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Abstract

We investigate the case of a medium with two inclusions or inhomogeneities with nearly
touching corner singularities. We present two different asymptotic models to describe the phe-
nomenon under specific geometrical assumptions. These asymptotic expansions are analysed
and compared in a common framework. We conclude by a representation formula to charac-
terise the detachment of the corners and we provide the possible extensions of the geometrical
hypotheses.
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1 Introduction

The aim of the paper is to investigate the asymptotic behavior of the solution to the conductivity
(also called thermal) problem in a domain with two nearly touching inclusions with corner singu-
larity. It is well-known that behavior of the electrostatic field near a corner of an inclusion depends
on the angle of the corner, see [8] for instance. For acute angles – from the domain of computation
– the electric field remains bounded but as soon as the angle is larger than π, the electric field
blows-up.

Problems with inclusions have given rise to an important literature, in various contexts, mainly
motivated by mechanical and electrical engineering, or image processing. In the special case of
smooth inclusions close to each other, or close to the boundary of the domain, we can mention for
example the works [1, 3, 4, 12]. For nonsmooth inclusions, we can refer to [11, 13].

The configuration we are looking at here is quite trickier since we consider a domain with
two inclusions with corner singularity at distance δ � 1 from each other. Depending on the
geometrical configuration, the corner asymptotics of the solution to the conductivity problem at
δ 6= 0 may be dramatically different from the asymptotics of the solution at δ = 0. In this paper,
we provide a common framework for two different methods to derive the asymptotic expansions
of the solution at δ 6= 0. These expansions are mainly based upon the solution to the limit problem
δ = 0 and the appropriate so-called profile terms. These profiles are solution to the conductivity
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problem in a sectorial domain with appropriate source terms. They appear naturally from the
expansion, in the same vein as in [5].

Precisely, we are interested in the model problem
−∆uδ = 0 in Πδ,

∂νuδ = g on ∂Πδ,

uδ → 0 at infinity,

(1)

where g is a given datum (trace of a smooth function), and the unbounded domain Πδ is defined
by

Πδ = R2 \ ΩL
δ ∪ ΩR

δ,

the domains ΩL
δ and ΩR

δ standing for the inclusions. The distance between ΩL
δ and ΩR

δ is 2δ, see
Figure 1.
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Figure 1: The domain Πδ with the inclusions ΩL
δ, ΩR

δ , and the corresponding limit domain Π0.

Naturally, the formal limit case where the inclusions touch each other corresponds to
−∆u0 = 0 in Π0,

∂νu0 = g on ∂Π0,

u0 → 0 at infinity.

(2)

Nevertheless, the asymptotic model is not unique since the dependence of the domains ΩL
δ, ΩR

δ

with respect to the parameter δ is not explicitly given by the physical situation. We will investigate
the following two choices:

• Translation method. The size of the inclusions ΩL
δ and ΩR

δ is supposed to be independent
of δ. Changing the value of the parameter δ merely corresponds to a translation of the
inclusions along a given unit vector d. The subsequent asymptotic expansion is detailed in

Section 3.1 where the domain Πδ will be denoted by
•
Πδ for notation consistency.

• Contraction method. The inclusions do not have a constant size with respect to δ, but are
contractions of the limit case (i.e. δ = 0). This case is precisely addressed in Section 3.2. In
particular, the geometrical setting will be made clear in Subsection 3.2.1, where, here again,

the domain Πδ will be denoted
?
Πδ.

If the two presented asymptotic models coincide for δ = 0, both have pros and contras since
they can handle different geometrical frameworks of inclusions. For comparison purposes, which
yield one of the main goal of this paper, we restrict the geometrical configurations to a situa-
tion where both models might be considered. The precise framework is detailed in the following
assumptions, but the reader can keep in mind the situation of Figure 1.
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Assumption 1.1 The geometrical hypotheses we make are the following

(H1) For δ = 0, the inclusions touch each other at one point, where we put the origin 0.

(H2) The inclusions ΩL
0 and ΩR

0 are smooth domains, except at point 0, where they coincide with
plane sectors.

(H3) There exists a direction d such that

∃ρ0 > 0 {0 + ρd ; 0 < |ρ| < ρ0} ⊂ ΩL
0 ∪ ΩR

0.

By convention, we fix the horizontal axis along this direction. Moreover, ΩL
0 and ΩR

0 are
supposed to be included into R− × R, and R+ × R, respectively.

Remark 1.2 Replacing in Assumption (H1) one point by a finite number of points generates only
technical difficulties. We do not address the case of inclusions without corners (for example two
disks), which generates a cuspidal limit domain. Hypothesis (H2) prevents from this situation.
Besides, the regularity of the boundaries far from the origin is not necessary and is only assumed
here for simplicity. Likewise, hypothesis (H3) is technical and might be weakened. The relaxation
of theses hypotheses will be discussed in Section 5.

Section 2 recalls the decomposition in regular and singular parts of the Laplacian equation
(2) with adding a source term. Then we consider the two asymptotic models. First in Section 3,
we present a formal asymptotic expansion where we do not take care of the corner singularities.
Even though formal, this construction is useful for the complete analysis and enables to deal with
difficulties step by step. We present asymptotic model for the translation and contraction case and
propose a unified formulation in Section 3.3. In Section 4, we take the singularities into account,
we construct the corner profiles and we give the complete asymptotic expansions obtained by the
two methods.

As far as we know, the comparison of these two asymptotic methods have not been addressed
before. In this paper the two methods are studied in parallel and presented in a unified formulation
which allows us to deduce a generic full asymptotic expansion of the solution of (1).

For δ > 0, the solution uδ of problem (1) and the limit solution u0 have both singularities at
the origin, but with different singular exponents because they are associated with different angles.
In the geometry of Figure 1, uδ has singularities due to the re-entrant corners whereas u0 has only
singularities of the convex corners (of angle α±, see Figure 1). The asymptotic procedures that
will be described in the paper will allow to compare uδ and u0. Precisely, the first terms in the
asymptotic expansion read

uδ(x) = ψ(xδ )u0(x)− χ(x)

(
g(0)M(xδ ) +

∑
±
c±0,0K

±
0

x
δ

)
, (3)

where

• The functions ψ and χ are smooth radial cutoff functions satisfying

ψ(x) = 0 and χ(x) = 1, near 0.

• The coefficients c±0,0 are the first singular coefficients of u0, solution to (2).

• The profiles K±0 and M are defined in the infinite domain P – see Figure 4 – as the respective
solutions to Problems (30)–(31).
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As we can see in (3), the singularities of u0 are canceled through the cutoff function ψ (at distance
O(δ) from the origin), and replace by adapted counterparts through the profiles terms, rescaled to
fit the δ-depending domain Πδ. It is worth noting whatever the method, the zeroth–order terms
of the expansion of uδ are given by (3). The differences in the expansions will appear at the next
order terms. The goal of the paper is to push forward the expansion for each method to provide
different ways to approximate uδ.

2 Corner asymptotics for the limit problem

Let us consider now the solution u to the generic problem:
−∆u = f in Π0,

∂νu = h on ∂Π0,

u → 0 at infinity,

(4)

where f and h are smooth given data (for f = 0 and h = g the solution u is nothing but u0).
Since corners appear in the limit domain Π0, singularities arise for the solution u near the

origin, preventing a full elliptic regularity. Precisely, if α± denote the absolute value of the sector
angles involved in Π0 – see Figure 1 one has:

α± = θ±2 − θ
±
1 .

Notice that according to (H3), α± ∈ (0, π).

Assumption 2.1 Let us add a geometrical hypothesis on α±

(H4) α± /∈ πQ.

With Assumption (H4), the following decomposition (5) is valid. Otherwise, logarithmic singular-
ities may appear in the corner asymptotics. We do not consider this case here for simplicity.

The potential u admits a splitting into regular and singular parts for any integer p:

u(x) = upflat(x) + χ(x)
∑
±

∑
λ∈Λ±p

c±λ s
±
λ (x) + χ(x)

∑
±

∑
σ=1,2

∑
1≤n≤p−1

a±,σn a±,σn (x), (5)

where, using polar coordinates (r, θ),

• upflat ∈ Hp
loc(Π0), and for any multi-index β with |β| ≤ p, we have

∂βupflat(x) = O(rp−|β|), near the corner 0, (6)

• χ : R2 → R+ is a smooth radial cutoff function, with compact support and equal to 1 near 0,

• we denote by
Λ±p =

{
λ =

qπ

α±
; 0 ≤ qπ

α±
≤ p with q ∈ N

}
,

• the coefficients c±λ ∈ R depend on f and h and are called the singular coefficients of order λ
of u in the upper or lower part of Π0. They can be numerically computed from the solution
u via extraction formulae (see [8, Chap. 8]),
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• the singular functions s±λ are defined for any λ ∈ Λ±p by

s±λ (x) =

r
λ cos

(
λ(θ − θ±1 )

)
if θ±1 < θ < θ±2 ,

0 otherwise,

see Figure 1 for the definition of θ±1 and θ±2 . Note that for λ = 0, the functions s±0 equal 1
for θ±1 < θ < θ±2 .

• The last series in (5) comes from the data f and h, which do not necessarily vanish near the
corner. The coefficients a±,σn are explicitly determined by the Taylor expansions of f and h.
The functions a±,σn are defined for any positive integer n and any σ ∈ {1, 2} by

a±,σn (x) =

r
n cos (n(θ − θ±σ )) if θ±1 < θ < θ±2 ,

0 otherwise.

Such a decomposition is standard, and described in more details in the theory of corner do-
mains, see [6, 8, 9] for example.

Before dealing with singularities, it is important to derive the asymptotic expansion in the ideal
case where no singularity appears at any order. Actually, understanding how such a derivation
occurs will facilitate the accurate asymptotic expansion with the singlarities.

3 Asymptotic models without singularities

The goal of the section is to present the formal derivation of the asymptotic expansions for both
translation and contraction cases, without accounting for the influence of corner singularities. We
emphasize that throughout this section, we assume that no singularity appears in the derivation of
the asymptotics, meaning that all the coefficients c±λ and a±,σn of any expansion of type (5) equal
zero. Therefore the following expansion only involves coefficients with entire powers of δ.

This ideal case has no chance to hold in general. The singularities will make appear non entire
powers of δ, and they will lead to a modification of the source terms of the following elementary
problems, but the procedure will remain unchanged. Therefore even though very specific, this
ideal framework is interesting for understanding the way the cascade of elementary problems is
derived at any order to get the asymptotics. We derive such “ideal” asymptotics, in the two dif-
ferent geometrical frameworks. In addition, we unify both approach but introducing appropriate
notations, making thus possible a comparison of the two methods. The difficulties arising from the
corner singularities are postponed to Section 4 where the corner profiles are introduced.

3.1 Asymptotic model with translation of inclusions

This section is devoted to the construction of the asymptotic expansion for Problem (1) in the
case where the inclusions are constant patterns translated from each other by a distance of 2δ.
As mentioned previously, to distinguish the two geometrical frameworks, the notation will are
enriched by a • for the translation case.

3.1.1 Geometrical setting

We assume here that the domains
•
ΩL
δ and

•
ΩR
δ are translations of constant size inclusions :

•
ΩL
δ =

•
ΩL

0 − δd and
•
ΩR
δ =

•
ΩR

0 + δd.
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We recall that
•
Πδ = Πδ = R2 \

•
ΩL
δ ∪

•
ΩR
δ.

It is classical to transform the problem into a domain independent of δ in order to make the param-
eter δ appear in the equations. In the present case, the ‘gap’ between the inclusions can be seen as
a thin layer. It is then natural to set the change of variables

•
Φδ : x = (x1, x2) 7→ ξ = (η, τ),

defined as

ξ =
•
Φδ(x) =


(x1 + δ − 1, x2) if x1 ≤ −δ,
(η, τ) =

(
x1
δ , x2

)
if |x1| ≤ δ,

(x1 − δ + 1, x2) if x1 ≥ δ.
(7)

Through this change of variables, the domain
•
Πδ is transformed into

•
Π, see Figure 2. Here, we

obviously have
•
Π =

•
Π1. We set

•
Π

lay
δ = {|x1| < δ}, and

•
Πext
δ =

•
Πδ ∩ {|x1| > δ}.

2δ

•
Πext

δ

•
Πext

δ

•
Πlay

δ

•
ΩL
δ

•
ΩR
δ

•
Γtrans

δ

•
Γtrans

δ

0•
2

•
Πext •

Πext

•
Πlay

•
ΩL
1

•
ΩR
1

•
Γtrans

•
Γtrans

0•

Figure 2: The domain
•
Πδ and the domain

•
Π obtained after change of variables

•
Φδ given by (7).

For any function v ∈ L2
loc(
•
Πδ), we denote by •vext and •vlay the restrictions of the function

v ◦
•
Φ−1
δ to

•
Πext =

•
Πext

1 (the exterior part), and
•
Πlay =

•
Π

lay
1 (the layer), respectively.

3.1.2 Elementary problems for the translation case

We are now able to set the transformed problem in a domain independent of the parameter δ.
Expressed in terms of the unknowns •uext,δ and •ulay,δ, it reads

∂2
η
•
ulay,δ = −δ2∂2

τ
•
ulay,δ in

•
Πlay,

•
ulay,δ =

•
uext,δ on

•
Γtrans,

−∆
•
uext,δ = 0 in

•
Πext,

∂ν
•
uext,δ = 1

δ∂η
•
ulay,δ on

•
Γtrans,

∂ν
•
uext,δ = g ◦

•
Φ−1
δ (ξ) on ∂

•
Πext \

•
Γtrans,

•
uext,δ → 0 at infinity.

(8)
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We now replace g ◦
•
Φ−1
δ (ξ) by its Taylor expansion:

g ◦
•
Φ−1
δ (ξ) =

N∑
n=0

•
gn(ξ)δn + O(δN ). (9)

Considering Problem (8), we postulate the two following Ansätze

•
uext,δ =

∑
n≥0

δn
•
uext
n ,

•
ulay,δ =

∑
n≥0

δn
•
ulay
n .

Note that the series are written in the sense of asymptotic expansions (i.e. truncate the series
and make δ → 0, see [10] for example), we do not expect – nor need – convergence as n → ∞.
Inserting these Ansätze into Problem (8), we get the following cascades of elementary problems:

∂2
η
•
ulay
n+1 = −∂2

τ
•
ulay
n−1 in

•
Πlay,

•
ulay
n+1 =

•
uext
n+1 on

•
Γtrans,

−∆
•
uext
n = 0 in

•
Πext,

∂ν
•
uext
n = ∂η

•
ulay
n+1 on

•
Γtrans,

∂ν
•
uext
n =

•
gn on ∂

•
Πext \

•
Γtrans,

•
uext
n → 0 at infinity,

(10)

with the convention •uext
` = 0 and •ulay

` = 0 for ` < 0. In the first two equations of the problem,
solved by •ulay

n , the variable τ is actually only a parameter. The question of the solvability of this
sequence of problems will be discussed in section 3.3.

3.2 Asymptotic model with contraction of inclusions

As mentioned previously, the way each asymptotic expansion is derived is somehow arbitrary, and
it depends mostly of the point of view of the modeling. In Section 3.1, we considered the case of
two inclusions with δ–independent size, whose corners were distant from 2δ.

In this section we adopt another point of view, leading to the same limit geometry: we assume
that the inclusions are contractions of the limit inclusion ΩL

0 ∪ ΩR
0 given by Figure 1. Let us

first make precise the geometrical assumptions. As mentioned previously, to distinguish the two
geometrical frameworks, the notation is enriched by a ? for the contraction case.

3.2.1 Geometrical setting

Identification of the thin layer For δ small enough, we define here
?
ΩR
δ and

?
ΩL
δ as contractions

in the normal direction ν of the respective limit inclusions
?
ΩL

0 and
?
ΩR

0. A thin layer
?
Π

lay
δ appears

naturally, when passing from the domain
?
Πδ to the limit domain

?
Π0 := Π0 (see Fig. 3).

We denote respectively by
?
Πext,

?
Π

lay
δ and

?
Πδ the 3 domains (see Figure 3)

?
Πext = Π0,

?
Π

lay
δ =

( ?
ΩL

0 ∪
?
ΩR

0

)
\
( ?

ΩL
δ ∪

?
ΩR
δ

)
,

?
Πδ =

?
Πext ∪

?
Π

lay
δ .
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2δ

?
ΩL
δ

?
ΩR
δ

?
Πextd

?
Πlayer
δ

Γtrans
δ

•

0•
2δ

?
ΩL
δ

?
ΩR
δ

?
Πext

Γtrans
δ

?
Πlayer
δ

•

0•

Figure 3: The domain
?
Πδ with the inclusions

?
ΩLR
δ (non symmetric and symmetric cases).

Let us introduce a suitable parameterization of ∂
?
Πδ: Inside the ball Bρ? = {|x| < ρ?}, the

boundary ∂
?
Πδ is deduced by translation by ±δd from the right and left parts of ∂

?
Π0.(

∂
?
Πδ

)
∩ Bρ? =

({
x− δd ; x ∈ ∂

?
ΩL

0

}
∪
{

x + δd ; x ∈ ∂
?
ΩR

0

})
∩ Bρ? .

Outside the ball B ρ?
2

=
{
|x| < ρ?

2

}
, we choose a smooth, positive and δ-independent function f

to parameterize ∂
?
Πδ:

∂
?
Πδ \ Bρ?

2
=
{

x + δf(x)ν(x) ; x ∈ ∂
?
Π0

}
\ Bρ?

2
,

designed in such a way the two definitions are consistent in the intersection
{ρ?

2 ≤ |x| ≤ ρ?
}

.

Remark 3.1 (Arbitrary choice for f near 0) The choice of ρ? is somehow arbitrary, but it does
not change dramatically the derivation of the expansion, since the function u0 is supposed to be
flat near the origin 0, as stated by (5)–(6).

Remark 3.2 (The case of constant thickness) In the simple geometrical framework where the
plane sectors are equally distributed from both side of the horizontal axis (0,d), the simplest
choice for f is the constant function defined by

∀x ∈ ∂
?
Πδ, f(x) = sin

(ω
2

)
, where ω = θ+

1 (and θ+
2 = π − ω, θ−1 = π + ω, θ−2 = 2π − ω).

Laplace operator in local coordinates Once the identification and the parmeterization of
?
Π

lay
δ

is performed, it is natural to introduce new variables (η, τ), which respectively correspond to the
normal and tangential variables along ∂Π0, in order to rewrite the Laplace operator in these new
coordinates. We parameterize ∂Π0 by the vector field Ψ defined on the torus T:

∂Π0 = {Ψ(τ), τ ∈ T} .

By abuse of notation, we still denote by f and ν the functions f ◦Ψ and ν ◦Ψ defined on T. We

then define the mapping
?
Φδ from (0, 1)× T into R2 as

ξ =
?
Φδ(η, τ) = Ψ(τ) + δf(τ)η ν(τ), ∀ (η, τ) ∈ (0, 1)× T, (11)

such that
?
Π

lay
δ \ Bρ?

2
=

?
Φδ

(
(0, 1)× T

)
\ Bρ?

2
.
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Note that
?
Φδ applies only to the layer part (contrary to

•
Φδ which is defined in R2). In local

coordinates (η, τ), the Euclidean metric (Gij)i,j∈{1,···2} is given by

G11 = |∂η
?
Φδ|2, G22 = |∂τ

?
Φδ|2, G12 = G21 = 〈∂η

?
Φδ , ∂τ

?
Φδ〉.

Denoting by |G| its determinant:

|G| = det(Gij) = G11G22 −G2
12,

Laplace’s operator reads then

∆ =
1√
G
∂η

(
1√
G

(G22∂η −G12∂τ )

)
+

1√
G
∂τ

(
1√
G

(−G12∂η +G11∂τ )

)
and thus it can be expanded as

∆ =
1

δ2f2

{
∂2
η + δfκ∂η

+ δ2
(
η2
(
f ′
)2
∂2
η +

(
2
(
f ′
)2 − ff

′′ − ηκ2f2
)
∂η − 2ηff ′∂η∂τ + f∂2

τ

)
+ · · ·

}

=
1

δ2f2

∂2
η +

∑
k≥1

δk
?
Tk

 , (12)

where
?
Tk are differential operators independent of δ and κ denotes the curvature (extended by 0

at the origin). On the other hand, the normal derivative is rescaled by a factor 1/(δf):

∂ν |η=0 =
1

δf
∂η, (13a)

∂ν |η=1 =
1

δf

∂η +
∑
k≥1

δk
?
Bk

 , (13b)

where
?
Bk are differential operators independent of δ.

3.2.2 Elementary problems for the contraction case

By analogy with the translation case, we denote by
?
Γtrans the interface across which transmissions

occur. In the contraction case,
?
Γtrans is nothing but ∂Π0:

?
Γtrans = ∂Π0 = ∂

?
Πext.

We denote respectively by ?
uext,δ and ?

ulay,δ the function u ◦
?
Φ−1
δ in

?
Πext and

?
Πlay. After this

change of variables, the elementary problems read

∂2
η
?
ulay,δ = −

∑
k≥1

δk
?
Tk(

?
ulay,δ) in

?
Πlay,

?
ulay,δ =

?
uext,δ on

?
Γtrans,

1

δf

(
∂η +

∑
k≥1 δ

k
?
Bk

)
?
ulay,δ =

∑
n≥0

δn
?
gn η = 1 ,

−∆
?
uext,δ = 0 in

?
Πext,

∂ν
?
uext,δ =

1

δf
∂η

?
ulay,δ on

?
Γtrans,

?
uext,δ → 0 at infinity,

(14)
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where ξ 7→ ?
gn(ξ) are obtained from the Taylor expansion of g ◦

?
Φ−1
δ (ξ). Polynomial Ansätze

similar to the translation case,

?
uext,δ =

∑
n≥0

δn
?
uext
n ,

?
ulay,δ =

∑
n≥0

δn
?
ulay
n ,

lead to the following sequence of elementary problems:

∂2
η
?
ulay
n+1 = −

∑
k+`=n+1

Tk
?
ulay
` in

?
Πlay,

?
ulay
n+1 =

?
uext
n+1 for η = 0,

∂η
?
ulay
n+1 = f

?
gn −

∑n
k=1

?
Bk

?
ulay
n−k for η = 1,

−∆
?
uext
n = 0 in

?
Πext,

∂ν
?
uext
n =

1

f
∂η

?
ulay
n+1 on η = 0,

?
uext
n → 0 at infinity,

(15)

Again, we postpone the discussion of the well-posedness of this sequence of equations to
Section 3.3.

3.3 A unified formulation

In Sections 3.1 and 3.2 we have derived an asymptotic expansion for two different asymptotic fam-
ilies converging to the same limit problem. Actually, it is possible to describe a general framework
containing the two procedures. Once again, we emphasize that in this section, we are dealing with
the ideal cases where the singularities are omitted at any order. Section 4 is devoted to derive the
sector profile problems to account for the singularities, that appear in the general case.

Geometrical setting We consider the problems obtained after change of variables (solved by •uδ

and ?
uδ, respectively). We denote by Π the domain where the problem is set, it can be split into

Π = Πext ∪ Γtrans ∪Πlay,

where Γtrans = ∂Πext ∩ ∂Πlay. The layer Πlay has the form (η−, η+) × I . Finally, we set Γ =
∂Π \ Γtrans.

• In the translation case, η± = ±1, I = R, and Γtrans = ∂Πlay = {−1, 1} × I .

• In the contraction case, η− = 0, η+ = 1, I = ∂Π0, and Γtrans = ∂Πext = {0} × I .

For the sake of conciseness, for any function u defined in Π we naturally denote by uext and ulay

its restrictions to Πext and Πlay respectively.

Layer problem We consider the following equations
∂2
ηu

lay
n+1 = jn for η ∈ (η−, η+)

ulay
n+1 = uext

n+1 for η = η−,

∂ηu
lay
n+1 = kn for η = η+,

(16)
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where the term
jn = −

∑
k+`=n+1,k≥1

Tku
lay
` (17)

is given explicitly by ulay
` for 0 ≤ ` ≤ n. The expression of kn depends on the geometrical

framework:

• In the translation case,
kn = ∂νu

ext
n |η=η+ .

• In the contraction case,

kn = f
?
gn −

n∑
k=1

?
Bk

?
ulay
n−k.

Problem (16) is exactly obtained from (15) in the contraction case whereas the two following
equations are missing in the translation case:{

uext
n+1 = ulay

n+1 for η = η+,

∂νu
ext
n = ∂ηu

lay
n+1 for η = η−.

(18)

They will be taken into account in (22). In order to solve Problem (16), let us now define the
operator R for any function j as

R[j](η, τ) = −
∫ η+

η
j(s, τ) ds. (19)

Thanks to (16), one easily obtains the formal expressions

∂ηu
lay
n+1(η, τ) = kn(τ) + R[jn](η, τ), (20)

ulay
n+1(η, τ) = uext

n+1(η−, τ) + (η − η−)kn(τ) +

∫ η

η−

R[jn](t, τ) dt. (21)

Exterior problem In the outer domain Πext the problem at the order n has the following form:

Find uext
n such that


−∆uext

n = 0 in Πext,

γ̄(uext
n ) = φn on Γtrans,

∂νu
ext
n = gn on ∂Πext \ Γtrans,

uext
n → 0 at infinity,

(22)

where γ̄, φn and gn are defined below.

• In the translation case, equations (18) together with (20)–(21) make appear the vector oper-
ator γ̄ defined by

γ̄(u) =
(
u|η=η+ − u|η=η− , ∂νu|η=η+ − ∂νu|η=η−

)
,

and the data given by

φn(τ) =
(
ulay
n (η+, τ)− ulay

n (η−, τ), ∂ηu
lay
n+1(η+, τ)− ∂ηulay

n+1(η−, τ)
)
.

On the other hand, the Neumann datum gn is given by the Taylor expansion of g – see (9) –
gn =

•
gn.

11



• In the contraction case ∂Πext \ Γtrans = ∅ thus no need to define gn. The operator γ̄ is scalar
and given by

γ̄(u) = ∂νu|Γtrans ,

and the datum φn is given by

φn(τ) =
1

f(τ)
∂ηu

lay
n+1(η−, τ).

Sequential derivation of the terms At order n = 0, the solution to Problem (16) is formally
given by formulae (20)–(21):

ulay
0 (η, τ) = uext

0 (η−, τ), ∂ηu
lay
1 (η, τ) = k0(τ),

where k0 = ∂νu
ext
0 |η=η+ in the translation case and k0 = f

?
g0 in the contraction case. The exterior

problem (22) is thus completely determined since

• In the translation case, φ0 = (0, 0), and no
•
g0 is needed,

• In the contraction case, φ0 =
1

f
∂ηu

lay
1 |η− =

?
g0,

which thus entirely determines a posteriori the terms ulay
0 and ∂ηu

lay
1 .

The general procedure works as follows: if (uext
` , u

lay
` ) are known for any ` ≤ n− 1, then

ulay
n (η, τ) = ulay

n (η−, τ) + (η − η−)kn−1(τ) +

∫ η

η−

R[jn−1](t, τ) dt, (23a)

∂ηu
lay
n+1(η, τ) = kn(τ) + R[jn](η, τ), (23b)

where the terms jn−1, jn, kn−1, and kn are explicitly given. Note that neither ulay
n nor uext

n are yet
determined. However Problem (22) can be solved since φn is completely determined by

• In the translation case,

φn(τ) =

(
(η+ − η−)kn−1(τ) +

∫ η+

η−

R[jn−1](t, τ) dt,−R[jn](η−, τ)

)
,

• In the contraction case,

φn(τ) =
1

f(τ)
∂ηu

lay
n+1(η−, τ) =

1

f(τ)
(kn(τ) + R[jn](0, τ)) ,

which thus determines a posteriori ulay
n and ∂ηuext

n+1.
The above derivation process can be summarized as follows

uext
n = Jext

n

(
(uext
` )0≤`≤n−1, (u

lay
` )0≤`≤n−1

)
, (24a)

ulay
n = Jlay

n

(
(uext
` )0≤`≤n, (u

lay
` )0≤`≤n−1

)
, (24b)

where Jext
n and Jlay

n are the operators defined by the above problems (22) and (16) respectively. We
will make use of Jlay

0 as well, setting ulay
−1 = 0 by convention.

Remark 3.3 In the layer, the problem defining the terms ulay
n is one-dimensional, and the tan-

gential variable τ only acts as a parameter. The integration is only performed in the normal
variable η. It is straightforward that the dependence on ulay

n is polynomial in η, its degree being
increased by 1 at each step. The dependence with respect to τ is more complex since it comes from
traces on η = η± of the terms uext

` for ` < n.

12



3.4 Back to the physical domain

Remember that the above procedure is based on the assumption that all the coefficients c±λ and
a±,σn vanish in the expansions of type (5). This implies that at any order, all the terms uext

n and
thus ulay

n are flat near the origin, see Section 2. It is however important to transfer the obtained
approximate solution in the original domain.

• Limit domain δ = 0.
In the contraction case, the first term uext

0 previously determined coincides with the limit
term u0 defined by (2).

In the translation case, the domain
•
Πext, where uext

0 is defined, is not connected. However
the function ũext

0 defined in Π0 by

∀(x1, x2) ∈ Π0, ũext
0 (x1, x2) =

{
uext

0 (x1 + 1, x2), if x1 > 0,

uext
0 (x1 − 1, x2), if x1 < 0,

coincides with u0.

• Approximation of uδ in Πδ.
In the translation case, an approximation at order N is given by

u
[N ]
δ (x1, x2) =



N∑
n=0

δnuext
n (x1 − 1 + δ, x2) if x1 < −δ,

N∑
n=0

δnulay
n (x1δ , x2) if − δ < x1 < δ,

N∑
n=0

δnuext
n (x1 + 1− δ, x2) if x1 > δ.

In the contraction case, approximations far from the corner have been derived thanks to the
parameterization. In the vicinity of the corner, singularities should be dominant. However
since we have assumed throughout Section 3 that no singularity appears, this means that at
any order the functions are flat enough. Precisely, our hypothesis states that uδ is O(|x|p)
for any p ∈ N. This implies that 0 is a good approximation of uδ near the corner. Therefore
an approximation of uδ at the order δN is given by

u
[N ]
δ (x) =



N∑
n=0

δnuext
n (x) in Π0 \ Bδρ?

0 in Bδρ? (i.e. for |x| < δρ?),

N∑
n=0

δnulay
n

( ?
Φ−1
δ (x)

)
elsewhere,

where the mapping
?
Φδ is defined in (11).

4 Handling singularities

4.1 Need for a specific procedure

As mentioned before, the procedure described in Section 3.3 fails to provide an asymptotic expan-
sion of uδ when singularities appear. We detail here the reasons why.
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First obstruction: lack of regularity for the sequential derivation
The formal derivation described in Section 3.3 fails since singularities appear in the solutions
to (22). To explain this point, we distinguish the two configurations.

• Translation case.
In order to solve Problem (22) in a variational framework, it is necessary that φn has regu-

larity H1/2(
•
Γtrans) × H−1/2(

•
Γtrans). Using Equations (23), the condition over the first com-

ponent needs generically kn−1 ∈ H1/2(
•
Γtrans) which requires •uext

n−1 ∈ H2(
•
Πext).

Thus we need that •uext
n−1 belongs to H2(

•
Πext) to ensure the existence of •uext

n ∈ H1(
•
Πext).

Actually one order of regularity is lost at each step. Since •uext
0 has limited regularity (due to

the presence of singularities s±λ ), an expansion at any order is hopeless (if the angles α± are
close to π, the maximal order for the construction may be n = 1).

• Contraction case.
Here, φn has to belong to H−1/2(Γtrans), which requires, thanks to Equations (23) and Def-
inition (19), that τ 7→ jn(η, τ) has H−1/2–regularity. But the expression of jn, see (17),

involves
?
T2

?
ulay
n−1 and with ?

ulay
n−1|η=η− =

?
uext
n−1| ?

Γtrans
, and the condition ?

uext
n−1 ∈ H2(

?
Πext) is

needed. Once again, we loose 2 orders of regularity every 2 steps.

Second obstruction: terms are not necessarily flat near the origin

We assume here that the first obstruction occurs for the construction of uext
2 . This arises if

uext
1 /∈ H2(Πext). Precisely, according to (5) for p = 1, the following splitting holds for the exterior

part

uext
1 (Φ−1

δ (x)) = u1,ext
flat,1(Φ−1

δ (x))+χ(x)
∑
±

∑
λ∈Λ±2

c±λ,1s
±
λ (x)+χ(x)

∑
±

∑
σ=1,2

a±,σ1,1 a±,σ1 (x), (25)

with u1,ext
flat,1 ∈ H2(Πext), s±λ /∈ H2(Π0), a±,σ1 ∈ C∞(Π0). Therefore, if the coefficients c±λ,1 vanish

(again, this is not the general situation), we have uext
1 ∈ H2(Πext), which seems sufficient for the

procedure. However the terms a±,σ1,1 , which come from the Neumann traces, add new difficulties.

• Translation case.
In order to build ulay

2 , it is necessary to derive ulay
0 (η, ·) = uext

0 |Γtrans twice with respect to τ ,
which is impossible in general, since a+,σ

1,1 6= a−,σ1,1 . Introducing a truncation near the origin
makes it possible to prevent this case, similarly to the contraction case. However this makes
appear a non negligible error near 0.

• Contraction case.
Here, uext

2 can be built. Nevertheless, we do not end up with a suitable asymptotic expansion.
Indeed, coming back to the physical domain (see Section 3.4), we get a correct approxima-
tion only away from the origin because of the extension by 0 near 0.

Third obstruction: error estimates fail
Should the above obstructions be overcome to define u1, a third issue would appear for the error
estimates. Actually, the terms uδ − u

[1]
δ ψ(|x|/δ) cannot be used to obtain error estimates by

computing the residual, since ∆u1 is not well-defined in Πlay as a function.
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How to overcome these obstructions ?
We have seen that the problem comes from the limited regularity of uext

0 . In the domain Π0, let us
use the splitting into regular and singular parts, see (5),

uext
0 (x) := uext

0 (Φ−1
δ (x))

= up,ext
flat,0(x) + χ(x)

∑
±

∑
λ∈Λ±p

c±λ,0s
±
λ (x) + χ(x)

∑
±

∑
σ=1,2

∑
1≤n≤p−1

a±,σn,0 a±,σn (x), (26)

with up,ext
flat,0 := up,ext

flat,0 ◦ Φ−1
δ ∈ Hp

loc(Π0), flat near the origin. In the layer Πlay, we set

u
lay
0 (x) := ulay

0 (Φ−1
δ (x))

= up,lay
flat,0(Φ−1

δ (x))) + χ(x)
∑
±

∑
λ∈Λ±p

c±λ,0s
±
λ (x) + χ(x)

∑
±

∑
σ=1,2

∑
1≤n≤p−1

a±,σn,0 a±,σn (x), (27)

with up,lay
flat,0 = Jlay

0

((
up,ext

flat,0

)
, (0)

)
.

It is possible to build further the expansion, with upflat,0 instead of u0. The term u1 is replaced
with ǔ1 defined by

ǔext
1 = Jext

1

((
up,ext

flat,0

)
,
(
up,lay

flat,0

))
, (28a)

ǔlay
1 = Jlay

1

((
up,ext

flat,0, ǔ
ext
1

)
,
(
up,lay

flat,0

))
. (28b)

Of course, we do not have taken the singularities s±λ and a±,σn into account. This requires to
introduce corner profiles in the expansion.

4.2 Heuristics for the introduction of the first profile

According to the above remarks, u[1]
δ is not an approximation of uδ at the order δ. It is not the case

either for the function ǔ[1]
δ , defined similarly to u[1]

δ in Section 3.4 with ǔ1 instead of u1.
Let us go back to the approximation at the order 0. We set rδ = uδ − ψ(·/δ)u[0]

δ where u[0]
δ is

given in Section 3.4. Here ψ is a smooth radial1 cutoff function independent of δ and equal to 1
far from 0 and which vanishes near 0.

The remainder term rδ is well-defined in Πδ and satisfies the following transmission problem:

∆rδ = −
[
∆;ψ

( ·
δ

)]
u0 +

1

δ2
ψ
( ·
δ

)T1u0 +
∑
k≥2

δkTku0

 ◦ Φ−1
δ in Π

lay
δ ,

∆rδ = −
[
∆;ψ

( ·
δ

)]
u0 in Πext

δ ,

[rδ] = 0 on Γtrans
δ ,

[∂νrδ] = −ψ
( ·
δ

)
∂νu0 on Γtrans

δ ,

∂νrδ =
(
1− ψ

( ·
δ

))∑
n≥0

δngn −
ψ
( ·
δ

)
f

∑
k≥2

δk(Bku0) ◦ Φ−1
δ ∂Πext

δ ,

rδ → 0 at infinity,

(29)

1By abuse of notation, we use “radial” in the layer as well, but in the translation case, this corresponds to a depen-
dence in η.
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where u0 is the solution to (2). Note that in the translation case, the operators Bk are zero. The
term [∆; Ψ] generically refers to the commutator operator given by

[∆; Ψ]V = 2∇Ψ · ∇V + V∆Ψ,

for smooth enough Ψ and V , and thus the term [∆;ψ(·/δ)]u0 is of order δ−2. In Problem (29), the
main source terms involve the contribution of u0 and g0 both taken near the origin 0, since ψ(·/δ)
equals 1 far from it.

P

0
•

Figure 4: The infinite domain P (corresponding to the non-symmetric case, see Fig. 1).

Splitting u0 near the origin into regular and singular parts, see (26)–(27), we see that the
principal part of the error is given by s±0 . It is natural to introduce the profile in the infinite domain
P = limδ→0 δ

−1Πδ, see Fig. 4, defined as
∆K±0 = [∆;ψ] s±0 in P,

∂νK
±
0 = 0 on ∂P,

K±0 → 0 at infinity,

(30)

where s±0 have been extended by a constant on the support of ∇ψ. Moreover, the Neumann
boundary condition also generates a profile denoted by M:

∆M = 0 in P,

∂νM = (1− ψ) on ∂P,

M → 0 at infinity.

(31)

The well-posedness and the behavior at infinity of K±0 and M are discussed in Section 4.4. These
profiles make it possible to correct the expansion as follows

uδ(x) = ψ
(
x
δ

)
u0(x)− χ(x)

(
g0(0)M(xδ ) +

∑
±
c±0,0K

±
0

(
x
δ

))
+ Rδ(x).

Thanks to (30), the remainder Rδ satisfies the following problem:

∆Rδ = [∆;ψ
( ·
δ

)
](
∑
± c
±
0,0s
±
0 − u0)

+ [∆;χ]
(

g0(0)M( ·δ ) +
∑
± c
±
0,0K

±
0

( ·
δ

))
in Π

lay
δ ∪Πext

δ ,

[Rδ] = 0 on Γtrans
δ ,

[∂νRδ] = O(1) on Γtrans
δ ,

∂νRδ = O(δ) on ∂Πext
δ ,

Rδ → 0 at infinity,

(32)

The leading term of c+
0,0s

+
0 + c−0,0s

−
0 − u0 near the origin is supported by (a±1,i)i=1,2 according to

the splitting (26) of u0, and it is thus of order δ. The term [∆;χ]
(

g0(0)M( ·δ ) +
∑
± c
±
0,0K

±
0

( ·
δ

))
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vanishes inside a ball of radius O(1) centered at the origin, and thus its leading term is given by
the behavior of the profiles K±0 and M at infinity, that is O(δmin(λ+1 ,λ

−
1 )), where λ±1 = π/α± > 1.

Therefore Rδ has a smaller residual than rδ, and the expansion is improved.

In order to build the terms of order δ, it is necessary to account for three contributions

• The next term in the splitting of uext
0 which involves the singular functions a±,σ1 , see Sec-

tion 2.

• The Neumann source term (1− ψ(·/δ)) g0 near the origin.

• The term ǔ1 defined in (28), and in particular its first singular terms, involving the singular
functions s±0 .

The third contribution is addressed by the profile K±0 defined by (30), while the first two contribu-
tions will be handled by new specific profiles L±,σ1 defined as:

∆L±,σ1 = [∆;ψ] a±,σ1 in P,

∂νL
±,σ
1 = 0 on ∂P,

L±,σ1 → 0 at infinity.

(33)

The expansion at the next order reads then

uδ(x) =ψ(xδ )u0(Φ−1
δ (x))− χ(x)

(∑
±
c±0,0K

±
0 (xδ ) + g0(0)M(xδ )

)

+ δψ(xδ )ǔ1(Φ−1
δ (x))− δχ(x)

∑
±

(
c±1,0K

±
0 (xδ ) +

∑
σ=1,2

a±,σ1 L±,σ1 (xδ )
)

+ g1(0)M(xδ )


+O(δmin(λ+1 ,λ

−
1 )),

(34)

where c±1,0 are the first singular coefficients of ǔext
1 in the splitting near the origin.

The above expansion has a priori an order of accuracy in O(δmin(λ+1 ,λ
−
1 )). To go one step

further, it is necessary to change the whole expansion, and to account for one more singular term
in the splitting of uext

0 , which modifies u0,ext
flat,0 and thus ǔ1. So it is necessary to determine a priori the

desired order of accuracy, so that uext
0 be split with the appropriate number of singular functions,

and then the expansion can be performed.

4.3 Structure of the complete asymptotic expansion

In the previous section, we have described the construction of the first terms in the expansion,
taking into account the singularities coming from the corners of the domain. It is possible to go
further and build a complete asymptotic expansion at any order. To do so, we need to fix a target
order P , and expand every term defined in Πext into singular and regular parts according to this
choice. The contribution of all singular functions arising in such splittings will be handled through
profiles (of type K, L, M) defined in the infinite domain P. The expansion of these profiles at
infinity will give birth to other terms defined in Πext, which in turn will be split into regular and
singular parts.

In order to obtain an expansion at order P , the overall procedure leads to

uext
δ (x) = ψ(xδ )

∑
µ∈MP

δµuP,ext
µ (x)− χ(x)

∑
µ∈MP

∑
±

∑
σ=1,2

δµW±,σ,Pµ (xδ ) +Rext
δ,P (x),
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where

• the terms uP,ext
µ are defined in the standard variable x inside Πext,

• the terms W±,σ,Pµ are defined on the infinite domain P, and are involved in the asymptotic
expansion as functions of the scaled variable x

δ ,

• the set of indices MP is given by

MP =

{
µ = p+

q−π

α−
+
q+π

α+
; p, q± ∈ N0, and µ ≤ P

}
,

• the remainder Rext
P satisfies on any compact subset ω ⊂ Πδ :

‖Rext
δ,P ‖H1(ω) = O(δP ).

In the layer, the expansion has a similar structure, but involves the normal dilation used to build
the terms :

u
lay
δ (x) = ψ(xδ )

∑
µ∈MP

δµuP,lay
µ (ηδ , τ)− χ(x)

∑
µ∈MP

∑
±

∑
σ=1,2

δµW±,σ,Pµ (xδ ) +R
lay
δ,P (x).

The remainder Rext
P satisfies on any compact subset ω ⊂ Πδ :

√
δ‖Rlay

δ,P ‖H1(ω) = O(δP ).

Remark 4.1 If P is changed, the terms involved in the expansion will change as well, since the
order of every splitting needs to be adapted accordingly.

4.4 Construction of profiles: existence and behavior at infinity

In the last two sections, we have made use of various profiles, which account for the singularities
appearing at each order in the construction of the expansion. All the profiles (K±λ , L±,σλ , M) satisfy
a problem such as 

∆Z = f in P,

∂νZ = g on ∂P,

Z → 0 at infinity.

(35)

The existence for Problem (35) relies on the space

V =

{
Z ∈ H1

loc(P) ; ∇Z ∈ L2(P) and
Z

(1 + |X|) log(2 + |X|)
∈ L2(P)

}
,

and the bilinear form
a(Z1,Z2) =

∫
P
∇Z1 · ∇Z2

which is coercive on the quotient space V/R, see [2, 14]. Within this variational framework, we
can build the profiles and make precise their behavior at infinity:
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Theorem 4.2 If f and g are smooth functions with compact support in P, and satisfy∫
P
f +

∫
∂P

g = 0,

then problem (35) admits a unique solution Z ∈ V/R. The behavior of the solution Z at infinity is
given by

Z =
∑
±

∑
λ∈Λ±p

Z±−λ + Rp, (36)

with ∂βZ±−λ = O(|X|−λ−|β|) , and ∂βRp = O(|X|−p−|β|) for any multi-index β (as |X| → ∞).

Relation (36) show in particular that Z → 0 at infinity, which is crucial in the construction
of the asymptotic expansion, see § 4.2. Note that Assumption (H4) allows us to avoid the use
of the logarithmic singularity, which naturally appears for the twodimensional Laplace-Neumann
problem, see [5, Th. 3.25].

5 Discussion and concluding remarks

5.1 Representation formula

From the asymptotic expansion, one can easily infer a representation formula far from the sin-
gularity. For any y far from the inclusions, let define the Neumann function Ny as the solution
to 

−∆Ny = δy in Π0,

∂νNy = 0 on ∂Π0,

Ny → 0 at infinity.

(37)

Then, simple integration by parts leads to the following equality

uδ(y)− u0(y) = −δ
∫
∂Π0

∂ν ǔ
ext
1 Ny dx + O(δ),

and by definition of ǔext
1 and thanks to (26), one infers the following representation formula:

uδ(y)− u0(y) = δ

∫
∂Π0

∂τu
1,ext
flat,0 ∂τNy dx + O(δ).

Such a representation formula is useful to characterise (or to detect) the detachment of the two
inclusions tied up by the corners.

5.2 Other possible geometrical frameworks

Let us now discuss some possible extensions. We have detailed the two asymptotic models (trans-
lation and contraction) in the special situation of assumptions (H1)–(H2)–(H3). Other geometric
situations may be considered, for which the two above methods have to be slightly modified. We
give in Figure 5 two examples for which assumption (H3) is violated.

In Figure 5a, the domains ΩL
δ and ΩR

δ do not lie in separated half planes orthogonal to the
horizontal direction. The contraction method can be applied directly but the translation method
needs to be adapted. Indeed, a vertical strip cannot be inserted between the two inclusions and we
need to use two slanted half-strips. The analysis remains very similar.
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Figure 5: Geometrical situations which do not fulfill assumption (H3).

In Figure 5b, the domains ΩL
δ and ΩR

δ lie on the upper half plane. The translation method
applies directly but the contraction needs adaptation in this case. Actually, the contraction method
cannot be applied if the direction d remains to be horizontal. It is necessary to assume that the
inclusions converge to each other at a point which lies under the origin 0.

In Figure 6, we present the situation of two nearly touching squares where both methods need
more important adaptations. The limit situation shows a contact on a segment and not at a single
point. Other profiles must be introduced to account for the geometry near its extremity points.

2δ

ΩL
δ

ΩR
δ

d

0•

Figure 6: Geometrical situations which do not fulfill assumption (H1).

Let us emphasize that hypothesis (H2) is crucial to our two asymptotic expansions. In partic-
ular regarding the case of two kissing balls, the limit problem is no more a corner problem, but
a problem with a cusp. The structure of the singularities is then rather different in this case as
presented in see [7]. Our methods cannot be applied.

2δ
ΩL
δ ΩR

δ

d

0•

Figure 7: Geometrical situations which do not fulfill assumption (H2).
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