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ASYMPTOTIC EXPANSIONS AND EFFECTIVE BOUNDARY CONDITIONS: A

SHORT REVIEW FOR SMOOTH AND NONSMOOTH GEOMETRIES WITH

THIN LAYERS ∗

Alexis Auvray1 and Grégory Vial1

Abstract. Problems involving materials with thin layers arise in various application fields. We present
here the use of asymptotic expansions for linear elliptic problems to derive and justify so-called ap-
proximate or effective boundary conditions. We first recall the known results of the literature, and
then discuss the optimality of the error estimates in the smooth case. For non-smooth geometries,
the results of [18, 57] are commented and adapted to a model problem, and two improvements of the
approximate model are proposed to increase its numerical performance.

Résumé. Les problèmes faisant intervenir des matériaux avec couches minces sont fréquemment
rencontrés dans divers domaines d’application. On présente ici la dérivation et la justification de
conditions aux limites approchées, à l’aide de techniques de développements asymptotiques. Après
avoir rappelé les résultats connus dans la littérature, on discute l’optimalité des estimations d’erreurs
dans le cas d’une géométrie régulière. Dans le cas non régulier, les résultats obtenus dans [18,57] sont
commentés et adaptés au cas d’étude. Deux améliorations de la condition approchée sont proposées
pour augmenter le taux de convergence.

Introduction

Problems involving materials with thin structures arise in various application fields. This is the case for the
analysis of mechanical properties of thin rods, beams, plates, or shells for which reduced models are derived,
allowing to deal with lower dimensional geometries without thickness. We will focus in this paper on problems
where the thin structure lies around another material, or inside materials, and has significantly different prop-
erties. We have in mind a large variety of applications. In mechanical engineering, the study of the properties
of composite materials is a critical issue, see [32,33], with the reinforcement by thin fibers or layers. Situations
where two materials are glued together enter this scope as well, see e.g. [34]. For electromagnetism, thin dielec-
tric layers appear in many situations, see for example [38] for the eddy current problem in the context of copper
deposites on tubes, or [61] for the skin effect problem, which has strong connections with thin layers. Biological
tissues often involve thin parts, see [48] for a mathematical and numerical study of the electromagnetic field
around and inside a biological cell, or [21] for the description of the diffusion Magnetic Resonance Imaging signal
in biological tissues. Thin films are good examples as well, and various models have to be considered depending
on their nature and size, see [53] and the references therein for falling films, or [56] for an electrochemical
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situation. We can mention large scale applications in geophysics, where the earth crust may be considered as a
thin layer, see [16,51]. This list is not exhaustive and many other applications could be cited.

The common issue raised by such problems is the following. If we completely omit the thin layer in the
(analytical or numerical) study, the obtained solution may significantly differ from the expected one. On
the other hand, incorporating directly the thin layer generally prevents from analytical results, and leads
to serious difficulties in the numerical simulations. Indeed, the discretization of the domain needs a local
refinement at the scale of the layer, and due to the number of degrees of freedom, the computation can become
cumbersome, especially for three-dimensional problems. An alternative solution consists in replacing the initial
transmission problem with an approximate model, where the thin layer no longer appears, but is replaced with
a suitable approximate boundary condition – or approximate interface condition, depending whether the layer
lies inside or around the medium – also referred as to effective boundary condition (or impedance condition in
electromagnetics), see Figure 1.

This strategy has generated a large amount of mathematical studies for both the derivation, the justification,
and the analysis of such approximate boundary conditions. During the nineties, many geometrical situations
have been investigated, from the simplest problem of a layer with uniform thickness around a material [11,31],
or non-uniform thickness layers [5], to the more general case of periodically oscillating layers [3, 44] (wall laws
for flows over rough surfaces) or [6] (scattering by thin periodic coatings). Likewise, different models have
been considered: stationary Laplace-Dirichlet and Helmholtz problems in [11,31], harmonic Maxwell equations
in [5, 31], time dependent Maxwell problem in [39], Stokes system in [3, 44]. Let us finally mention some works
which directly consider the thin layer problem, and develop adapted numerical strategies [20, 36], and a nice
paper on the problem of optimizing the thickness function [2].

The subject still generates active research activities. Let us mention [1, 10, 15] for mechanical applications,
[12,48,54] for electromagnetic problems, [59] for the Stokes system, [46] for the heat equation, [17,29] for general
purposes. On the other hand, the case of a random thickness has been investigated, see [9] in the context of
rough surfaces, and [23] for a practical application of approximate boundary conditions to compute moments of
solutions of boundary value problems inside random domains. Let us mention the works [4,19,49] on polarization
tensor for thin inclusions of rough layers.

ε

Ω1

Ω2

Layer

Transmission conditions

Ω1

Ω2

Approximate condition

Figure 1. Replacing the effect of the thin layer by an approximate/effective boundary condition.

We restrict here ourselves to layers of uniform thickness. For a review on problems with rapidly oscillating
layers, see [50]. See also [28] for an example mixing homogenization and matched asymptotic expansions.

For the derivation of approximate boundary conditions, several techniques have been used, most of them
based on asymptotic expansions of the solution in the domain with thin layer. Obtaining error estimates is a
more or less difficult task, depending on the chosen tools. In section 1, we detail the approach of [31] and [11],
and discuss the obtention of estimates. The detailed analysis of a complete asymptotic expansion is then given,
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allowing the investigation of the optimality of the error estimates. This description is done for a very simple
problem in order to make the presentation the clearest as possible.

The second section §2 concerns the investigation of approximate boundary conditions in the case of non-
smoooth geometries. Indeed, impedance boundary conditions are very common in electrical engineering, and
are often used for geometries with corners or edges. Users are aware of their limitations, see [7, 42, 52, 55, 58].
In [57], the question of the performance of the impedance condition in the presence of corners has been rigorously
investigated. A positive answer is given for the convergence of the approximate problem to the transmission
one, as the thickness goes to 0. But it is shown that the performance of the impedance condition is weakened
by the presence of corners (the analysis is done for the two-dimensional Laplace equation). To our knowledge,
no mathematical work has been done since, which describes a method to overcome this difficulty and recover
the convergence rate of the smooth case.

1. Approximate boundary conditions for smooth geometries

In order to present and compare the different approaches, we concentrate on the following toy problem

−α∆uε− = f in Ω−,

−∆uε+ = 0 in Ωε+,

uε− = 0 on Γ−,

uε+ = 0 on Γε+,

∂νu
ε = 0 on ΓL ∪ ΓR,

uε− = uε+ on Γ,

α∂νu
ε
− = ∂νu

ε
+ on Γ,

(1)

where the domain Ωε is the unit square with an ε-layer on its top side, and f is some L2(Ω−) given datum. The
border domains are defined in Figure 2.

Ω−

Γ

Γε
+

Γ−

ΓL ΓR

Ωε
+

s

y

Figure 2. The model domain for Problem (1) in the smooth case.

Problem (1) is associated with the following variational formulation: find uε ∈ V satisfying

∀ϕ ∈ V, α

∫
Ω−
∇uε · ∇ϕ+

∫
Ω+

ε

∇uε · ∇ϕ =

∫
Ω−

fϕ, (2)
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with the variational space V = {ϕ ∈ H1(Ωε) ; ϕ = 0 on Γ− ∪ Γε+}. This variational problem obviously enters
the framework of the Lax-Milgram lemma, and thanks to the Poincaré inequality, we can easily obtain the
following a priori estimate

‖uε‖H1(Ωε) ≤ C‖f‖L2(Ωε), (3)

with a constant C > 0 independent of the parameter ε, due to the fact that the domain Ωε is uniformly bounded
with respect to ε.

1.1. A variational approach

In [31], Engquist and Nédélec propose an elementary construction of approximate boundary conditions for
Problem (1) (and generalizations for Helmholtz and harmonic Maxwell equations). The basic idea consists in
assuming that the solution uε has a polynomial behavior in the transverse variable y (see Figure 2) – this fact
will be discussed later on. More precisely, if we assume that uε+(s, y) ∈ P1(y), then it reads

uε+(s, y) = uε+(s, 0) + y∂yu
ε
+(s, 0).

Using the transmission conditions uε+(s, 0) = uε−|Γ and ∂yu
ε
+(s, 0) = α∂νu

ε
−|Γ, we get

uε+(s, y) = uε−|Γ + yα∂νu
ε
−|Γ.

Exploiting now the external Dirichlet condition on Γε+, we obtain

uε−|Γ + εα∂νu
ε
−|Γ = 0.

This suggests to introduce vε solution to the problem

−α∆vε = f in Ω−,

vε = 0 on Γ−,

∂νv
ε = 0 on ΓL ∪ ΓR,

vε + εα∂νv
ε = 0 on Γ,

(4)

which is a well-posed boundary value problem, where the effect of the thin layer of Problem (1) has been replaced
with a Robin boundary condition on the interface Γ.

A similar derivation can be performed, assuming that uε+ is a polynomial of order 2 in the y-variable.
Actually, the same approximate condition is recovered. In the more general case, where the geometry of the
layer is curved, the condition reads

vε + εα
(

1− ε c(s)2

)
∂νv

ε = 0,

where c(s) denotes the curvature at point (s, 0) ∈ Γ.
This approach is very simple, but does not give any way of estimating the difference between the solution

of the original problem uε−, and the solution of the approximate problem vε. To overcome this drawback, the
authors propose a derivation based on the variational formulation (2). Considering test fonctions v which have
a polynomial dependence on the transverse variable y leads to the same approximate boundary conditions on
the interface Γ as above, and is suitable for obtaining error estimates. Precisely, the following is proved in [31]
(for a flat boundary, i.e. c(s) = 0)

‖uε− − vε‖H1(Ω−) = O
(
ε

5
2

)
. (5)

In [11], Bendali and Lemrabet propose the derivation of an asymptotic expansion of uε with respect to the
thickness ε of the layer. This leads to the derivation of approximate models, together with error estimates. The
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Figure 3. Error ‖uε−vε‖ inside Ω− with respect to ε for the smooth case, see Figure 2 (f = 1
for the simulation).

key idea is to use a dilation in the layer: introducing the scaled variable Y = y/ε, and Uε+(s, Y ) = uε+(s, y) (and
similarly Φ+), the variational formulation becomes

α

∫
Ω−
∇uε− · ∇ϕ− +

∫
Ω+

ε

(
1

ε2
∂2
Y U

ε
+∂

2
Y Φ+ + ∂sU

ε
+∂sΦ+

)
=

∫
Ω−

fϕ−,

Inserting the Ansätze1 uε− =
∑
n≥0 ε

nun and Uε+ =
∑
n≥0 ε

nUn into this variational formulation allows to
identify the terms un and Un. The derivation of approximate boundary conditions follows from the particular
form of the first terms in the expansion (see §1.2 for more details on this point), leading to the same boundary
conditions as in [31].

Again, error estimates are given, coinciding with (5). The same technique has been used in [31] and [11],
which can be briefly summarized as follows. The variational formulation (2) of the original problem reads
a(uε, ϕ) = `(ϕ) for ϕ ∈ V , whereas the approximate problem (4) can be written as a1(vε, ϕ) = `1(ϕ) for ϕ in
some V1 ⊂ V . Estimating a− a1, `− `1, and the approximation of V by V1, leads to (5).

However, numerical tests suggest that the error estimate (5) is suboptimal. Indeed, a convergence rate in ε3

is observed, rather than the expected ε5/2, see Fig. 3. In the next section, we show how to obtain this optimal
error estimate.

1.2. Exploiting an asymptotic expansion: optimal estimates

We present here the construction of a complete asymptotic expansion for Problem (1), and the derivation of
optimal error estimates for the approximate model (4). Similarly to [11], we postulate the Ansätze

uε−(x) =
∑
n≥0

εnun(x) and uε+(x) =
∑
n≥0

εnUn(s, Y ).

1We do not seek any convergence for the series with respect to n. The point of view will consist in truncating the series at a
fixed order, and let ε tend to 0. This corresponds to the so-called convergence in the sense of asymptotic expansions.
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Inserting this power series into Problem (1), we get a cascade of uncoupled problems:


∂2
Y Un = −∂2

sU
n−2 for Y ∈ (0, 1),

Un = 0 for Y = 1,

∂Y Un = α∂νun−1|Γ for Y = 0,



−α∆un = fδn,0 in Ω−,

un = 0 on Γ−,

∂νun = 0 on ΓL ∪ ΓR,

un = Un(s, 0) on Γ,

(6)

with the convention u−1 = 0 and U−1 = U−2 = 0, and where δn,0 denotes the Kronecker symbol. Note that
the problem solved by Un is one-dimensional, and the tangential variable s is only a parameter. Besides, the
Neumann condition on vertical sides ∂νUn = 0 on ΓL ∪ΓR will be fulfilled, even if this is not clear at this stage.
The question of the solvability for Problems (6) is rather simple: since f ∈ L2(Ω−), the condition s 7→ Un(s, 0) ∈
H1/2(Γ) ensures existence and uniqueness of un in the H1-variational sense. This condition is fulfilled as soon
as un−1 belongs to H2(Ω−) (note that no smoothing effect in the tangential direction can be expected from the
resolution of the one-dimensional boundary problem defining Un). This regularity “consumption” requires that
un ∈ H∞(Ω−) for any n, if we wish to build the asymptotic expansion at any order. A sufficient condition is
f ∈ C∞(Ω−) with compact support2. Under this assumption, a formal derivation of the terms un and Un is
possible for any n ≥ 0.

Let us now show how to obtain error estimates for the asymptotic expansion. For any fixed N ≥ 0, we set

uε,[N ](x) =



N∑
n=0

εnun(x) in Ω−,

N∑
n=0

εnUn
(
s, Yε

)
in Ωε+.

By construction, uε,[N ] solves the following problem

−α∆u
ε,[N ]
− = f in Ω−,

−∆u
ε,[N ]
+ = −εN∂2

sUN (s, Yε ) in Ωε+,

u
ε,[N ]
− = 0 on Γ−,

u
ε,[N ]
+ = 0 on Γε+,

∂νu
ε,[N ] = 0 on ΓL ∪ ΓR,

u
ε,[N ]
− = u

ε,[N ]
+ on Γ,

α∂νu
ε,[N ]
− = ∂νu

ε,[N ]
+ + εNα∂νuN on Γ,

Comparing with Problem (1), and using an a priori estimate similar to (3), we immediately get (for any
integer N)

‖uε − uε,[N ]‖H1(Ωε) = O(εN ).

2The domain Ω− has corners, and the condition f ∈ C∞(Ω−) does not guarantee u0 ∈ C∞(Ω−). Nevertheless, if f has also

compact support inside Ω−, a symmetrization technique along ΓL and ΓR shows that this boundaries are actually artificial and no
singularity will appear. The full elliptic regularity is obtained.



ESAIM: PROCEEDINGS AND SURVEYS 7

This estimate can be improved with the mere observation that∣∣∣∣∣ u
ε
− − u

ε,[N ]
− = uε− − u

ε,[N+1]
− + εN+1uN+1,

uε+ − u
ε,[N ]
+ = uε− + u

ε,[N+1]
+ + εN+1UN+1(s, Yε ),

leading to the optimal estimates ∣∣∣∣∣∣
‖uε− − u

ε,[N ]
− ‖H1(Ω−) = O(εN+1),

‖uε+ − u
ε,[N ]
+ ‖H1(Ωε

+) = O(εN+
1
2 ).

(7)

Once this study has been performed for the transmission problem (1), it is possible to do the same for the
approximate problem (4). Starting from the ansatz vε =

∑
n≥0 ε

nvn, we get the iterative construction of the
terms thanks to the following problem.

−α∆vn = fδn,0 in Ω−,

vn = 0 on Γ−,

∂νvn = 0 on ΓL ∪ ΓR,

vn = −α∂νvn−1 on Γ.

(8)

Again, under the same smoothness assumption on the right-hand side f , this is possible to build the terms vn,

and the following optimal estimate is obtained: defining vε,[N ] =

N∑
n=0

εnvn,

‖vε − vε,[N ]‖H1(Ω−) = O(εN+1). (9)

Now, it becomes possible to compare the solution of the transmission problem uε− in the limit domain Ω− with
the solution of the approximate problem vε. Indeed, an explicit computation of the first termes shows that

un = vn for n = 0, 1, 2.

Note that u2 6= v2 in the more general case where the curvature on Γ does not vanish. Then, using estimates (7)
and (9), we immediately get

‖uε− − vε‖H1(Ω−) = O(ε3), (10)

which corresponds to the numerical evidence. Let us point out that uncoupling the estimates like in (7) between
the different part of the domain is the key ingredient to obtain optimal estimates.

Remark 1.1. In the whole paper, we consider as our goal to build approximate boundary conditions which
replace the effect of the thin layer. This point can be discussed. Indeed, the construction of the first terms

in the asymptotic expansion (see u
ε,[N ]
− for N = 1 just above) can lead to a numerical method with the same

convergence rate. Of course, this requires the resolution of two Dirichlet problems instead of one Robin problem.
The difference is not huge, and the advantage would be that, once u0 and u1 are computed, the approximation

u
ε,[1]
− = u0 + εu1 can be directly computed for any value of ε, without any extra computational effort.

2. The case of nonsmooth geometries

We investigate now the case where the limit problem is non-smooth. Precisely, we consider the geometry
given by Figure 4, where the thin layer lies only on a part of the upper side of the square (Neumann boundary
conditions are imposed on ΓN). At a first glance, it may not be obvious that the situation of Figure 4 is less
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Ω−

ΓN

ΓN

Γ

Γε
+

Γ−

ΓL ΓR

Ωε
+s

y

0
•

Figure 4. The model domain for Problem (1) in the nonsmooth case.

regular than this of Figure 2. Actually, if we consider the limit case (where ε = 0), then the solution u0 solves
the following problem in Ω−. 

−α∆u0 = f in Ω−,

u0 = 0 on Γ− ∪ Γ,

∂νu
0 = 0 on ΓN ∪ ΓL ∪ ΓR.

(11)

Problem (11) is a mixed Dirichlet-Neumann problem where singularities at the point 0 (where boundary con-
ditions change) are limiting the regularity of the solution. It is well known – see [25, 37] – that u0 admits the
following splitting into singular and regular parts

u0(x) = u0
reg(x) + γ s(x), (12)

where the regular part u0
reg belongs to H2(Ω−), the singular coefficient γ is a scalar, and the singular function

s
1
2 is given by

s(x) =
√
r sin

(
θ
2

)
,

where (r, θ) denote the polar coordinates centered in 0 such that Γ corresponds to θ = 0. If c 6= 0, the function

u0 does only belong to H
3
2−δ(Ω−) for any δ > 0. The condition f ∈ C∞(Ω−) with compact support is no

more sufficient to ensure u0 ∈ H∞(Ω−), preventing the construction of the asymptotic expansions (for both the
transmission and the approximate problems) as exposed in Section 1.2.

2.1. The first terms in the asymptotic expansions

In [22], the asymptotic expansion for the approximate problem (where a Robin condition is imposed on Γ)
has been built. At first order, it takes the form

vε(x) = u0(x) + γ
√
ε (Z− s)

(
x
ε

)
+ εv1(x) + γε log εv1,0(x) +OH1(Ω−)

(
ε

3
2 log2 ε

)
, (13)

where the profile Z solves the following problem in the half-plane Π− (see Figure 5)
−α∆Z = 0 in Π−,

∂νZ = 0 on GN,

Z + α∂νZ = 0 on G,

Z ∼ s at infinity,

(14)
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and v1 can be computed from u0
reg and Z, via a problem similar to equations (8). It is enough for the following

to point out that

• The profile Z has the following behavior as |X| → ∞ (θ denotes the polar angle centered at 0)

Z(X) = s(X) + `(X) + λs?(X) +O
(
|X|− 3

2 log2 |X|
)
, (15)

where `(X) =
1

2π
√
|X|

(
(π − θ) cos θ2 + log |X| sin θ

2

)
, and s?(X) =

1√
|X|

sin
(
θ
2

)
.

• The term v1 admits the splitting

v1(x) = v1,1(x) + γv1,2(x) + γλv1,3(x), (16)

with some terms v1,i which do not depend on any coefficient.

Π−

GN G
0
•

Π−

GN

G

G+

Π+G+ 1

0
•

Figure 5. The infinite domains for the profile definitions.

Meanwhile, it is possible to extend results from [18] to the transmission problem in the domain of Figure 4
(see also [43] for an approach with matched asymptotic expansions of similar problems). The solution uε admits
the following expansion in Ω−

uε(x) = u0(x) + γ
√
ε (K− s)

(
x
ε

)
+ εu1(x) + γε log εu1,0(x) +OH1(Ω−)

(
ε

3
2 log2 ε

)
, (17)

where K solves the following transmission problem in the infinite half space with semi-strip of thickness 1,
see Fig 5 

−α∆K− = 0 in Π−,

−∆K+ = 0 in Π+,

∂νK− = 0 on GN,

K+ = 0 on G+,

K− = K+ on G,

α∂νK− = ∂νK+ on G,

K ∼ s at infinity.

(18)

Again, the following description will be useful

• The profile K has the following behavior as |X| → ∞

K(X) = s(X) + `(X) + µs?(X) +O
(
|X|− 3

2 log2 |X|
)
. (19)

• The term u1 admits the splitting

∀x ∈ Ω−, u1(x) = u1,1(x) + γu1,2(x) + γµu1,3(x). (20)
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Figure 6. Error ‖uε − vε‖ inside Ω− with respect to ε for the nonsmooth case, see Figure 4.

2.2. Lack of performance of classical approximate boundary conditions

In the case of a corner domain with a thin layer, is has been proven in [57] that the performance of the
approximate boundary conditions is much less than in smooth domains. The situation is the same here: following
the same technique, we can show that expansions (17) and (13) compare as follows

∀i = 0, 1, 2, 3, u1,i = v1,i,

so that

∀x ∈ Ω−, uε(x)− vε(x) = γ
√
ε(K− Z)

(
x
ε

)
+ γε(µ− λ)u1,2(x) +OH1(Ω−)

(
ε

3
2 log2 ε

)
. (21)

Moreover, using (15) and (19), we immediately get

K(X)− Z(X) = (µ− λ)s?(X) +O
(
|X|− 3

2 log2 |X|
)
. (22)

As a direct consequence of (21) and (22), we obtain the following estimates

‖uε(x)− vε(x)‖L2(Ω−) = O(ε) and ‖uε(x)− vε(x)‖H1(Ω−) = O(
√
ε). (23)

These estimates are generically optimal, and illustrated by numerical simulations, see Figure 6.

2.3. An attempt towards improved approximate boundary conditions

The aim of this section is to present some ideas to improve the approximation of the thin layer problem. The
starting point is relation (21), where it is clear that the main terms are as follows

• In H1-norm, the limiting term is γ
√
ε(K− Z)

(
x
ε

)
. The correction using the profile K− Z is the concern

of §2.3.1.

• In the L2-norm, the terms γε(µ − λ)u1,2(x) and γ
√
ε(K − Z)

(
x
ε

)
are both limiting. But an explicit

estimation shows that

‖γ
√
ε(K− Z)

(
x
ε

)
‖L2(Ω−) = |µ− λ| c ε+ O(ε),
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for some constant c. The (extraordinary) situation where µ = λ would be particularly favorable. This
remark will lead to the strategy developed in §2.3.2.

2.3.1. Correction with transmission profiles

A first idea consists in correcting the approximate solution vε with the difference γ
√
ε(K−Z)

(
x
ε

)
, the profiles

Z and K being computed as a preliminary step. This kind of method has been introduced in [14, 24, 26] for
similar problems, see also a remark in [27, Appendix B.5.2]. Here are the steps of the algorithm

• Step 1. Compute Z and K by solving problems (14) and (18). Since these problems are posed in an
infinite domain, a specific numerical strategy is needed. Many possibilities have been investigated in
the literature, such as the infinite elements method introduced in [13,60], which directly incorporate the
infinite part of the domain inside the Galerkin method. The other methods start to bound the domain
with an artificial boundary on which some appropriate boundary condition is imposed, see [30,35,40] in
the context of absorbing conditions, or [45] for integral representations. We have here chosen to bound
the domain with a disk of radius R and impose on the circle the following condition, which is suggested
by relation (15)

D + 2R∂νD = 0, with D = Z− s− `,
This computation is made on a fixed grid thanks to a nodal finite element method in the presented
simulations.

• Step 2. For fixed ε, compute the solution vε to the approximate problem on a mesh of Ω−.

• Step 3. Compute the term
γ
√
ε(K− Z)

(
x
ε

)
on the mesh where vε has been computed (this needs a mesh transfer).

• Step 4. Form the correction

ṽε(x) = vε(x) + γ
√
ε(K− Z)

(
x
ε

)
,

which gives a better approximation in Ω− of the solution uε of the transmission problem.

Of course, the computational cost of Step 1. needs to be relatively cheap! But remember that the computation
of the profiles Z and K can be done once and used to approximate different transmission problems with various
right-hand sides f , and values of ε.

The above discussion about the asymptotic expansions – see (21) – leads to the following error estimates

‖uε − ṽε‖L2(Ω−) = O(ε) and ‖uε − ṽε‖H1(Ω−) = O(ε),

which show that only an improved performance can be expected for the H1-norm. This is in accordance with
the numerical tests. In Figures 8 and 9 the isovalues of the differences uε − vε (without correction) and uε − ṽε
(with profile correction) are plotted. This is clear that the behavior near the point 0 has been correctly taken
into account.

Remark 2.1. With the same idea of correction by a profile, we can consider the approximation

v̌ε(x) = u0 + γ
√
ε(K− s)(x

ε ),

which also satisfies
‖uε − v̌ε‖L2(Ω−) = O(ε) and ‖uε − v̌ε‖H1(Ω−) = O(ε).

The advantage is to avoid the resolution of the Robin problem, replaced by the limit (Dirichlet) problem. From
the computational cost point of view, the difference is not very relevant, but if we wish to perform several
simulations for different values of ε, the computation of u0 is done once and for all.
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epsilon
10-2 10-1 100

E
rr

or

10-4

10-3

10-2

10-1

L2-norm (no correction)
H1-seminorm (no correction)
L2-norm (correction)
H1-seminorm (correction)

O(ε)

O(
√
ε)

Figure 7. Errors ‖uε − vε‖ and ‖uε − ṽε‖ inside Ω− with respect to ε for the nonsmooth case.

Figure 8. Isovalues for uε − vε for
ε ' 0.16 (L∞-norm ' 2 · 10−2).

Figure 9. Isovalues for uε − ṽε for
ε ' 0.16 (L∞-norm ' 3 · 10−3).

2.3.2. A multiscale approximate boundary condition

In general, the coefficients µ and λ arising in the behavior of the profiles Z and K at infinity, do not have the
same value. Our idea consists in replacing α in the condition Z+α∂νZ = 0 on G with a function α• : R+ → R+,
given by (see also Fig. 10)

α•(ρ) =


α+

(
ρ
ρ0
− 1
)

(α− Cα) for ρ ≤ ρ0,

α for ρ > ρ0,

where ρ0 and Cα are non-negative constants.
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Figure 10. The function ρ 7→ α•(ρ).

The profile problem (14) is then replaced with
−α∆Z• = 0 in Π−,

∂νZ• = 0 on GN,

Z• + α•(|X|)∂νZ• = 0 on G,

Z• ∼ s at infinity,

(24)

and, similarly to (15), we have

Z•(X) = s(X) + `(X) + λ•s
?(X) +O

(
|X|− 3

2 log2 |X|
)
. (25)

Remark 2.2. The coefficient α• is not a smooth function. This, however, does not lead to the apparition of
strong singularities (only the derivatives of order 3 are really affected). A smoothing would be possible, but is
not really necessary.

Our aim is to see if we can adjust ρ0 in order to have λ• = µ in (22). A direct consequence will be an
improvement of the L2-norm estimate as follows

‖uε − vε•‖L2(Ω−) = O(ε
3
2 ),

where vε• solves the following problem

−α∆vε• = f in Ω−,

vε• = 0 on Γ−,

∂νv
ε
• = 0 on ΓL ∪ ΓR,

vε• + εα•
(∣∣x
ε

∣∣) ∂νvε• = 0 on Γ.

(26)

As above, we compute the profile Z• on a bounded domain with a disk of radius R and impose, from (25),
on the circle the following condition:

Z• + 2R∂νZ• = g,

where g = s
R + α

2πR
− 3

2 sin
(
θ
2

)
. The following approximation of λ• is used – with ΓC = {X ∈ Π− ; |x| = R}

λ• '
2√
Rπ

∫
ΓC

[Z•(X)− s(X)− `(X)] sin

(
θ

2

)
,
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which is easy to compute once we know Z• and s and `. The same expression is available with µ, replacing Z•
with K.

A comparison principle on the bounded domain allows us to prove that the mapping α• 7→ Z• is increasing
and continuous. For the parameters α = 2 and Cα = α

2 , we observe that λ• = µ for the value ρ0 ' 0.02,
see Fig. 11. In Fig.12, the convergence rate of the quantity ‖uε − vε•‖L2(Ω−) is plotted with respect to ρ0. We
observe that a better convergence rate is obtained for ρ0 ' 0.02, which is consistent. Let us concede that
the rate H1-norm has not changed. Nevertheless a closer look to the absolute errors show that for the value
ρ0 ' 0.02, even the H1-norms are smaller than for ρ0 = 0 (standard approximate boundary condition).

0 0.02 0.04 0.06 0.08 0.1
0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

ρ0 7→ λ•

µ

ρ0

Figure 11. Graph of the function ρ0 7→ λ•.

More details on the presented techniques will be found in the forthcoming article [8].

The presented numerical simulations have been performed thanks to the finite element codes Mélina [47]
and FreeFem++ [41].
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