional Sturm-Liouville problem with parameterR and we
check that it has a unique solution inSλ−`(Q̆ext) , whereas the interior Dirichlet problem (3.10)
with boundary data from the trace spaceSλ−`(Ğ) of Sλ−`(Q̆ext) has a solution inSλ−`(Q̆int) ,
cf. [8, Ch.4]. Then (3.11) is an easy consequence of equations (3.9) and (3.10).

Remark 3.11 Since the terms in (3.11) areO(Rλ−p−1) asR→ ∞ , we may say that the series

K̆λ def.
=

∑
`≥ 0

K̆λ,λ−` (3.12)

solves (̆P∞) with f̆ = ğ = 0 in the sense of “asymptotic series at infinity”. �

Remark 3.12 (i) If π/ω 6∈ Q , the termsK̆λ,λ−` , ` ≥ 1 , are unique inSλ−`(Q̆) sinceλ−` 6∈ S ,
and as a consequence the kernel of the Dirichlet problem (3.10) in Sλ−`(Q̆) is reduced to zero.
Moreover, K̆λ,λ−` contains no logarithmic termlogR .

(ii) If π/ω ∈ Q , for each` such thatλ− ` ∈ S , a resonance phenomenon may occur, exciting a
logarithmic singularity (the degree of̆Kλ,λ−` as a polynomial inlogR is at most` ). In that case,
the asymptotic series̆Kλ contains arbitrary choices. Any other asymptotic seriesK̆λ

∗ =
∑

` K̆
λ,λ−`
∗

satisfying the sequence of equations in Proposition 3.10 can be compared to the specified one.
There exist coefficients(γλ

ν ) for eachν = λ− ` ∈ S , ` ≥ 1 , such that

K̆λ
∗ = K̆λ +

∑
ν =λ−`∈S

γλ
ν K̆ν .

�
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3.3.3 Effective construction of profiles

Using the asymptotic series
∑

K̆λ,λ−` , we are able to construct genuine solutions for prob-
lem (P∞) with zero right hand side and asymptotics (3.5) at infinity:

Theorem 3.13 Let λ ∈ S , λ > 0 , and letpλ denote the smallest integerp such that

λ− 1
2 < p. (3.13)

Recall thatψ is the cut-off function from Definition3.5. There existsuλ,pλ in the variational
spaceV such that

Kλ := ψ

pλ∑

`=0

K̆λ,λ−` + uλ,pλ (3.14)

defines a solutionKλ of problem (P∞) for f = g = 0 , such thatKλ
int ∼ sλ as R → ∞ .

Moreover for any integerp ≥ pλ , the functionuλ,p defined asKλ−ψ∑p
`=0 K̆λ,λ−` also belongs

to V .

Proof: For any integerq , we definevλ,q as the sum−ψ∑q
`=0 K̆λ,λ−` . By construction, the

function vλ,q solves problem (P∞) with, compare with (3.11):

fint = ϕint, fext = ϕext − ψ∂2
R

[
K̆

λ,λ−q
ext + K̆

λ,λ−q+1
ext

]
, g = −ψ α

R∂θK̆
λ,λ−q
int (3.15)

where ϕ comes from the cut-off: Its support is contained insupp(∇ψ) . For q large enough,
i.e. q > λ + 1

2 , the above right-hand sides satisfy the assumptions of Proposition 3.6. As a
consequence, there existsuλ,q ∈ V , solving the same problem asvλ,q . Then

Kλ = ψ

q∑

`=0

K̆λ,λ−` + uλ,q (3.16)

solves problem (P∞) with f = g = 0 . Finally the statement concerninguλ,p for p = pλ, pλ +
1, . . . follows directly from Lemma 3.9.

3.4 Expansion at infinity of the Dirichlet profiles

Equality (3.14) provides the expansion ofKλ up to O(1) asR → ∞ . But we need to know the
expansion ofKλ at any orderO(r−P ) for the construction of the expansion of the solution of
problem (Pε) in Section 4. The theorem below provides the complete expansion of Kλ . For this,
the introduction of several sets of indices is useful:

Definition 3.14 Let Q− be the set of negative exponents defined as

Q− =
{
−hπ

ω − q ; h, q ∈ N with h ≥ 1, q ≥ 0
}
. (3.17)

For any λ > 0 we introduce the infinite set of exponents depending onλ :

Qλ = Q− ∪
{
λ− 1, λ− 2, . . . , λ− `, . . .

}
(3.18)

and for any numberP > 0 the finite setQλ(P ) = Qλ ∩ [−P, λ) .



G. Caloz et al. – Asymptotic expansion in a polygonal domain with thin layer. 20

Theorem 3.15 Let λ ∈ S , λ > 0 .
(i) The solutionKλ of problem(P∞) introduced in(3.14)has the following expansion at infinity:

∀P > 0, Kλ = sλ
0 +

∑

µ∈Qλ(P )

Kλ,µ + O(R−P ), R→ ∞. (3.19)

where for anyµ ∈ Qλ the functionKλ,µ belongs to the spaceSµ(Q) cf. Definition 3.8. The
degree ofKλ,µ

ext as a polynomial inθ ∈ ±(ω
2 ,

ω
2 + 1) is ≤ λ − µ . Moreover, one can take

derivatives of expansion(3.19), still having estimates on the remainder, see(3.30).

(ii) More precisely, we have the identity between asymptotic series:

sλ
0 +

∑

µ∈Qλ

Kλ,µ = K̆λ +
∑

ν=−hπ
ω

<0

cλν K̆ν , (3.20)

with the K̆ν defined by(3.12), and cλν are real coefficients, characteristic for the domainQ .

The proof of this theorem requires regularity results for the variational termsuλ,p and uses the
Mellin transform. It is performed in the next Sections 3.4.1and 3.4.2.

3.4.1 Regularity of the variational terms in weighted spaces

We are going to study the regularity of the variational termsuλ,p , cf. (3.14) and (3.16), in a scale
of weighted Sobolev spaces, as is usual for corner problems,see [17]. Rather than in the sectorQ ,
we work in the stripQ̃ obtained fromQ̆ by the change of variableR+ 3 R 7→ t = logR ∈ R ,
see Figure 4.

θ = ω

2
+ 1

θ =
ω

2

θ = −ω

2

θ = −ω

2
− 1

t

θ

t

θ

t

θ

Q̃+
ext

Q̃int

Q̃−

ext

Figure 4: The stripQ̃ .

Let us now introduce the scales of weighted spaces.

Definition 3.16 (i) Let m be a non-negative integer andγ a real number. The spaceKm
γ (Q̃int)

is defined by
Km

γ (Q̃int) =
{
ṽ ; eγt ṽ ∈ Hm(Q̃int)

}
,
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endowed with the natural norm
∥∥ṽ

∥∥
Km

γ ( eQint)
=

∥∥eγt ṽ
∥∥

m, eQint

. We define similarly

Km
γ (Q̃ext) =

{
ṽ ; eγt ṽ ∈ Hm(Q̃ext)

}
and K

m− 1

2

γ (G̃) =
{
ṽ ; eγt ṽ ∈ Hm− 1

2 (G̃)
}
.

(ii) We setK0
γ,γ− 1

2

(Q̃) =
{
ṽ ; ṽint ∈ K0

γ(Q̃int), ṽext ∈ K0
γ− 1

2

(Q̃ext)
}

, and form ≥ 1

Km
γ,γ− 1

2

(Q̃) =
{
ṽ ; ṽint ∈ Km

γ (Q̃int), ṽext ∈ Km
γ− 1

2

(Q̃ext) and ṽint = ṽext on G̃
}
. (3.21)

Last, we denote byK
m− 1

2

γ,γ− 1

2

(G̃) the space of traces ofKm
γ,γ− 1

2

(Q̃) on the interfaceG̃ .

Remark 3.17 (i) The above definitions are inspired by Kondrat’ev spaces, see[17]. Namely,
Km

γ (Q̃int) is the image ofHm
γ−1(Qint) , see Definition 3.2, by the change of variablesX 7→ (t, θ) .

(ii) If 〈X〉−1u ∈ L2(Q) (and in particular, ifu ∈ V ), then (t, θ) 7→ ψu belongs toK0
0,−1/2(Q̃) .

(iii) The natural trace spaces oñG of the spacesKm
γ (Q̃int) and Km

γ−1/2(Q̃ext) do not coincide.

Thus the transmission conditioñvint = ṽext enriches the topology of the space (3.21). �

Using the elliptic regularity away from the corner (see Theorem 2.8), we can prove the follow-
ing “shift theorem”. Note in the following result that more regularity is required for̃fext than for
f̃int due to the inhomogeneity of the operator in the strips.

Theorem 3.18 Let ŭ be solution of problem(P̆∞) with data f̆ and ğ . Let ũ , f̃ , and g̃ denote
their transforms onQ̃ . We assume the following on the data for some integerm ≥ 2 and γ ∈ R :

f̃int ∈ Km−2
γ+2 (Q̃int ∩ [t > 0]), f̃ext ∈ Km−2

γ+m− 1

2

(Q̃ext ∩ [t > 0]), g̃ ∈ K
m− 3

2

γ+1 (G̃ ∩ [t > 0]).

If ũ belongs toK0
γ,γ− 1

2

(Q̃∩ [t > 0]) , then it also belongs toKm
γ,γ− 1

2

(Q̃∩ [t > η]) for all η > 0 .

Proof: In the variables(t, θ) , the Laplace operators present in the first two equations of (P̆∞)
become

Tint = e−2t[∂2
t + ∂2

θ ] and Text = e−2t
[
∂2

t − ∂t + e2t∂2
θ

]
.

Let us fix the real numberη > 0 and consider for some arbitraryt0 > 0 the rectangleR :=
Q̃ ∩ [t0 + η < t < t0 + 2η] . On such a rectangle, the non-principal parts of the above operators
can be neglected and the variable coefficients can be frozen in t0 . Finally we use the following
dilatation of the exterior strips:

s = ±ω
2 + e−t0(θ ∓ ω

2 ) in Q̃±
ext.

As a consequence, the domainR becomes a rectangle with layers of thicknessε = e−t0 and the
considered operators can be written as

T ε
int = e−2t0 [∂2

t + ∂2
θ ] and T ε

ext = e−2t0
[
∂2

t + ∂2
s

]
,

which are nothing but the Laplace operator (multiplied by a constant). Moreover the transmission
condition onG̃ becomes

e−t0α∂θũint − e−t0∂sũext = g̃.
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This is the same as in (Pε), since ∂θ and ∂s are the normal derivatives along the transmission
boundary. Using Theorem 2.8 and going back to the variables(t, θ) , we obtain the estimate, with
C independent oft0 – in the following the derivation multi-indices with respect to the variables
t and θ are denoted byβ = (βt, βθ) :

∥∥ũint

∥∥
m,Rint

+
( ∑

|β|≤m

e2βθt0−t0
∥∥∂β ũext

∥∥2

0,Rext

) 1

2 ≤

C

[
e2t0

∥∥f̃int

∥∥
m−2, bRint

+ e2t0
( ∑

|β|≤m−2

e2βθt0−t0
∥∥∂β f̃ext

∥∥2

0, bRext

) 1

2

+ et0
∥∥g̃

∥∥
m− 3

2
,bΓ

+
∥∥ũint

∥∥
0, bRint

+ e−t0/2
∥∥ũext

∥∥
0, bRext

]
, (3.22)

where R̂ is the rectangleQ̃ ∩ [t0 < t < t0 + 3η] , Γ̂ its boundary alongG̃ . If we multiply
inequality (3.22) byeγt0 and use0 ≤ βθ ≤ m , we get

eγt0
∥∥ũint

∥∥
m,Rint

+ e(γ−
1

2
)t0

∥∥ũext

∥∥
m,Rext

≤

C

[
e(2+γ)t0

∥∥f̃int

∥∥
m−2, bRint

+ e(γ+m− 1

2
)t0

∥∥f̃ext

∥∥
m−2, bRext

+ e(1+γ)t0
∥∥g̃

∥∥
m− 3

2
,bΓ

+ eγt0
∥∥ũint

∥∥
0, bRint

+ e(γ−
1

2
)t0

∥∥ũext

∥∥
0, bRext

]
.

Since t ∼ t0 in the rectangles, we can replace the normseδt0
∥∥v

∥∥
s

by
∥∥eδtv

∥∥
s
. Summing up all

these inequalities fort0 ∈ ηN∗ , we get the result.

As a consequence there holds the following result on the regularity of the variational term.

Proposition 3.19 Let p be an integer,p ≥ pλ , and let ũλ,p denote the “variational” function
ψuλ,p (3.14), (3.16), in the variables(t, θ) , t ∈ R , and θ ∈ (−1 − ω

2 ,
ω
2 + 1) . For every integer

m ≥ 0 , we have
ũλ,p ∈ Km

0,− 1

2

(Q̃). (3.23)

Proof: We apply Theorem 3.18 forγ = 0 . Sinceuλ,p ∈ V , we haveũλ,p ∈ K0
0,−1/2(Q̃) ,

cf. Remark 3.17 (ii). It remains to check the assumptions on the right-hand side, which is defined
by (3.15). Since it is smooth with compact support, the function ϕ belongs to every weighted
space. On the other hand, thanks to the structure of the functions in Sµ(Q) , we can check that for
p > λ+m− 1 ,

f̃ext ∈ Km−2
m (Q̃ext) and g̃ ∈ K

m− 3

2

1 (G̃).

Theorem 3.18 yields that̃u ∈ Km
0,−1/2(Q̃) in this case. To examine the situation wherep is such

that pλ ≤ p ≤ λ+m− 1 , let us write

uλ,p = uλ,p+m − ψ

p+m∑

`=p+1

Kλ,λ−`.
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Sincep ≥ pλ , we havep+m > λ+m−1 , thus ũλ,p+m ∈ Km
0,−1/2(Q̃) by the first step. Besides,

for all ` ≥ p+1 ≥ pλ +1 , the exponentλ− ` is < 0 . The structure of the spacesSµ(Q) allows
to show that for anyµ < 0 they are embedded inKm

0,0(Q̃) , thus inKm
0,−1/2(Q̃) , which concludes

the proof.

3.4.2 Proof of the expansion of the profiles at infinity

We can now prove the asymptotic expansion (3.19) of the profile Kλ constructed in Proposi-
tion 3.13. The main tool for this study is the Mellin transform, which is a Fourier-Laplace trans-
form in the variablet whose argument is complex, see [17], [8] or [21].

Let Λ ∈ C ; if ṽint is defined in the stripQ̃int , we set, when meaningful

v̂int(Λ, θ) =

∫

R

e−Λt ṽint(t, θ) dt, θ ∈ Θint := (−ω
2 ,

ω
2 ). (3.24)

The variableθ is a parameter: IfΛ = ξ + iη , v̂int(·, θ) is the Fourier transform oft 7→
e−ξt ṽint(·, θ) evaluated at the pointη . Similarly, we define a Mellin transform in the exterior
strips:

v̂±ext(Λ, θ) =

∫

R

e−Λt ṽext(t, θ) dt, θ ∈ Θ±
ext := ±(ω

2 ,
ω
2 + 1). (3.25)

The weighted spaces defined above can be characterized by Mellin transform:

∥∥ṽint

∥∥2

Km
γ ( eQint)

'
∫

R

∥∥v̂int(−γ + iη)
∥∥2

Hm(Θint,|η|+1)
dη, (3.26)

where
∥∥g

∥∥2

Hm(Θint,ρ)
:=

∑
βt+βθ=m ‖ρβt∂βθg||20,Θint

. Conversely, if the integral

∫

R

∥∥Uint(−γ + iη)
∥∥2

Hm(Θint,|η|+1)
dη

is finite, thenUint is the Mellin transform of a functioñvint ∈ Km
γ (Q̃int) on the lineReΛ = −γ .

The functionṽ is reconstructed by the inversion formula:

ṽint(t, θ) = M−1
−γ(Uint) =

1

2π

∫

R

e(−γ+iη)tUint(−γ + iη, θ) dη.

These results are consequences of the Plancherel identity.The same equivalences hold for the
exterior domainQ̃ext .

We are ready to study the asymptotics ofKλ . Thanks to equalities (3.14), (3.16), it is sufficient
to investigateψuλ,p for p ≥ pλ :

Proposition 3.20 Let λ belong toS and let p be an integer,p ≥ pλ . Let κ denote the Mellin
transform of the functioñuλ,p ' ψuλ,p , cf. Proposition3.19. There holds:

(i) κ is holomorphic in the half-planeRe Λ > 1
2 .

(ii) Let b be a positive number such thatp > λ + b − 1 . The functionκ admits a meromorphic
extension in the half-planeRe Λ > −b . The set of its poles is contained inQ− , cf. (3.17).
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Proof: (i) Since by Proposition 3.19 the variational term̃uλ,p belongs to the weighted space
K0

0,− 1

2

(Q̃) , the equivalence above shows thatκint(Λ, θ) is well defined forReΛ ≥ 0 (remember

ũλ,p vanishes nearR = 0 ) and that, similarly,κext(Λ, θ) is defined forReΛ ≥ 1
2 . Therefore, it

is clear thatΛ 7→ κ(Λ, θ) is holomorphic in the domainΠ 1

2

, where

Πa = {Λ ∈ C ; ReΛ > a}. (3.27)

(ii) After Mellin transformation the problem satisfied byuλ,p becomes





(Λ2 + ∂2
θ )κint(Λ) = f̂int(Λ − 2) θ ∈ (−ω

2 ,
ω
2 ),

κint(Λ) = κext(Λ) θ = ±ω
2 ,

∂2
θκext(Λ) = f̂ext(Λ) − Λ(Λ − 1)κext(Λ + 2) θ ∈ ±(ω

2 ,
ω
2 + 1),

∂θκext(Λ) = α∂θκint(Λ + 1) − ĝ(Λ) θ = ±ω
2 ,

κext(Λ) = 0 θ = ±(ω
2 + 1),

(3.28)

where the termŝfint , f̂ext , and ĝ± come from the Mellin transform of the terms defined by (3.15)
and from the truncation. Sincep is sufficiently large (p > λ + b − 1 ), this right-hand side is
holomorphic forRe Λ > −b .

We will build the meromorphic extension ofκ(Λ) in Πa by descending induction overa ,
starting froma = 1

2 .
If such an extension is known in the half planeΠa , we can definẽκ±ext(Λ) as the unique

solution of the last three equations (whose right-hand sideis known). As a second step we put
κ̃±ext(Λ) in the right-hand side of the second equation of (3.28) and weset κ̃int(Λ) to the solution
of the interior problem given by the first two equations in (3.28), which is possible ifΛ /∈ S .

For Λ ∈ Πa , we obviously havẽκ(Λ) = κ(Λ) since both satisfy problem (3.28), which has
a unique solution because it corresponds to the variationalproblem (P∞) in the Mellin variables.
The function κ̃ is hence an extension ofκ . Moreover, κ̃ is meromorphic inΠa−1 , the poles
being inherited fromκ by translation by negative integers and coming from the interior problem
(the singular exponents).

Thanks to the Mellin inversion formula, we are able to deducethe asymptotic behavior ofuλ,p

from meromorphic properties of its Mellin transform.

Proposition 3.21 Let λ belong to S and let p be an integer,p ≥ pλ . The functionuλ,p is
defined through equalities(3.14), (3.16). Let P be a positive number such thatp > λ + P − 1 .
There exist functionsKλ,µ ∈ Sµ(Q) (cf. Definition 3.8) such that

ψuλ,p =
∑

µ∈Q−, µ≥−P

Kλ,µ + u
λ,p
(P ) where u

λ,p
(P ) = O(R−P ) asR→ +∞, (3.29)

and the set of indicesQ− defined by(3.17). Moreover the first order derivatives of the remainder
satisfy the decay properties

∂R

(
u

λ,p
(P )

)
= O(R−P−1) and ∂θ

(
uλ,p

(P )

)
= O(R−P ) asR→ +∞, (3.30)



G. Caloz et al. – Asymptotic expansion in a polygonal domain with thin layer. 25

Proof: Like in Proposition 3.20κ(Λ) is the Mellin transform of̃uλ,p ' ψuλ,p . Let us fix
α, β /∈ Q− such thatα < β and p > λ− α− 1 . For η > 0 , the boundary of the rectangle

α < Re Λ < β and |ImΛ| < η

will be denoted byGη . By Cauchy’s formula, Proposition 3.20 gives that
∫

Gη

etΛκ(Λ) dΛ = 2iπ
∑

α<µ<β

Res
Λ=µ

etΛκ(Λ),

with residues forµ ∈ Q− . We let η go to infinity in the above identity. The vertical sides ofGη

give inverse Mellin transforms:
∫ η

−η
e(γ+iη)tκ(γ + iη)idη −→ 2iπM−1

γ [κ(Λ)], γ = α, β,

whereM−1
γ denotes the inverse Mellin transform along the lineReΛ = γ .

Standard resolvent estimates for the system (3.28) combined with the descending induction
argument of the proof of Proposition 3.20 show thatκ(ξ + iη) is rapidly decreasing as|η| → ∞ .
Thus, there is no contribution of the horizontal sides ofGη . In conclusion, we obtain

M−1
β [κ(Λ)] −M−1

α [κ(Λ)] =
∑

α<µ<β

Res
Λ=µ

etΛκ(Λ).

We can check that, forµ ∈ Q− , the functionKλ,µ := ψResΛ=µ e
tΛκ(Λ) belongs to the space

Sµ(Q) . The expansion (3.29) is obtained forβ = 1
2 and α = −P − δ for some δ such that

[−P − δ,−P ) ∩ Q− = ∅ .
It remains to prove that the remainderu

λ,p
(P ) satisfies the decay properties in (3.29)-(3.30). We

set ũλ,p
(P )(t, θ) = ψu

λ,p
(P )(X) . Thus ũ

λ,p
(P ) coincides withM−1

α [κ(Λ)] for large t . Sinceκ(ξ + iη)

is rapidly decreasing as|η| → ∞ , the norms
∫

R

∥∥κ(α+ iη)
∥∥2

Hm(Θ,|η|+1)
dη

are finite for anym > 0 . This shows that̃uλ,p
(P ) belongs toKm

P+δ(Q̃) for any m . For m > 1 ,

this implies thatuλ,p
(P ) = O(R−P ) asR → ∞ , and, for larger values ofm , it proves the decay

properties (3.30).

Proof of Theorem 3.15: Let us fix P > 0 . Let us takep ≥ λ such thatλ − p ≤ −P .
According to Theorem 3.13, there holds

Kλ = ψ

p∑

`=0

K̆λ,λ−` + uλ,p.

Proposition 3.21 yields that

uλ,p =
∑

µ∈Q−, µ≥−P

Kλ,µ + O(R−P ).
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Therefore we obtain the expansion (3.19) for thisP . By virtue of the uniqueness of asymptotic
expansions in powers ofR at infinity, the termsKλ,µ do not depend onP .

The expression ofKλ as a formal series – see (3.20) – follows again from the Cauchyformula:
indeed the terms(Kλ,ν−`)` satisfy the equations (3.10) and (3.9).

The assertion about the degree inθ of K
λ,µ
ext in the layerQext results from the equality (3.20):

K
λ,µ
ext is a linear combination of terms of the formψK̆ν,ν−` , with µ = ν−` andν ≤ λ . According

to Proposition 3.10, the degree inθ of K̆ν,ν−` is ` , whence≤ λ− µ .

3.5 Neumann boundary conditions

In this section, we try to follow the same arguments as beforefor the Dirichlet boundary conditions.
The variational formulation is the same as above, but due to the absence of the Poincaré inequality,
the previous variational space cannot be used in this case. Nevertheless, it is possible to find a
suitable variational space: LetX be defined as

X =

{
v ; ∇v ∈ L2(Q) and

v

(1 +R) log(2 +R)
∈ L2(Q)

}
, (3.31)

endowed with its natural norm (againR is the distance to the interior corner pointO ). Since the
constant functions belong toX , we introduce the quotient spaceV = X/R . The spaceV is
clearly a Hilbert space and we will show that theH1 -seminorm is an equivalent norm forV :

Proposition 3.22 The bilinear forma(u, v) =
∫
Q ∇u · ∇v dx is continuous and coercive onV .

Proof: Only the coercivity needs to be checked. ForR > 0 , let BR denote the ball of radiusR
centered inO′ (exterior corner point ofQ , see Figure 2) andχ a smooth radial cut-off function,
supported inB2 and equal to1 in B1 .

Let v ∈ X , we denote by〈v〉 its mean value onB2 ∩Q :

〈v〉 =
1

meas(B2 ∩Q)

∫

B2∩Q
v(x) dx.

By the Poincaré-Wirtinger inequality in the bounded domain B2 ∩ Q , there exists a constantC
such that ∥∥v − 〈v〉

∥∥
0,B2∩Q

≤ C
∥∥∇v

∥∥
0,B2∩Q

,

which gives the following estimate forχ(v − 〈v〉) :
∥∥χ(v − 〈v〉)

∥∥
X
≤ C

∥∥∇v
∥∥

0,Q
, (3.32)

whereC is another constant, independent ofv . Let thenu be defined asu = (1 − χ)(v − 〈v〉) .
If we denote by(ρ, ϕ) the polar coordinates centered inO′ , then u = 0 on the circular arc
corresponding toρ = 2 . We can use this information to get a Hardy inequality (in this limit case,
it corresponds to a “weighted Poincaré inequality”, see [14]): for anyR > 2 ,

∫ ω

0

∫ R

2

|u(ρ, ϕ)|2
ρ2 log2 ρ

ρdρdϕ ≤ C

∫ ω

0

∫ R

2
|∂ρu(ρ, ϕ)|2ρdρdϕ.

Together with (3.32), we obtain the result.
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Corollary 3.23 If (1 + R) log(2 + R)f ∈ L2(Qint) and (1 + R)
1

2 log(2 + R)g ∈ L2(G) , with
the compatibility condition (note that the integrals make sense)

∫

Qint

f dx+

∫

G
g dσ = 0, (3.33)

then problem(P∞) admits a unique solutionv ∈ V .

With the spaceV , we get a suitable variational framework which allows us to define unique
solutions for problem (P∞) in the case of Neumann boundary conditions. We will continue to use
X instead ofV , i.e. functions instead of equivalence classes modulo constants, but we have to
make sure that elements of the dual space are orthogonal to constants, i.e. satisfy the compatibility
condition (3.33).

Similarly to the Dirichlet case, we start from a singularitysλ (λ > 0 ) of the interior problem
(with Neumann condition onΓ this time). Since it does not belong to the variational spaceV , we
perform a few algorithmic steps in order to decrease the degree in the variableR at infinity.

Proposition 3.24 Let λ ∈ S ∪ {0} . Let sλ
? denote the extension ofsλ (3.3) in Q̆ such that

sλ
? (R, θ) = sλ|θ=±

ω
2
(R) in Q̆±

ext.

We setK̆λ,λ = sλ
? and, for convenience,̆Kλ,λ+1 = K̆λ,λ+2 = 0 .

There existK̆λ,λ−` ∈ Sλ−`(Q̆) , ` = 1, 2, . . . , satisfying the following sequence of equations




∂2
θ K̆

λ,λ−`
ext = −∂2

RK̆
λ,λ−`+2
ext θ ∈ ±(ω

2 ,
ω
2 + 1),

∂θK̆
λ,λ−`
ext = α

R∂θK̆
λ,λ−`+1
int θ = ±ω

2 ,

∂θK̆
λ,λ−`
ext = 0 θ = ±ω

2 ± 1,

(3.34)





∆K̆
λ,λ−`
int = 0 in Qint,

α∂nK̆
λ,λ−`
int =

∫ ±
ω
2 ±1

±
ω
2

∂2
RK̆

λ,λ−`+1
ext (R,ϑ) dϑ for θ = ±ω

2 ,
(3.35)

The exterior part is defined up to a constant, which is determined by the condition̆Kλ,λ−`
ext =

K̆
λ,λ−`
int on Γ .

For each integerp ≥ 0 the partial sum
∑p

`=0 K̆λ,λ−` solves the Neumann problem(P∞) with

fint = 0, fext = ∂2
R

[
K̆

λ,λ−p
ext + K̆

λ,λ−p+1
ext

]
, g = α∂nK̆

λ,λ−p
int . (3.36)

Proof: Due to the compatibility conditions for Neumann problems, the construction of the terms
K̆λ,µ is not as straightforward as in the Dirichlet case. Let us give a brief description: If̆Kλ,λ−`

are constructed for̀ < k , then consider equations (3.34) for` = k+1 . This is a one-dimensional
Neumann problem (with parameterR ) whose compatibility condition reads

∫ ±
ω
2 ±1

±
ω
2

∂2
RK̆

λ,λ−(k−1)
ext (R,ϑ) dϑ =

α

R
∂θK̆

λ,λ−k
int = ±α∂nK̆

λ,λ−k
int ,
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this gives the Neumann data for the interior problem (3.35) for ` = k (whose compatibility
condition is fulfilled). As for the Dirichlet case, the interior boundary value problem with data
in Sλ−k−1(Ğ) always has a solution inSλ−k(Q̆int) . We can then definĕKλ,λ−k

int ; the condition
K̆

λ,λ−k
ext = K̆

λ,λ−k
int on G completely determines the exterior part.

Here is now the analogue of Theorem 3.13 in the Neumann case.

Theorem 3.25 Let λ ∈ S , λ > 0 , and let pλ be defined by(3.13). There existsuλ,pλ in the
variational spaceX and, if λ ∈ N , a constantIλ , such that the sum

Kλ := ψ

pλ∑

`=0

K̆λ,λ−` + uλ,pλ if λ 6∈ N

Kλ := ψ

pλ∑

`=0

K̆λ,λ−` + Iλs0
? + uλ,pλ if λ ∈ N

(3.37)

defines a solutionKλ of problem(P∞) for f = g = 0 , satisfyingKλ
int ∼ sλ asR→ ∞ .

Proof: For any integerq , we define

vλ,q = −ψ
q∑

`=0

K̆λ,λ−`. (3.38)

By construction, the functionvλ,q solves problem (P∞) with

fint = αϕq, (3.39)

fext = ϕq − ψ∂2
R

[
K̆

λ,λ−q
ext + K̆

λ,λ−q+1
ext

]
, (3.40)

g = −ψ α
R∂θK̆

λ,λ−q
int , (3.41)

whereϕq comes from the cut-off; its support is contained insupp(∇ψ) .
For q large enough, i.e.q > λ + 1

2 , the above right-hand sides satisfy the assumptions of
Corollary 3.23. If we are able to verify the compatibility condition (3.33), we can conclude that
there existsuλ,q ∈ X , solving the same problem asvλ,q . Then

Kλ = ψ

q∑

`=0

K̆λ,λ−` + uλ,q

solves problem (P∞) with f = g = 0 ; the statement concerninguλ,p directly follows from the
inclusion Sµ ⊂ X for µ < 0 .

Let us focus on the compatibility condition (3.33). ForR > 0 , we defineQR asQ ∩ BR ,
whereBR denotes the ball of radiusR , centered inO . Similarly, GR (resp. GR

ext ) denotes
G ∩BR (resp.Gext ∩BR ). With the help of an integration by parts, we get

Iλ
R

def.
=

∫

QR

f dx+

∫

GR

g dσ = −
∫

Q∩∂BR

∂nvλ,q dσ, (3.42)
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the terms onGR and GR
ext vanishing by construction of̆Kλ,µ . Thanks to definition (3.38) of

vλ,q , we get the following expression for the integralIλ
R :

Iλ
R =

M∑

m=1

L∑

`=0

am`R
λ−m log`R, (3.43)

with unknown coefficientsam` . For q large enough, expressions (3.39)–(3.41) show thatf and
g have finite integrals overQ and G . Hence,Iλ

R has a finite limit Iλ
∞ as R → +∞ , which

imposesam` = 0 for λ−m > 0 or (λ = m and ` > 0 ).

If λ is not an integer, we can deduceIλ
∞ = 0 : This is the expected compatibility condition.

If λ is an integer,Iλ
∞ does not necessarily vanish. But the compatibility condition can be

fulfilled with the help of the logarithmic singularity. Indeed, if we apply the same technique as
above, starting withs0 = logR /∈ X , we obtainI0

∞ = −1 . Hence, forλ ∈ N∗ we do not know
if Iλ

∞ vanishes but

ṽλ,p = −ψ
( p∑

`=0

K̆λ,λ−` + Iλ
∞s0

?

)

satisfies the compatibility condition.

Then we can prove by the same tools as in§3.4.1 and§3.4.2 that the Neumann version of
the Kλ satisfies an expansion at infinity like (3.19) with the same set of exponentsQλ (3.18).
At this stage there is essentially no difference between Dirichlet and Neumann external boundary
conditions.

3.6 Non-homogeneous profile problems

The same techniques apply to the non-homogeneous problem (P∞):

Theorem 3.26 Let λ ∈ R . Under the following assumptions:fint = ψf̆int , fext = ψf̆ext , g = ψğ

with

f̆int ∈ Sλ−2(Q̆int), f̆ext ∈ Sλ(Q̆ext) and ğ ∈ Sλ(Ğ), for Dirichlet b.c.
f̆int ∈ Sλ−2(Q̆int), f̆ext ∈ Sλ−1(Q̆ext) and ğ ∈ Sλ−1(Ğ), for Neumann b.c.

problem (P∞) with Dirichlet or Neumann external boundary conditions admits a solution Wλ

which has an asymptotics at infinity of the form

Wλ = Wλ,λ +
∑

µ∈Qλ(P )

Wλ,µ + O(r−P ) (∀P ∈ N), (3.44)

with Wλ,µ in the spaceSµ(Q) of Definition 3.8, for allµ ∈ {λ} ∪ Qλ .

Proof: We have only to check that the algorithmic construction performed in Proposition 3.10
can be started in the situation of a non-zero right-hand side. We still have to solve the series of
problems (3.9)-(3.10) with the initialization̆Wλ,λ+1 = W̆λ,λ+2 = 0 . For ` = 0 and Dirichlet
b.c., problems (3.9)-(3.10) are now:





∂2
θW̆

λ,λ
ext = f̆ext θ ∈ ±(ω

2 ,
ω
2 + 1),

∂θW̆
λ,λ
ext = ğ θ = ±ω

2 ,

W̆
λ,λ
ext = 0 θ = ±ω

2 ± 1,

and

{
α∆W̆

λ,λ
int = f̆int in Qint,

W̆
λ,λ
int = W̆

λ,λ
ext for θ = ±ω

2 ,
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The problem inQ̆ext can be explicitly solved inSλ(Q̆) . Then the problem inQ̆int is a Dirichlet
problem with boundary data inSλ(Ğ) and interior data inSλ−2(Q̆int) . According to [8, Ch.4]
for example, it is solvable inSλ(Q̆int) .

For Neumann external b.c., we have to take into account the different order in the iterative
algorithm, see Proposition 3.24. The right hand sidesf̆ext and ğ then only appear in the equation
for W̆λ,λ−1 , see also the Remark below.

The whole construction and analysis is then similar to that for Kλ .

Remark 3.27 In the case of external Neumann b.c., iff̆ext and ğ satisfy the compatibility condi-
tion

∀R, ğ(R,±ω
2 ) =

∫ ±
ω
2 ±1

±
ω
2

f̆ext(R,ϑ) dϑ

then one can allow̆fext ∈ Sλ(Q̆ext) and ğ ∈ Sλ(Ğ) in the hypotheses of Theorem 3.26. �

This result will be used forpolynomial right hand sides̆fint , that is why we introduce:

Definition 3.28 Let k ∈ N , k ≥ 2 . For any multi-indexβ = (β1, β2) of lengthk − 2 we set:

Wk,(β) solution of (P∞) for: f̆int = Xβ
(

= Rk−2 cosβ1 θ sinβ2 θ
)
, f̆ext ≡ 0, g ≡ 0.

The functionWk,(β) has the form(3.44)with λ = k . The first termWk,k,(β) of its expansion
(3.44)satisfies





∂2
θW̆

k,k,(β)
ext = 0, θ ∈ ±(ω

2 ,
ω
2 + 1),

∂θW̆
k,k,(β)
ext = 0, θ = ±ω

2 ,

W̆
k,k,(β)
ext = 0, θ = ±ω

2 ± 1,

and




α∆W̆

k,k,(β)
int = Xβ in Qint,

W̆
k,k,(β)
int = W̆

k,k,(β)
ext , θ = ±ω

2 .
(3.45)

Remark 3.29
(i) For Neumann external boundary conditions, the profilesWk,(β) are pertaining to the second
case in (3.37). Thus a term inlogR may appear in their expansion (3.44) at infinity (even if
π
ω /∈ Q ), together with lower order terms of the formR−j logkR , j = 1, 2, . . . and k ≤ j .

(ii) It is also possible to introduce profiles solving polynomialright sides forg and fext . There
we have to take into account the different degrees appearingin the Dirichlet and Neumann cases,
cf. Remark 3.27. �

4 ε -Expansion in the coated domain with corner

In this section, we reach our initial aim, that is to build an asymptotic expansion inε for the
solution uε of problem (Pε) with Dirichlet or Neumann external boundary conditions inthe case
whereΩint has a corner at the originO .

We recall thatx are the Cartesian coordinates centered atO (the “slow” variables inΩint ),
(r, θ) are the polar coordinates centered atO , t is the arclength along the interfaceΓ , s is the
normal coordinate toΓ inside Ωε

ext (this is well defined outside anε -neighborhood ofO ).
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We also recall the cut-off functionχ introduced in Definition 1.1, which allows a localization
independent ofε , in the region whereΩε coincides with a sector. In order to avoid non-zero
commutators ofχ with the normal derivatives∂θ and ∂s on Γ , we assume for simplicity that

χ = χ(r) in Ωint and χ = χ(t) in Ωext . (4.1)

We first deal with external Dirichlet boundary conditions for problem (Pε), the Neumann case
is similar and will be discussed in Section 4.5. We assume from now on that

fint ∈ C∞(Ωint), g ∈ C∞(Γ), and fε,ext ∈ C∞(Ωε
ext), (4.2)

allowing a priori some dependence offext on ε . Moreover, in a first stage we assume that

supp(fint) ∩ V ′ = ∅, supp(g) ∩ V ′ = ∅, and supp(fε,ext) ∩ V ′ = ∅, (4.3)

whereV ′ is the neighborhood ofO introduced in Definition 1.1.
Then we consider the more general case where we do not impose any condition of support on

fint . This will be done by taking the Taylor expansion offint at O into account, and using the
result with the support condition. By the same techniques, one could treat non-vanishing Taylor
expansions offext and of g , but for the sake of brevity we will not formulate the most general
result.

4.1 A recursive approach of theε -expansion

Let us consider the case of a smoothfext , independent ofε , as we did until now, and let us start
with the algorithm we have already used for a smooth domain.

Considering equations (2.6) and (2.7) forn = 0 , we find U0
ext = 0 and the homogeneous

Dirichlet problem with source termfint for u0
int .

For n = 1 , U1
ext is explicitly given byU1

ext = (S − 1)
[
α∂nu

0
int|Γ − g

]
. Its trace onΓ is

g − α∂nu
0
int and has to be inserted as a Dirichlet data into the problem defining u1

int . But, due
to the corner, we cannot ensure a sufficient regularity: A singularity in r

π
ω can arise inu0

int , cf.
(3.4). Thus∂nu

0
int|Γ is like r

π
ω
−1 , which does not define anH1/2(Γ) -function as soon asπω < 1 ,

and the problem definingu1
int is then not solvable inH1(Ωint) .

Our technique consists in splittingu0
int according to (3.4), into a regular and a singular part

which are handled separately. The singular part is a linear combination of the singular functions
sλ (3.2). Taking advantage of Theorem 3.15, we replace eachsλ(x) = ελsλ(x

ε ) by its counterpart
ελKλ(x

ε ) solution of the homogeneous transmission problem.
Then we are left with a residual transmission problem (Pε) associated with the regular part of

the expansion ofu0 and a finite number of problems (Pε) generated by the localized differences
χ(x)

(
ελKλ(x

ε ) − sλ
0(x)

)
. The structure of these latter terms is given by the expansion (3.19) of

Kλ , resulting insmaller (in theε -scale)right hand sides, smooth with compact support like in
(4.2)-(4.3), but with amore general structurefor fε,ext . Thus, for technical reasons which will
become clear in the course of the proof, we assume thatfε,ext satisfies

fε,ext =
∑

`∈N, finite

ε−2−`f−`
ext with ∂k

nf
−`
ext

∣∣
Γ
≡ 0, k = 0, . . . , `− 1. (4.4)

We may immediately note that, despite its apparent more general form, fε,ext is simply a superpo-
sition of cases already treated. Moreover, as a consequenceof Corollary 2.4(iii) , such an exterior
data in a smooth coated domain corresponds to a solutionuε whoseε -expansion starts withε0u0 .
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4.2 The first terms in the ε -expansion in the Dirichlet case

In order to define a correct splitting strategy for the interior termsun
int , we have first to decide a

target precision inε , i.e. to choose a positive numberN with the aim of writing anε -expansion
with a remainder of orderεN . For technical reasons, we have to fixanother positive numberK
such thatK 6∈ S . We will see in the course of the construction thatK has eventually to be
chosen (at least) larger thanN + 3

2 .
In the more general case of exterior data satisfying (4.4), we first solve the exterior equation:





∂2
SU

0
ext =

∑
`

1
`!∂

`
nf

−`
ext(t, 0)S

` for 0 < S < 1,

∂SU
0
ext = 0 for S = 0,

U0
ext = 0 for S = 1.

(4.5)

Since the functionsf−`
ext vanish in a neighborhood ofO , the extension by zero of the solution of

problem (4.5) uniquely defines a functionU0
ext in the entire layerΩε

ext . Then u0
int solves (P0)

with f = fint and h = U0
ext|Γ .

Sincefint andU0
ext|Γ are smooth and infinitely flat near the corner, we can apply Theorem 3.3

to obtain the splitting:

u0
int = u0,K

int + χ
∑

λ∈S(K)

c0λ sλ(r, θ) (c0λ ∈ R), (4.6)

whereu0,K
int = O(rK) near the cornerO : More precisely,u0,K ∈ H∞

−K−1(Ωint) . In Ωε
ext , we

do not modifyU0
ext and setu0,K

ext (t, s) = U0
ext(t,

s
ε) , – notice here that the equality makes sense

sinceU0
ext vanishes in a neighborhood ofO , see (4.22). Thus we have definedu0,K in the entire

domainΩε .

Considering the solutionKλ of the homogeneous problem (P∞), see Theorem 3.15, and the
homogeneity of degreeλ of sλ , we find that the difference

ελ Kλ
(

x
ε

)
− sλ

0 (r, θ)

is of orderε . We recall that the transformation to the new coordinatex
ε is the homothecy centered

in the interior corner pointO with ratio ε−1 and thatsλ
0 denotes the extension ofsλ by 0 in the

exterior part.
Taking advantage of the fact thatKλ

(
x
ε

)
solves exactly problem (Pε) with zero data in the

neighborhoodV of O , we set as a replacement foru0 :

ũ0
ε = u0,K + χ

∑

λ∈S(K)

ελ c0λ Kλ
(

x
ε

)
, (4.7)

which will be our starting point for the expansion ofuε . Let

r̃1ε = uε − ũ0
ε (4.8)

be the actual remainder. Let us setw0
ε = ũ0

ε − u0 in Ωint and Ωε
ext , that is:

w0
ε = χ

∑

λ∈S(K)

ελ c0λ

[
Kλ − sλ

0

](
x
ε

)
. (4.9)
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Then r̃1ε = uε − u0 −w0
ε and the problem satisfied bỹr1ε is





α∆r̃1ε,int = −α∆w0
ε,int in Ωint,

∆r̃1ε,ext = −∆w0
ε,ext + (fε,ext − f0

ε,ext) in Ωε
ext,

r̃1ε,int − r̃1ε,ext = 0 onΓ,

α∂nr̃
1
ε,int − ∂nr̃

1
ε,ext = −(α∂nw

0
ε,int − ∂nw

0
ε,ext) + g − α∂nu

0
int onΓ,

r̃1ε,ext = 0 onΓε
ext.

(4.10)

Here f0
ε,ext =

∑
` ε

−`−2 1
`!∂

`
nf

−`
ext(t, 0) s

` . Moreover, thanks to (4.1), (4.6) and (4.9) we find that

−(α∂nw
0
ε,int − ∂nw

0
ε,ext) + g − α∂nu

0 = g − α∂nu
0,K on Γ. (4.11)

Here we have taken advantage of the fact thatKλ satisfiesα∂nKλ
int − ∂nKλ

ext = 0 .
Comparing then problem (4.10) with the problem (2.10) satisfied by the standard remainder

uε − u0 , we find the presence of∆w0
ε inside Ωint and Ωε

ext instead of0 , andα∂nu
0,K
int instead

of α∂nu
0
int on Γ . Thus we have gained regularity onΓ , but, in return, have to evaluate∆w0

ε , see
Lemma 4.2. New sets of indices have now to be introduced:

Definition 4.1 Let U be the infinite set of non negative numbers

U = N ∪
{
µ = hπ

ω + p ; p ≥ 0, h ≥ 2
}
, (4.12)

and for anyP > 0 , let U(P ) be defined asU ∩ [0, P ] .
Moreover we denote the subset of the positive elements ofU by U∗ :

U∗ = U \ {0} and U∗(P ) = U(P ) \ {0}. (4.13)

Lemma 4.2 In Ωint and Ωε
ext , for all numberN > 0 the residual∆w0

ε can be written as





∆w0
ε,int =

∑

ν ∈U∗(N)

ενk0,ν
ε,int + k0

rem(ε)
∣∣
Ωint

∆w0
ε,ext =

∑

ν ∈U∗(N)

ενk0,ν
ε,ext + k0

rem(ε)
∣∣
Ωext

with
∥∥k0

rem(ε)
∥∥

0,Ωε = O(εN ). (4.14)

The functionsk0,ν
ε,int and k0,ν

ε,ext are C∞ and vanish near the corner pointO . Their behavior inε
is the following




k0,ν
ε,int = k0,ν

int [log ε] i.e. possible polynomial dependence inlog ε,

k0,ν
ε,ext =

∑

`∈N, finite

ε−2−` k0,ν ;−`
ext [log ε] with ∂k

nk
0,ν ;−`
ext

∣∣
Γ
≡ 0, k = 0, . . . , `− 1. (4.15)

Remark 4.3 The degree inlog ε of k0,ν
ε is ≤ ν . Moreover, if π

ω /∈ Q , no logarithm appears.�

Proof: From the definition (4.9) ofw0
ε , and since, by construction∆Kλ = ∆sλ

0 = 0 inside
Qint andQext , we find insideΩint and Ωε

ext

∆w0
ε =

∑

λ∈S(K)

c0λ ε
λ

(
2∇χ · ∇

[(
Kλ − sλ

0

)(
x
ε

)]
+ ∆χ

(
Kλ − sλ

0

)(
x
ε

))
.
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We now use the expansion (3.19) ofKλ given in Theorem 3.15 withP = N − λ :

∆w0
ε =

∑

λ∈S(K)

c0λ ε
λ

∑

µ∈Qλ(N−λ)

(
2∇χ · ∇

[
Kλ,µ

(
x
ε

)]
+ ∆χ Kλ,µ

(
x
ε

))
+ k0

rem(ε), (4.16)

with a remainderk0
rem(ε) .

(i) In Ωint each termK
λ,µ
int satisfies an homogeneity property modulo logarithms, cf. (3.8):

K
λ,µ
int

(
x
ε

)
= ε−µFλ,µ[log ε](x) and ∇

(
K

λ,µ
int

(
x
ε

))
= ε−µ∇Fλ,µ[log ε](x),

Thus equation (4.16) becomes inΩint

∆w0
ε =

∑

λ∈S(K)

∑

µ∈Qλ(N−λ)

c0λ ε
λ−µ

(
2∇χ · ∇Fλ,µ[log ε] + ∆χFλ,µ[log ε]

)
+ k0

rem(ε), (4.17)

where the remainderk0
rem(ε) satisfies, thanks to (3.29)-(3.30) and to assumption (4.1):

k0
rem(ε) =

∑

λ∈S(K)

ελ c0λ

[
2ε−1∇χ · ~F

(
x
ε

)
+ ∆χF

(
x
ε

)]
, with

F (X) = O

(
|X|λ−N

)
and ~F (X) = O

(
|X|λ−N−1

)
when |X| → +∞.

To estimate the norm of this remainder, we notice that its support is contained in an annulus defined
by 0 < r1 < |x| < r2 . Hence

∥∥k0
rem(ε)

∥∥2

0,Ωint

≤ O(1)

∫ r2

r1

∣∣∣∣
t

ε

∣∣∣∣
−2N

t dt = O(ε2N ).

Finally, we check that the set of theν = λ−µ whenλ ∈ S(K) andµ ∈ Qλ(N−λ) is contained
in the setU∗(N) . We reorder the sum (4.17) according to the valuesν of λ − µ , defining the
functionsk0,ν

ε,int , and we obtain (4.14) inΩint .

(ii) In Ωext each termK
λ,µ
ext satisfies

K
λ,µ
ext

(
x
ε

)
= ε−µ

[λ−µ]∑

`=0

ε−` Fλ,µ ; `[log ε](t) s`

and a similar formula for its gradient. Again, we reorder thesum (4.17) according to the values
ν of λ− µ+ 2 , defining the functionsk0,ν

ε,ext . The above splitting ofKλ,µ
ext

(
x
ε

)
yields expression

(4.15) for k0,ν
ε,ext . The estimate of the remainder is similar.

Gathering all the results obtained up to here we can state:

Lemma 4.4 The solutionuε of problem(Pε) with (4.2)-(4.4)satisfies for allN > 0

uε = u0,K + χ
∑

λ∈S(K)

ελ c0λ Kλ
(

x
ε

)
+

∑

ν ∈U∗(N)

ενv0,ν
ε [log ε] + r0,1

ε + O(εN ), (4.18)
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where thev0,ν
ε [log ε] solve problem(Pε) with data satisfying the same conditions(4.2)-(4.4) as

uε , and r0,1
ε is solution of





α∆r0,1
ε,int = 0 in Ωint,

∆r0,1
ε,ext = 0 in Ωε

ext,

r0,1
ε,int − r0,1

ε,ext = 0 onΓ,

α∂nr
0,1
ε,int − ∂nr

0,1
ε,ext = g − α∂nu

0,K
int onΓ,

r0,1
ε,ext = 0 onΓε

ext.

Proof: Relying on (4.7)-(4.11) combined with (4.14), we obtain (4.18) if we definev0,ν
ε [log ε]

as the solution of the problem (Pε) with data

fint = αk0,ν
int [log ε], fext = k0,ν

ext[log ε], if ν 6= 1,

fint = αk0,ν
int [log ε], fext = k0,ν

ext[log ε] + ε−1(fε,ext − f0
ε,ext), if ν = 1,

and g = 0 . Indeed we check that
(i) By construction,ε−1(fε,ext − f0

ε,ext) satisfies assumption (4.4),
(ii) Thanks to the a priori estimate (1.3), the residual right hand side generated in (4.10) by the
remainderk0

rem of (4.14) contributes to theO(εN ) in (4.18).

The continuation of the expansion construction requires tostudy the termr0,1
ε , and only this

term, being understood that each of the other termsv0,ν
ε reproduce the same structure asuε itself,

but shifted by the positive powerεν of ε :

ενv0,ν
ε [log ε] = ενuν,K−ν[log ε] + χ

∑

λ∈S(K−ν)

εν+λ cνλ[log ε]Kλ
(

x
ε

)
+

∑

ν′ ∈U∗(N−ν)

εν+ν′

vν,ν′

ε [log ε]

+ ενrν,1
ε + O(εN ). (4.19)

Note that the equalityU + U = U ensures that the exponents generated byενv0,ν
ε for ν ∈ U

remain inU .
To explore the content ofr0,1 , applying the formulas of the smooth case, cf. Proposition 2.3,

we defineu1
int as the solution of the Dirichlet problem

{
α∆u1

int = 0 in Ωint,

u1
int = −α∂nu

0,K
int |Γ + g onΓ.

Since u0,K
int belongs to the weighted spaceH∞

−K−1(Ωint) , the normal trace∂nu
0,K belongs to

H∞
−K+1/2(Γ) , and the above Dirichlet problem inΩint has a solution which can be itself split

according to Theorem 3.3

u1
int = u1,K−1

int + χ
∑

λ∈S(K−1)

c1λ sλ(r, θ) with u1,K−1
int ∈ H∞

−K(Ωint), (4.20)

if we assume thatK − 1 6∈ S . We note thatu1,K−1
int = O(rK−1) .
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According to the formulas for the regular case, we defineU1
ext(t, S) = U1,K−1

ext (t, S) by

U1,K−1
ext (t, S) = (S − 1)

{
α∂nu

0,K
int |Γ − g

}
(t) for (t, S) ∈ Γ × [0, 1], (4.21)

which does not make sense in the entire layerΩε
ext . Sinceu0,K

int does not identically vanish in
any neighborhood ofO , we have to use the cut-offx 7→ ψ

(
x
ε

)
, cf. Definition 3.5, to define

u1
ext = u1,K−1

ext in an unambiguous way:

u1,K−1
ext = ψ

(
x
ε

)
U1,K−1

ext (t, S) = ψ
(

x
ε

)
(S − 1)

{
α∂nu

0,K
int |Γ − g

}
(t). (4.22)

Then, as a continuation of Lemma 4.4, we state

Lemma 4.5 The remainderr0,1
ε in (4.18)can be split in

r0,1
ε = εu1,K−1 + χ

∑

λ∈S(K−1)

ε1+λ c1λ[log ε]Kλ
(

x
ε

)
+

∑

ν ∈U∗(N−1)

ε1+νv1,ν
ε [log ε]

+ r0,2
ε + O

(
εmin{K−1,N}

)
, (4.23)

where thev1,ν
ε [log ε] solve problem(Pε) with data satisfying conditions(4.2)-(4.4) and the resid-

ual term r0,2
ε is solution of:





α∆r0,2
ε,int = 0 in Ωint,

∆r0,2
ε,ext = −ψ(x

ε ) R1
εU

1,K−1
ext in Ωε

ext,

r0,2
ε,int − r0,2

ε,ext = 0 onΓ,

α∂nr
0,2
ε,int − ∂nr

0,2
ε,ext = −εα∂nu

1,K−1
int onΓ,

r0,2
ε,ext = 0 onΓε

ext,

whereR1
ε pertains to the expansion of∆ in curvilinear coordinates aroundΓ , see(2.2).

Proof: The sum of the second and the third block on the right hand sideof (4.23) is constructed
so as to contributeO(εN ) data for problem (Pε), therefore generating a remainder of the same
order O(εN ) . Combining formulas forr0,1

ε , u1,K−1 and r0,2
ε , we find that (4.23) holds with an

additional termpε , solution of the problem




α∆pε,int = 0 in Ωint,

∆pε,ext = −ε
[
∆, ψ(x

ε )
]
u1,K−1

ext in Ωε
ext,

pε,int − pε,ext = 0 onΓ,

α∂npε,int − ∂npε,ext =
(
1 − ψ(x

ε )
)
(g − α∂nu

0,K
int ) onΓ,

pε,ext = 0 onΓε
ext,

where
[
∆, ψ(x

ε )
]

denotes the commutator of∆ with the multiplication byψ(x
ε ) . Making use of

the fact that the support ofg does not intersect the support of1−ψ(x
ε ) and thatu0,K belongs to

the weighted spaceH∞
−K−1(Ωint) , ensuring a behavior inO(rK−1) for ∂nu

0,K , we check:

∥∥ε
[
∆, ψ(x

ε )
]
u1,K−1

ext

∥∥
0,Ωε

ext

= O
(
εK−1

)
and

∥∥(1 − ψ(x
ε ))(g − α∂nu

0,K
int )

∥∥
0,Γ

= O(εK− 1

2 ).
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A priori estimate (1.3) then yields that
∥∥pε

∥∥
1,Ωε = O(εK−1) .

We note that the numberK can be slightly shifted upwards so that the setS(K) remains
unchanged, but guaranteeing thatu0,K is a little flatter, so that our remainder can be written as
O(εK−1) .

4.3 Completeε -expansions

The above construction of the first terms in the asymptotic expansion of the solutionuε of (Pε)
can be extended to any order. Only two kinds of terms appear inthis expansion:

• The “flat” termsuν,K−ν which have a similar structure as the terms in the expansion (2.8)
of the smooth case. They are linked with each other by the formulas (2.13) and (2.15) of
the smooth case. Their exterior parts are functions of the semi-scaled variables(t, ε−1s)
whereas their interior parts are functions in the “slow” variable x . They vanish at the corner
O like a O(rK−ν) .

• The profilesKλ which take into account the singular behavior ofuε near the corner point
and involve the scaled variablexε .

We recall thatχ and ψ are cut-off functions respectively equal to1 and 0 in the neighbor-
hood of the corner pointO . The sets of indicesS(K) and U(N) are introduced in Definitions
3.1 and 4.1. The notation[log ε] denotes a polynomial dependence with respect tolog ε .

Theorem 4.6 We assume regularity properties(4.2)-(4.4) on the data. LetK > 0 be a number
such thatK,K − 1, . . . ,K − [K] do not belong toS . Let N > 0 be a number such that
N + 3

2 < K . Thenuε , solution of(Pε), admits the following asymptotic expansion:

uε,int =
∑

ν∈U(N)

ενuν,K−ν
int [log ε] + χ(x)

∑

ν∈U(N)

∑

λ∈S(K−ν)

cνλ[log ε] εν+λKλ
int

(
x
ε

)
+ rN

ε,int (4.24)

uε,ext = ψ
(

x
ε

) ∑

ν∈U(N)

ενUν,K−ν
ext

(
t, s

ε

)
[log ε] + χ(x)

∑

ν∈U(N)

∑

λ∈S(K−ν)

cνλ[log ε] εν+λKλ
ext

(
x
ε

)

+ rN
ε,ext (4.25)

with a remainderrN
ε satisfying the estimates

∥∥rN
ε

∥∥
1,Ωint

+
√
ε
∥∥rN

ε

∥∥
1,Ωext

= O(εN ). (4.26)

Moreover,uν,K−ν
int and Uν,K−ν

ext vanish asr → 0 according to

Uν,K−ν
ext = O(rK−ν) and uν,K−ν

int = O(rK−ν)

– more precisely,uν,K−ν
int ∈ H∞

−1−K+ν(Ωint) . Finally Uν,K−ν
ext is polynomial in the variableS .

Proof: We continue the procedure initiated in Lemmas 4.4 and 4.5, that is, we expandr0,2
ε

in (4.23) asr0,1 before, but leave the other terms unexpanded, and so on. The successive terms
along this “main branch” are given recursively forn = 1, . . . , N + 1 by:

• un
int is the solution of problem (P0) with fint = 0 and the Dirichlet data

hn = gng + h1un−1,K−n+1
int |Γ + . . . + hnu0,K

int |Γ,

compare with (2.13),
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• un
int is split in

un
int = un,K−n

int + χ
∑

λ∈S(K−n)

cnλ sλ(r, θ) with un,K−n
int ∈ H∞

−1−K+n(Ωint),

defining the “flat” partun,K−n
int

• un,K−n
ext is defined as

un,K−n
ext = ψ

(
x
ε

)
Un,K−n

ext where Un,K−n
ext = ang + b1un−1,K−n+1

int + . . .+ bnu0,K
int

compare with (2.15),

• The remainderr0,n+1 is solution of:




α∆r0,n+1
ε,int = 0 in Ωint,

∆r0,n+1
ε,ext = −ψ(x

ε ) εn−1
(
R1

εU
n,K−n
ext + . . .+ Rn

εU
1,K−1
ext

)
in Ωε

ext,

r0,n+1
ε,int − r0,n+1

ε,ext = 0 onΓ,

α∂nr
0,n+1
ε,int − ∂nr

0,n+1
ε,ext = −εnα∂nu

n,K−n
int onΓ,

r0,n+1
ε,ext = 0 onΓε

ext,

compare with the remainder of the smooth case (2.10).

With these constructions, we obtain expansions ofuε of the following form:

uε = u0,K + εu1,K−1 + . . .+ εnun,K−n + χ

n∑

`=0

∑

λ∈S(K−`)

ε`+λ c`λ[log ε]Kλ
(

x
ε

)

+

n∑

`=0

∑

ν ∈U∗(N−`)

ε`+νv`,ν
ε [log ε] + r0,n

ε + O
(
εmin{K−1,N}

)
. (4.27)

We have to estimate the “last” remainder with the help of the apriori estimate (1.3). Like for the
smooth case, if we want to have a remainder inO(εN ) , we have first to estimate the remainder
r0,N+2 at the rankN + 2 . SinceK is larger thanN + 3

2 , the trace of∂nu
N+1,K−N−1
int on Γ

belongs toL2(Γ) . Therefore we can prove like in the smooth case that

∥∥r0,N+2
ε

∥∥
1,Ωε ≤ C εN+ 1

2 .

Each v`,ν
ε in (4.27) can be expanded in a similar way, thus generating other “branches” suc-

cessively. Each of these branches starts with a common factor of εν , ν > 0 . This shows that
this recursive procedure terminates after a finite number ofsteps. We gather everything and con-
clude similarly to the smooth case by subsumming into the final remainderrN

ε all the terms of the
asymptotics with powersν > N of ε .

Using the profilesWk,(β) introduced in Definition 3.28 we may consider more general data
than (4.2)-(4.4) where the condition of support forfint is simply removed:
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Corollary 4.7 We still assume properties(4.2)and (4.4)with, instead of(4.3)

supp(fext) ∩ V ′ = ∅ and supp(g) ∩ V ′ = ∅, (4.3’)

i.e. no condition on the support offint . Let K > 0 be a non-integer number such thatK,K −
1, . . . ,K − [K] do not belong toS . Let N > 0 be a number such thatN + 3

2 < K . Then
uε , solution of (Pε), has an expansion similar to(4.24)with extra terms due to the Taylor part of
degree[K] − 2 of fint . The interior expansion writes

uε,int =
∑

ν∈T(N)

ενuν,K−ν
int [log ε] + χ(x)

∑

ν∈T(N)

∑

λ∈S(K−ν)

cνλ[log ε] εν+λKλ
int

(
x
ε

)

+ χ(x)

[K]∑

k=2

∑

|β|=k−2

∂βfint(O)

β1!β2!
εk W

k,(β)
int

(
x
ε

)
+ rN

ε,int. (4.24’)

The new index setT(N) is defined asT ∩ [0, N ] where

T = U ∪
{

π
ω + q; q ∈ N, q ≥ 1

}
.

The exterior partuε
ext has a structure as in(4.25), with new terms corresponding to those present

in (4.24’). The remainderrN
ε satisfies the estimates(4.26).

Proof: We first split fint into a Taylor part atO and a remainder, flat at the order[K] − 2

fint = χ(x)

[K]∑

k=2

∑

|β|=k−2

∂βfint(O)

β1!β2!
xβ1xβ2 + f (K)

rem , with f (K)
rem ∈ H∞

1−K(Ωint),

Note that the remainder satisfies the assumption on the righthand side in Theorem 3.3.
Let us denote 1

β1!β2!
∂βfint(O) by dβ for short. Then we definevε andwε by

vε = uε − χ(x)

[K]∑

k=2

∑

|β|=k−2

dβ ε
k Wk,(β)

and, in a similar way to (4.9)

wε = χ(x)

[K]∑

k=2

∑

|β|=k−2

dβ ε
k

[
Wk,(β) − Wk,k,(β)

](
x
ε

)
.

Using (3.45), we find that the functionvε solves the following problem of type (Pε), similar to
(4.10): 




α∆vε,int = −α∆wε,int + f (K)
rem in Ωint,

∆vε,ext = −∆wε,ext + fε,ext in Ωε
ext,

vε,int − vε,ext = 0 onΓ,

α∂nvε,int − ∂nvε,ext = g onΓ,

vε,ext = 0 onΓε
ext.

(4.28)

The right hand side of (4.28) is the sum of data satisfying (4.2)-(4.4) and of data similar to those
investigated in Lemma 4.2: We find for∆wε,int and ∆wε,ext expansions like in (4.14), involving
the set of indicesT∗(N) := T(N) \ {0} instead ofU∗(N) .



G. Caloz et al. – Asymptotic expansion in a polygonal domain with thin layer. 40

Remark 4.8 (i) If fint vanishes up to the order[K] − 2 in O , i.e. if

∂βfint(O) = 0, ∀β, |β| ≤ [K] − 2

then expansion (4.24) is still valid.

(ii) We may cut off the “slow” termsuν,K−ν
int in (4.24) or (4.24’) byψ(x

ε ) . Sinceuν,K−ν
int is “flat”

like rK−ν , we only produce a new contribution of orderO(εK) to the remainder which, thus, still
satisfies the estimates (4.26).

(iii) The termsW̆k,k−`,(β) composing the asymptotics at infinity of the profilesWk,(β) are mainly
polynomial functions. They are all polynomial ifk, k − 1, . . . , 0 are not inS . Thus theWk,(β)

take possible Taylor expansion of the solution into account. �

4.4 Alternative ε -expansions

In this section we answer the two questions:

• Is it possible to haveK = N in expansions (4.24) or (4.24’) ?

• Is it possible to construct an asymptotic expansion independently of a threshold fixed in
advance?

To answer (positively) to both questions, we start from expansions (4.24) or (4.24’), we split up
some of the termsKλ and redistribute their pieces to the terms in slow variables. We base our
analysis upon the following definition and result:

Definition 4.9 Let λ ∈ S , λ > 0 . Relying on(3.14), we define onQ the profileYλ as

Yλ
int = Kλ

int −
∑

0≤ ` < λ

K̆
λ,λ−`
int and Yλ

ext = Kλ
ext − ψ

∑

0≤ ` < λ

K̆
λ,λ−`
ext . (4.29)

We are going to prove

Proposition 4.10 Let λ ∈ S , λ > 0 . The profileYλ satisfies the estimates asε→ 0

∥∥χ(x)Yλ(x
ε )

∥∥
1,Ωint

+
√
ε
∥∥χ(x)Yλ(x

ε )
∥∥

1,Ωext

=

{
O(1) if λ 6∈ N

O(| log ε|λ) if λ ∈ N.
(4.30)

We prove this proposition as a particular case of the more general statement, which will also
yield (1.6) as another particular case:

Lemma 4.11 Let λ ∈ S , λ > 0 . For 0 ≤ ν ≤ λ , we set

Yλ,ν = Kλ − ψ
∑

0≤ ` < λ−ν

K̆λ,λ−`. (4.31)

There holds the energy estimate
∥∥χ(x)Yλ,ν(x

ε )
∥∥

1,Ωint

+
√
ε
∥∥χ(x)Yλ,ν(x

ε )
∥∥

1,Ωext

= O
(
ε−ν | log ε|[λ−ν]

0

)
, (4.32)

where [λ− ν]
0

= λ− ν if λ− ν ∈ N and [λ− ν]
0

= 0 if not.
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Proof: Thanks to (3.19) there holds for allP > 0

Yλ,ν = ψ
∑

µ∈Qλ(P ), µ≤ ν

K̆λ,µ + Y
λ,ν
(P ),

where the remainderYλ,ν
(P ) is a O(R−P ) and satisfies also the estimates (3.30), whence

∥∥χ(x)Y
λ,ν
(P )(

x
ε )

∥∥
1,Ωint

+
√
ε
∥∥χ(x)Y

λ,ν
(P )(

x
ε )

∥∥
1,Ωext

= O(1).

Let us chooseP < π
ω and P < [λ] + 1 − λ . Thus Qλ(P ) ⊂ [0, λ] , cf. Definition 3.14. The

degree ofK̆λ,µ as a polynomial inlogR is ≤ λ− µ . We check that forµ ≥ 0 :
∥∥χ(x)ψ(x

ε )K̆λ,µ(x
ε )

∥∥
1,Ωint

+
√
ε
∥∥χ(x)ψ(x

ε )K̆λ,µ(x
ε )

∥∥
1,Ωext

= O(ε−µ| log ε|[λ−µ]).

Then estimate (4.32) is a consequence of the last three equalities.

The proof of Proposition 4.10 is obtained by takingν = 0 in Lemma 4.11 (note that the
absence of the cut-off functionψ(x

ε ) in the definition ofYλ
int does not modify the estimates).

The proof of (1.6) is obtained withν = λ .

Theorem 4.12 Theorem 4.6 holds withK = N , i.e. we assume regularity properties(4.2)-(4.4)
on the data and choose a numberN > 0 such thatN,N − 1, . . . , N − [N ] do not belong toS .
Thenuε , solution of(Pε), admits the asymptotic expansion(4.24)with K = N with the estimate
(4.26)on the remainder.

Proof: We start from (4.24) for aK > N + 3
2 . We want to get rid of the profilesKλ appearing

in (4.24)-(4.25) forλ > N − ν . Thus, for eachν ∈ U(N) and λ ∈ S(K − ν) \ S(N − ν) we
split Kλ into two blocks according to

χ(x)εν+λKλ
int

(
x
ε

)
= χ(x)εν+λYλ

int

(
x
ε

)
+ χ(x)

∑

0≤ ` < λ

εν+λK̆
λ,λ−`
int

(
x
ε

)
,

in Ωint and accordingly inΩε
ext , and redistribute them into the remainder and the slow terms,

respectively:

1. Since by definitionν + λ > N , Proposition 4.10 yields thatχεν+λYλ
(

x
ε

)
contributes to

the remainder.

2. Thanks to their quasi-homogeneous structure theK̆λ,λ−` can be converted into slow variable
functions. We can write:

χ(x)εν+λK̆
λ,λ−`
int (x

ε ) = χ(x)
∑

q≥0 finite

εν+λ−λ+` logq ε s
λ,λ−` ; q
int (x) in Ωint

χ(x)ψ(x
ε )εν+λK̆

λ,λ−`
ext (x

ε ) = χ(x)ψ(x
ε )

∑

q≥0 finite

εν+λ−λ+` logq ε s
λ,λ−` ; q
ext (t, s

ε) in Ωext.

We gather the above terms according to the value ofν ′ = ν+` and we add them touν′,K−ν′

in order to obtainuν′,N−ν′
. Note that thesλ,λ−` ; q are homogeneous of degreeλ− ` , and

sinceλ > N − ν , they are of orderO(rN−ν′
) as r → 0 .
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This ends the proof.

The same splitting of the profilesKλ , now appliedfor all values ofλ , allows to prove the final
theorem:

Theorem 4.13 Let us assume the same hypotheses as in Theorem 4.12. We have the expansion

uε,int =
∑

ν∈U(N)

ενuν
int[log ε] + χ(x)

∑

ν∈U(N)

∑

λ∈S(N−ν)

cνλ[log ε] εν+λYλ
int

(
x
ε

)
+ rN

ε,int (4.33)

uε,ext = ψ
(

x
ε

) ∑

ν∈U(N)

ενUν
ext

(
t, s

ε

)
[log ε] + χ(x)

∑

ν∈U(N)

∑

λ∈S(N−ν)

cνλ[log ε] εν+λYλ
ext

(
x
ε

)

+ rN
ε,ext (4.34)

with a remainderrN
ε satisfying estimate(4.26)and with functions (independent ofN ) uν

int[log ε]
in H1(Ωint) . Moreover, for anyk < π

ω , uk
int is given by the formulas of the smooth case, cf.

Proposition 2.3.

We only have to check that the terms in expansions (4.33) and (4.34) do not depend onN .
This can be proved by using energy estimates as follows. We note that the energy estimates

(4.30) can be completed by estimates from below, so that we have for a suitable integerq :

∃c, c′ > 0, ∀ε ∈ (0, ε0], c ≤
∥∥χ(x)Yλ(x

ε )
∥∥

1,Ωint

≤ c′| log ε|q.

Likewise, and in an obvious way, as soon asuν
int[log ε] is not identically zero, there holds

∃q ∈ N, ∃c, c′ > 0, ∀ε ∈ (0, ε0], c ≤
∥∥uν

int[log ε]
∥∥

1,Ωint

≤ c′| log ε|q.

From this we can see that the terms in the expansion (4.33) arenot modified ifN is increased:
When going fromN to N + 1 , we only add terms

∑

ν∈U(N+1)\U(N)

ενuν
int[log ε] + χ(x)

∑

ν∈U(N+1)

∑

λ∈S(N+1−ν)\S(N−ν)

cνλ[log ε] εν+λYλ
int

(
x
ε

)
,

the energy of which is of orderO(εN ) . Consequently they do not affect the terms in the expansion
at orderN .

Remark 4.14 (i) Introducing in a similar way as (4.29) the layersZk,(β) for k ≥ 2 and |β| =
k − 2 :

Z
k,(β)
int = W

k,(β)
int −

k−3∑

`=0

W̆
k,k−`,(β)
int and Z

k,(β)
ext = W

k,(β)
ext − ψ

k−3∑

`=0

W̆
k,k−`,(β)
ext ,

we can easily prove the analogues of Theorems 4.12 and 4.13 inthe situation whenfint is C∞ up
to the boundary ofΩint .

(ii) A variant of the interior expansion (4.33) is possible. We may multiply the slow termsuν(x)
by the cut-off ψ(x

ε ) but, as opposed to the case of flat terms, see Remark 4.8(ii) , such an op-
eration is not transparent: We have to modify the definition of the corner layersYλ and Zk,(β)

accordingly through the multiplication of the terms̆Kλ,λ−`
int and W̆

k,k−`,(β)
int by thesamecut-off

ψ , just like in the layer part. �
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4.5 Neumann boundary conditions

The above techniques directly apply to the Neumann case: We still have the splitting of the interior
terms into regular and singular parts and the correspondingprofilesKλ are constructed in Theorem
3.25. For integerλ , they may contain a term inlogR in their asymptotics at infinity.

Note that in this case the corner layersYλ keep this logarithmic term, see (4.29). Thus they
are no more decreasing asR→ ∞ , but we still have the energy estimate (4.30) above.

5 Concluding remarks

The type of results we have obtained and the techniques we have used evoke the well-known
concept ofmatched asymptotic expansionwhere inner and outer expansions are constructed, see
[15]. However, our analysis differs since our different scales coexist in a transition region, as
opposed to the inner and outer expansions which contain the rapid and slow scales separately.

Most of the difficulty of the above analysis is due to the singularities, mainly those of the limit
problem, thesλ . The profilesKλ which we have constructed perform the transition between the
sλ and the behavior near the corner of the solution of the actualproblem withε -layer. Note that
the singularities of the transmission problem are different from the sλ : They are asymptotically
contained in the profilesKλ .

An essential feature of these asymptotics is the possible communications between the terms
in slow variablesuν(x) and those in rapid variablesKλ(x

ε ) , Wk(x
ε ) , Yλ(x

ε ) , or Zλ(x
ε ) . A

priori the uν and the profiles do not exist in the same world but they are forced to “live” together
thanks to cut-off functionsψ(x

ε ) for the uν andχ(x) for the profiles. This kind of product form
combining rapid and slow variables is an Ansatz of constant use in homogenization, see [24] for
instance. Note that such a product Ansatz is not used in [18, 19] where many singular perturbations
of a domain (without layer) are investigated. This has to be related with the fact that the presence
of ψ(x

ε ) inside Ωint is optional in our situation.
Nevertheless, in our opinion, the product form Ansatz is more powerful, allowing to take into

account more general situations where the interior domainΩint also depends onε : The results of
this paper can be extended to cases whenΩint presents self-similar structures at scaleε , such as
curved corners with curvature radius inO(ε) . This can be combined with the presence of a layer
presenting self-similar structures at scaleε , too. This is the subject of a forthcoming work.

The Helmholtz equation could be treated in a similar way, though new difficulties appear, due
to the importance of the zero-th order part of the operator, see for instance [16] where the special
Helmholtz features are described in a problem involving a thin structure.

6 Appendix: Elliptic regularity near the boundary

The aim of the appendix is to prove the elliptic regularity result stated in Theorem 2.8. By a
classical argument of local mappings, it is sufficient to consider the case of a straight boundary.

For any positive real numbera , we define the layered rectangleRa,ε = (−a, a)×(−a, 1+ε) ,
composed ofRa

int = (−a, a) × (−a, 1) and Ra,ε
ext = (−a, a) × (1, 1 + ε) . We denote byγa its

interior boundary(−a, a) × {1} , by γa
ext its exterior boundary(−a, a) × {1 + ε} , and byγa

D

the set∂Ra,ε\γa
ext (see Figure 5). ClearlyRb,ε ⊂ Ra,ε if b ≤ a . Let B be the bilinear form
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Ra

int

Ra,ε

ext
γa

ext

γa

1 + ε

1

γa

D

−a−a
a

Figure 5: The rectangleRa,ε .

associated to problem (Pε) on Ra,ε :

B(u, v) = α

∫

Ra
int

∇u · ∇v dx+

∫

Ra,ε
int

∇u · ∇v dx.

We shall use different variational spaces for Dirichlet external b.c. and Neumann external b.c.,
namely we define

Va = H1
0(Ra,ε) for Dirichlet external b.c.

Va =
{
v ∈ H1(Ra,ε) ; v = 0 onγa

D} for Neumann external b.c.

From the Lax-Milgram lemma, we immediately obtain

Proposition 6.1 If the linear formF belongs to the dual spaceV ′
a of Va , then the variational

problem
∀v ∈ Va, B(u, v) = 〈F, v〉

admits a unique solutionu ∈ Va . Moreover, there exists a constantC , independent ofε and u ,
such that ∥∥u

∥∥
Va

≤ C
∥∥F

∥∥
V ′

a
. (6.1)

We emphasize on the fact that we make no use of the Dirichlet condition on γa
ext to prove the

coercivity of the formB ; the condition onγa
D is enough to get a Poincaré inequality (which

consequently also applies for Neumann external b.c.).

Finally we define the linear formFu by

∀ϕ ∈ Va, 〈Fu, ϕ〉 = −α
∫

Ra
int

∆uint ϕdx−
∫

Ra,ε
ext

∆uext ϕdx+

∫

γa

(α∂nuint − ∂nuext)ϕdσ.

We easily check the following lemma:

Lemma 6.2 If u ∈ Va (together with∂nuext = 0 on γa
ext in the case of Neumann external b.c.)

satisfies the assumptions

∆uint ∈ L2(Ra
int), ∆uext ∈ L2(Ra,ε

ext) and α∂nuint − ∂nuext ∈ L2(γa), (6.2)

thenFu ∈ V ′
a and there exists a constantC independent ofε and u such that

∥∥Fu

∥∥
V ′

a
≤ C

[∥∥∆uint

∥∥
0,Ra

int

+
∥∥∆uext

∥∥
0,Ra,ε

ext

+
∥∥α∂nuint − ∂nuext

∥∥
0,γa

]
. (6.3)



G. Caloz et al. – Asymptotic expansion in a polygonal domain with thin layer. 45

We are now able to prove the first step of Theorem 2.8:

Proposition 6.3 Let u belong to the spaceVa and satisfy(6.2). For any b < a , there exists a
constantC independent ofε and u such that

∥∥u
∥∥

1,Rb,ε ≤ C
[∥∥Fu

∥∥
V ′

a
+

∥∥u
∥∥

0,Ra,ε

]
. (6.4)

Proof: Let c be such thatb < c < a . We introduce a smooth cut-off functionχ , defined by
χ(x) = χ1(x1)χ2(x2) , with

χ1(x1) = 1 if |x1| ≤ b and χ1(x1) = 0 if |x1| > c,

χ2(x2) = 1 if x2 ≥ −b and χ2(x2) = 0 if x2 < −c.
(6.5)

In particular,χ = 1 on Rb,ε andχ = 0 on Ra,ε\Rc,ε .

The truncated functionχu belongs toVa and satisfies for anyv ∈ Va , B(χu, v) = 〈Fχu, v〉 .
Thanks to Proposition 6.1, we get

∥∥χu
∥∥

1,Ra,ε ≤ C
∥∥Fχu

∥∥
V ′

a
. (6.6)

We still need to estimate
∥∥Fχu

∥∥
V ′

a
. We write

∀ϕ ∈ Va, 〈Fχu, ϕ〉 = 〈Fu, χϕ〉 −
∫

Ra,ε

α̃ [(∆χ)uϕ + 2∇χ · ∇uϕ] dx,

with α̃ the function taking the valueα in Ra
int and 1 in Ra,ε

ext . Thanks to an integration by parts
using the tensorial structure ofχ , we can estimate the second term and finally obtain

|〈Fχu, ϕ〉| ≤ C
[∥∥Fu

∥∥
V ′

a
+

∥∥u
∥∥

0,Ra,ε

] ∥∥ϕ
∥∥

1,Ra,ε . (6.7)

Sinceχ = 1 on Rb,ε , we obtain the result from (6.6) and (6.7).

Using Nirenberg translations, we prove the following result of elliptic regularity at any order:

Proposition 6.4 Let d be a positive real number. Letu belong to the spaceVd (together with
∂nuext = 0 on γd

ext in the case of Neumann external b.c.) satisfying the following conditions for
m ∈ N ,

∆uint ∈ Hm−1(Rd
int), ∆uext ∈ Hm−1(Rd,ε

ext), and α∂nuint − ∂nuext ∈ Hm− 1

2 (γd).

For any c < d , uint belongs toHm+1(Rc
int) , uext to Hm+1(Rc,ε

ext) , and there exists a constant
C independent ofε and u such that

∥∥uint

∥∥
m+1,Rc

int

+
∥∥uext

∥∥
m+1,Rc,ε

ext

≤ C
[∥∥∆uint

∥∥
m−1,Rd

int

+
∥∥∆uext

∥∥
m−1,Rd,ε

ext

+
∥∥α∂nuint − ∂nuext

∥∥
m− 1

2
,γd +

∥∥u
∥∥

0,Rd,ε

]
.

(6.8)
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Proof: We proceed by induction overm ≥ 1 and make use of the horizontal difference operator
Dh defined for any realh 6= 0 by

Dhϕ(x1, x2) =
1

h
[ϕ(x1 + h, x2) − ϕ(x1, x2)] .

Let σ ∈ R be such thatc < σ < d .

• For m = 1 , we use a similar cut-off function as in the previous proof, defined byχ(x) =
χ1(x1)χ2(x2) with

χ1(x1) = 1 if |x1| ≤ c and χ1(x1) = 0 if |x1| > c+σ
2 ,

χ2(x2) = 1 if x2 ≥ −c and χ2(x2) = 0 if x2 < − c+σ
2 ,

and we apply Proposition 6.3 withb = c and a = σ to uh = χ1Dh(χ1u) , for |h| ≤ h0

sufficiently small ∥∥uh

∥∥
1,Rc,ε ≤ C

[∥∥Fuh

∥∥
V ′

σ
+

∥∥uh

∥∥
0,Rσ,ε

]
. (6.9)

To estimateFuh
, we use the decomposition

〈Fuh
, ϕ〉 = 〈FDh(χ1u), χ1ϕ〉 −

∫

Rσ
int

∪Rσ,ε
ext

α̃
[
∆χ1Dh(χ1u)ϕ + 2∇χ1 · ∇Dh(χ1u)ϕ

]
dx

=: 1 + 2 ,

with α̃ the function taking the valueα in Rσ
int and 1 in Rσ,ε

ext . We use the same technique as in
the proof of Theorem 6.3. A discrete integration by parts yields

2 =

∫

Rσ
int

∪Rσ,ε
ext

α̃
[
(χ1u)D−h(∆χ1 ϕ) + 2∇(χ1u) · D−h(∇χ1 ϕ)

]
dx,

which then gives| 2 | ≤ C
∥∥u

∥∥
1,Rσ,ε

∥∥ϕ
∥∥

1,Rσ,ε . Similarly for the first part, we get

1 =

∫

Rσ
int

∪Rσ,ε
ext

α̃∆(χ1 u)D−h(χ1 ϕ) dx−
∫

γσ

χ1(α∂nuint − ∂nuext)D−h(χ1ϕ) dσ.

Sinceχ1(α∂nuint−∂nuext) vanishes at the extremities ofγσ , we can use the dualityH1/2

0 0 –H−1/2

on γσ to obtain

| 1 | ≤ C
[∥∥∆u

∥∥
0,Rσ

int
∪Rσ,ε

ext

+
∥∥α∂nuint − ∂nuext

∥∥
1

2
,γσ

] ∥∥ϕ
∥∥

1,Rσ,ε .

Together,Fuh
can be estimated in the dual ofVσ :

∥∥Fuh

∥∥
V ′

σ
≤ C

[∥∥∆u
∥∥

0,Rσ
int

∪Rσ,ε
ext

+
∥∥α∂nuint − ∂nuext

∥∥
1

2
,γσ +

∥∥u
∥∥

1,Rσ,ε

]
. (6.10)

Sinceχ1 = 1 on Rc,ε and
∥∥uh

∥∥
Rσ,ε ≤ C

∥∥u
∥∥
Rσ,ε for h small enough, equations (6.9) and (6.10)

lead to

∥∥Dhu
∥∥

1,Rc,ε ≤ C
[∥∥∆u

∥∥
0,Rσ

int
∪Rσ,ε

ext

+
∥∥α∂nuint − ∂nuext

∥∥
1

2
,γσ +

∥∥u
∥∥

1,Rσ,ε

]
.
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Passing to the limith→ 0 , we obtain the same estimate for the second order derivatives ∂2
1u and

∂1∂2u . For ∂2
2u , we obtain the estimate by writing∂2

2u = ∆u− ∂2
1u . Then, we get

∥∥uint

∥∥
2,Rc

int

+
∥∥uext

∥∥
2,Rc,ε

ext

≤ C
[∥∥∆u

∥∥
0,Rσ

int
∪Rσ,ε

ext

+
∥∥α∂nuint − ∂nuext

∥∥
1

2
,γσ +

∥∥u
∥∥

1,Rσ,ε

]
.

Using the estimate (6.4) forb = σ and a = τ , we conclude

∥∥uint

∥∥
2,Rc

int

+
∥∥uext

∥∥
2,Rc,ε

ext

≤ C
[∥∥∆u

∥∥
0,Rd

int
∪Rd,ε

ext

+
∥∥α∂nuint − ∂nuext

∥∥
1

2
,γd +

∥∥u
∥∥

0,Rd,ε

]
.

• Suppose the estimationHm−1 → Hm+1 known and apply it touh = χ1Dh(χ1u) . With the
same techniques as in the casem = 1 , we can prove

∥∥uint

∥∥
m+2,Rc

int

+
∥∥uext

∥∥
m+2,Rc,ε

ext

≤ C
[∥∥∆uint

∥∥
m,Rσ

int

+
∥∥∆uext

∥∥
m,Rσ,ε

ext

+
∥∥α∂nuint − ∂nuext

∥∥
m+ 1

2
,γσ +

∥∥uint

∥∥
m+1,Rσ

int

+
∥∥uext

∥∥
m+1,Rσ,ε

ext

]
.

Using the induction assumption foru (with σ instead ofc ), we get the stated result.

∥∥uint

∥∥
m+2,Rc

int

+
∥∥uext

∥∥
m+2,Rc,ε

ext

≤ C
[∥∥∆uint

∥∥
m,Rd

int

+
∥∥∆uext

∥∥
m,Rd,ε

ext

+
∥∥α∂nuint − ∂nuext

∥∥
m+ 1

2
,γd +

∥∥u
∥∥

0,Rd,ε

]
.
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[25] G. VIAL . Analyse multi-échelle et conditions aux limites approchées pour un problème de couche
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