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1. Introduction

The aim of the topological sensitivity analysis is to provide an asymptotic expansion of a
shape functional with respect to the size of a small inclusion inserted inside the domain. To
present the main idea, let us consider a domain Ω ⊂ Rd (d ∈ {2, 3}) and a cost function
j(Ω) = J(uΩ), where uΩ is the solution to a given PDE defined over Ω. For a small parameter
ε > 0, let Ωε be the domain obtained by removing a small part x0 + εω from Ω, where x0 ∈ Ω
and ω is a fixed bounded domain in Rd containing the origin, that is, Ωε = Ω\x0 + εω. In
general, we have the following asymptotic expansion (as ε→ 0+):

j(Ω)− j(Ωε) = f(ε)g(x0) + o(f(ε)),

where f(ε) > 0 and f(ε)→ 0+ as ε→ 0+. The function g is independent on ε and it is called
topological gradient or topological derivative. To minimize the criterion j, one has to create
holes at some points where the topological gradient is negative.

The topological sensitivity analysis has been studied for different kinds of topology optimiza-
tion problems: the elasticity case [12], the Poisson equation [13], the Navier-Stokes equation [4],
the Helmholtz equation [26], the heat equation [5] and the wave equation [5]. For other works
on topological sensitivity analysis, we refer the reader to [3, 9, 14, 19, 22, 23, 24, 25, 27, 28].

In this paper, we apply the topological-shape sensitivity method to obtain the topological
derivative for the modified Helmholtz equation under an impedance condition prescribed on
the boundary of a hole.

The outline of this paper is as follows. The problem of interest is formulated in Section 2. In
Section 3, we present some preliminaries including the adjoint method introduced in [22] and
other useful results that will be used to establish our main result. The asymptotic analysis and
the main result is presented in Section 4. Some numerical experiments are given in Section 5.

2. Problem formulation

Let Ω be a regular bounded domain in R2 with a regular boundary ∂Ω. Let uΩ ∈ H1(Ω) be
the unique solution (weak solution) to the modified Helmholtz equation

−∆uΩ + auΩ = 0 in Ω (2.1)

with the Neumann boundary condition

∂uΩ

∂n
= ζ on ∂Ω, (2.2)

where a > 0 is a constant and ζ ∈ H−1/2(∂Ω).
1
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Let J : H1/2(∂Ω)→ R be a given differentiable mapping, and let

j(Ω) := J(uΩ|∂Ω),

where uΩ|∂Ω denotes the trace of uΩ ∈ H1(Ω) on ∂Ω. Let pΩ ∈ H1(Ω) be the unique solution
(weak solution) to the modified Helmholtz equation (2.1) with the boundary condition

∂pΩ

∂n
= −DJ(uΩ|∂Ω) on ∂Ω, (2.3)

where DJ(uΩ|∂Ω) ∈ H−1/2(∂Ω) denotes the derivative of J at the point uΩ|∂Ω.

For any sufficiently small parameter ε > 0, consider the perforated domain Ωε := Ω\B(x0, ε),

where x0 ∈ Ω and B(x0, ε) is the closure of the open ball of center x0 and radius ε. Possibly
shifting the origin of the coordinate system, we assume for convenience that x0 = 0. Let
uΩε ∈ H1(Ωε) be the unique solution (weak solution) to the perturbed modified Helmholtz
equation

−∆uΩε + auΩε = 0 in Ωε (2.4)

with an impedance condition on the boundary of the hole

uΩε + α
∂uΩε

∂n
= 0 on ∂B(x0, ε) (2.5)

and the Neumann boundary condition on ∂Ω

∂uΩε

∂n
= ζ on ∂Ω, (2.6)

where α > 0 is a constant.
For all ε > 0 (small enough), let j(Ωε) := J(uΩε |∂Ω). The main goal of this paper is to derive

an asymptotic expansion of the variation j(Ωε)− j(Ω) with respect to ε.

3. Preliminaries

3.1. The adjoint method. We recall briefly the adjoint technique introduced in [22]. Let H
be a Hilbert space (over R) endowed with the norm ‖·‖H . Let {aε(·, ·)}ε≥0 be a family of bilinear
and continuous forms on H. We suppose that there exists a constant c > 0 (independent on ε)
such that

aε(u, u) ≥ c‖u‖2
H , ∀u ∈ H.

For all ε ≥ 0, let uε ∈ H be the unique solution to the variational problem

aε(uε, v) = `(v), ∀ v ∈ H,
where ` ∈ H ′. Let J : H → R be differentiable function, and let

F (ε) := J(uε), ∀ ε ≥ 0.

We suppose that the following condition holds: there exists a bilinear and continuous form δa
on H such that

‖aε − a0 − f(ε)δa‖L2(H) = o(f(ε)), as ε→ 0+,

where f(ε) > 0 for all ε > 0 (small enough) and f(ε) → 0+ as ε → 0+. Here, ‖ · ‖L2(H) is the
standard norm on L2(H), the set of bilinear and continuous forms on H.

The following result provides us an asymptotic expansion of the variation F (ε) − F (0) as
ε→ 0+.

Lemma 3.1. Under the above conditions, we obtain that

(i) ‖uε − u0‖H = O(f(ε));
(ii) F (ε) − F (0) = f(ε)δa(u0, p0) + o(f(ε)), where p0 ∈ H is the adjoint state, the unique

solution to the adjoint problem

a0(v, p0) = −〈DJ(u0), v〉H′,H , ∀ v ∈ H.
Here, 〈·, ·〉H′,H denotes the duality product between H and H ′.
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3.2. Some useful inequalities. In this part, we present some inequalities involving modified
Bessel functions of first and second kinds. Such inequalities will be useful to establish our main
result.

Recall that the modified Bessel functions of the first kind (In)n∈Z are defined by

In(z) =
1

π

∫ π

0

ez cos θ cos(nθ) dθ, ∀ z ≥ 0.

The modified Bessel functions of the second kind (Kn)n∈Z are defined by

Kn(z) =

∫ ∞
0

e−z cosh t cosh(nt) dt, ∀ z ≥ 0.

The following results exist in [16, 17].

Lemma 3.2. We have

ex−y
(
x

y

)n
<
In(x)

In(y)
<

(
x

y

)n
<
Kn(y)

Kn(x)
,

where y > x > 0 and n ∈ N.

The following result exists in [6].

Lemma 3.3. For all u > 0, we have

0 ≤ I ′n(u)

In(u)
≤
√
u2 + n2

u
;

K ′n(u)

Kn(u)
≤ −
√
u2 + n2

u
,

where n ∈ N.

The following result exists in [18].

Lemma 3.4. For all u > 0, we have

Kn+1(u)

Kn(u)
<
n+ 1 +

√
(n+ 1)2 + u2

u
, ∀n ∈ N.

The following results exist in [1].

Lemma 3.5. For all n ∈ N and u > 0, we have

Θ′n(u) = Θn+1(u) +
n

u
Θn(u),

where Θn denotes In or (−1)nKn.

Lemma 3.6. We have

I0(0) = 0, I1(0) = 0, K0(u) ∼ − lnu, as u→ 0 + .

Lemma 3.7. As u→ 0+, we have the following asymptotic expansions:

I0(u) = 1+o(u), I1(u) =
u

2
+o(u2), K0(u) = − (ln(u/2) + γ) I0(u)+o(u), k1(u) = 1/u+O(1),

where γ is the Euler constant.

Lemma 3.8. For all n ∈ N and z > 0, we have

W (In(z), Kn(z)) := In(z)Kn+1(z) + In+1(z)Kn(z) =
1

z
.

Lemma 3.9. For u > 0 and n→∞, we have

In(u) ∼ 1√
2πn

(eu
2n

)n
, Kn(u) ∼

√
π

2n

(eu
2n

)−n
.
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4. Asymptotic analysis and main result

Let

F (ε) :=

{
J(uΩε |∂Ω) if ε > 0,

J(uΩ|∂Ω) if ε = 0.
(4.1)

Note that uΩε ∈ H1(Ωε), which is a functional space depending on ε. So, if we want to derive
an asymptotic expansion of the variation F (ε) − F (0), we cannot apply directly Lemma 3.1,
which requires a fixed functional space (independent on ε). A truncation technique (see [22])
can be used to reformulate our problem in a fixed functional space.

4.1. Reformulation of the problem in a fixed functional space. Let R > 0 be such the
closed ball B(x0, R) ⊂ Ω. It is supposed throughout this paper that ε remains small enough so

that B(x0, ε) ⊂ B(x0, R). Let ΩR := Ω\B(x0, R) be the truncated open subset. We denote by
∂B(x0, R) the boundary of the ball B(x0, R). For ε > 0, we denote by D(ε, R) the open subset

B(x0, R)\B(x0, ε). For ε > 0 and ϕ ∈ H1/2(∂B(x0, R)), let uϕε ∈ H1(D(ε, R)) be the unique
solution to


−∆uϕε + auϕε = 0 in D(ε, R),
uϕε = ϕ on ∂B(x0, R),

uϕε + α∂u
ϕ
ε

∂n
= 0 on ∂B(x0, ε),

(4.2)

and uϕ0 ∈ H1(B(x0, R)) be the unique solution to

{
−∆uϕ0 + auϕ0 = 0 in B(x0, R),
uϕ0 = ϕ on ∂B(x0, R).

(4.3)

For all ε ≥ 0, let Tε : H1/2(∂B(x0, R)) → H−1/2(∂B(x0, R)) be the Dirichlet-to-Neumann
operator defined by

Tεϕ := ∇uϕε · n|∂B(x0,R), ∀ϕ ∈ H1/2(∂B(x0, R)), (4.4)

where the unit normal n|∂B(x0,R) on ∂B(x0, R) is is chosen outward to B(x0, R).
For ε ≥ 0, let uε ∈ H1(ΩR) be the unique solution (weak solution) to the truncated problem



−∆uε + auε = 0 in ΩR,

∂uε
∂n

+ Tεuε = 0 on ∂B(x0, R),

∂uε
∂n

= ζ on ∂Ω.

(4.5)

Proposition 4.1. For ε > 0, the restriction to ΩR of the solution uΩε to (2.4)-(2.6) is the
solution uε to (4.5).

Proof. We have to show that wε := uΩε|ΩR
∈ H1(ΩR) satisfies the variational problem∫

ΩR

(∇wε · ∇v + awεv) dx+

∫
∂B(x0,R)

(Tεwε)v d∂B(x0, R) =

∫
∂Ω

ζv d∂Ω, (4.6)

for all v ∈ H1(ΩR).
Let v ∈ H1(ΩR). Let ṽ ∈ H1(Ωε) such that ṽ|ΩR

= v. We have∫
Ωε

(∇uΩε · ∇ṽ + auΩεṽ) dx+
1

α

∫
∂B(x0,ε)

uΩεṽ d∂B(x0, ε) =

∫
∂Ω

ζṽ d∂Ω.
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This implies that∫
ΩR

(∇wε · ∇v + awεv) dx+

(∫
D(ε,R)

(∇uΩε · ∇ṽ + auΩεṽ) dx+
1

α

∫
∂B(x0,ε)

uΩεṽ d∂B(x0, ε)

)
=

∫
∂Ω

ζv d∂Ω. (4.7)

On the other hand, we have (in the sense of distributions) that

−∆uΩε + auΩε = 0 in D(ε, R),

which implies that∫
D(ε,R)

(∇uΩε · ∇ṽ + auΩεṽ) dx+
1

α

∫
∂B(x0,ε)

uΩεṽ d∂B(x0, ε) =

∫
∂B(x0,R)

(Tεwε)v d∂B(x0, R).

Then, we obtain the desired result by injecting the above expression in (4.7). �

Similarly, we can prove the following result.

Proposition 4.2. The restriction to ΩR of the solution uΩ to (2.1)-(2.2) is the solution u0 to
(4.5) for ε = 0.

We define now the truncated adjoint state p0 ∈ H1(ΩR) solution (weak solution) to

−∆p0 + ap0 = 0 in ΩR,

∂p0

∂n
+ T0p0 = 0 on ∂B(x0, R),

∂p0

∂n
= −DJ(u0|∂Ω) on ∂Ω.

(4.8)

Similarly, we have the following result.

Proposition 4.3. The restriction to ΩR of the solution pΩ to (2.1),(2.3) is the solution p0 to
(4.8).

From the above propositions, the function F (ε) defined by (4.1) can be writing as

F (ε) =

{
J(uε|∂Ω) if ε > 0,
J(u0|∂Ω) if ε = 0.

On the other hand, for all ε ≥ 0, uε ∈ H1(ΩR) is the unique solution to the variational problem

aε(uε, v) = `(v), ∀ v ∈ H1(ΩR),

where

aε(u, v) :=

∫
ΩR

(∇u · ∇v + auv) dx+

∫
∂B(x0,R)

(Tεu)v d∂B(x0, R) (4.9)

and

`(v) :=

∫
∂Ω

ζv d∂Ω,

for all u, v ∈ H1(ΩR).
We now have at our disposal the fixed Hilbert space H := H1(ΩR) required by the adjoint

method.

4.2. Expressions of the Dirichlet-to-Neumann operators for ε ≥ 0. Thanks to the par-
ticular shape of the hole (circular hole), it is possible to obtain an explicit expression of Tεϕ
for every ε ≥ 0 and ϕ ∈ H1/2(∂B(x0, R)).
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4.2.1. The case ε = 0. We have the following result.

Proposition 4.4. For every ϕ ∈ H1/2(∂B(x0, R)), the solution uϕ0 to (4.3) and the operator
T0 are given by the explicit expressions:

uϕ0 (r, θ) =
∑
n∈Z

In(
√
ar)

In(
√
aR)

ϕne
inθ

and

T0ϕ(R, θ) =
∑
n∈Z

√
a
I ′n(
√
aR)

In(
√
aR)

ϕne
inθ,

where (r, θ) are the polar coordinates in the plane and (ϕn)n∈Z are the Fourier coefficients of ϕ.

Proof. We write the solution in the following form:

uϕ0 (r, θ) =
∑
n∈Z

an(r)einθ.

We obtain that
r2a′′n(r) + ra′n(r)− (r2a+ n2)an(r) = 0,

for all n ∈ Z. In(
√
ar) and Kn(

√
ar) are the two linearly independent solutions to the above

modified Bessel’s equation. So, we get that

an(r) = AnIn(
√
ar) +BnKn(

√
ar),

for all n ∈ Z, where An and Bn are constants. Since uϕ0 ∈ H1(B(x0, R)), we have Bn = 0, for
all n ∈ Z. Thus, we have

uϕ0 (r, θ) =
∑
n∈Z

AnIn(
√
ar)einθ.

Using the boundary condition on ∂B(x0, R), we obtain the desired result. The expression of
Tεϕ follows by taking the normal derivative of uϕ0 on ∂B(x0, R). �

Proposition 4.5. We have∫
∂B(x0,R)

(T0ϕ)ϕ d∂B(x0, R) ≥ 0, for all ϕ ∈ H1/2(∂B(x0, R)).

Proof. From Proposition 4.4, we have∫
∂B(x0,R)

(T0ϕ)ϕ d∂B(x0, R) = 2πR
∑
n∈Z

√
a
I ′n(
√
aR)

In(
√
aR)
|ϕn|2.

On the other hand, from Lemma 3.3, we have

I ′n(
√
aR)

In(
√
aR)

≥ 0,

for all n. This makes end to the proof. �

We observe easily, that

Proposition 4.6.∫
∂B(x0,R)

(T0ϕ)δ d∂B(x0, R) =

∫
∂B(x0,R)

(T0δ)ϕ d∂B(x0, R),

for all ϕ, δ ∈ H1/2(∂B(x0, R)).

The following result follows immediately from Proposition 4.6.

Proposition 4.7. For all v ∈ H1(ΩR), we have

a0(v, p0) =< −DJ(u0|∂Ω), v >H−1/2(∂Ω),H1/2(∂Ω),

where < ·, · >H−1/2(∂Ω),H1/2(∂Ω) is the dual product between H−1/2(∂Ω) and H1/2(∂Ω).
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4.2.2. The case ε > 0. At first, we consider the following notations:

A(n, ε) := Kn(
√
aε)− α

√
aK ′n(

√
aε);

B(n, ε) := In(
√
aε)− α

√
aI ′n(
√
aε);

χ(n, ε) :=
Kn(
√
aR)B(n, ε)

In(
√
aR)A(n, ε)

,

where n ∈ Z and ε > 0.
The proof of the following result is similar to the proof of Proposition 4.4.

Proposition 4.8. For all ε > 0, for every ϕ ∈ H1/2(∂B(x0, R)), the solution uϕε to (4.2) and
the operator Tε are given by the explicit expressions:

uϕε (r, θ) =
∑
n∈Z

A(n, ε)In(
√
ar)− B(n, ε)Kn(

√
ar)

A(n, ε)In(
√
aR)− B(n, ε)Kn(

√
aR)

ϕne
inθ

and

Tεϕ(R, θ) =
∑
n∈Z

√
a
A(n, ε)I ′n(

√
aR)− B(n, ε)K ′n(

√
aR)

A(n, ε)In(
√
aR)− B(n, ε)Kn(

√
aR)

ϕne
inθ.

We have the following result.

Proposition 4.9. For ε > 0 small enough, we have∫
∂B(x0,R)

(Tεϕ)ϕ d∂B(x0, R) ≥ 0, for all ϕ ∈ H1/2(∂B(x0, R)).

Proof. We have∫
∂B(x0,R)

(Tεϕ)ϕ d∂B(x0, R) = 2πR
∑
n∈Z

√
a
A(n, ε)I ′n(

√
aR)− B(n, ε)K ′n(

√
aR)

A(n, ε)In(
√
aR)− B(n, ε)Kn(

√
aR)
|ϕn|2.

We have to show that

A(n, ε)I ′n(
√
aR)− B(n, ε)K ′n(

√
aR)

A(n, ε)In(
√
aR)− B(n, ε)Kn(

√
aR)

≥ 0, ∀n ∈ Z. (4.10)

We distinguish two cases.
Case 1. n 6= 0. We have

A(n, ε)I ′n(
√
aR)− B(n, ε)K ′n(

√
aR)

A(n, ε)In(
√
aR)− B(n, ε)Kn(

√
aR)

=
I ′n(
√
aR)

In(
√
aR)

1

1− χ(n, ε)

[
1− K ′n(

√
aR)In(

√
aR)

I ′n(
√
aR)Kn(

√
aR)

χ(n, ε)

]
.

(4.11)
On the other hand, we can write that

χ(n, ε) =
Kn(
√
aR)

In(
√
aR)

In(
√
aε)

Kn(
√
aε)

1− α
√
a I
′
n

In
(
√
aε)

1− α
√
aK

′
n

Kn
(
√
aε)

. (4.12)

We claim that there exists a constant c (independent on n and ε) such that

|χ(n, ε)| ≤ cε2, ∀n ∈ Z\{0}. (4.13)

From Lemma 3.3, we have √
aε2 + n2

√
aε

≤
∣∣∣∣K ′nKn

(
√
aε)

∣∣∣∣ ,
which implies that

α
√
aε2 + n2

ε
− 1 ≤

∣∣∣∣1− α√aK ′nKn

(
√
aε)

∣∣∣∣ (4.14)

Again, form Lemma 3.3, we have

0 ≤ I ′n
In

(
√
aε) ≤

√
aε2 + n2

√
aε

,
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which implies that ∣∣∣∣1− α√aI ′nIn (
√
aε)

∣∣∣∣ ≤ 1 +
α
√
aε2 + n2

ε
. (4.15)

Using (4.14) and (4.15) (for ε small enough and n 6= 0), we obtain that∣∣∣∣∣ 1− α
√
a I
′
n

In
(
√
aε)

1− α
√
aK

′
n

Kn
(
√
aε)

∣∣∣∣∣ ≤ 1 + ε
α
√
aε2+n2

1− ε
α
√
aε2+n2

.

Since

lim
n→∞,ε→0

1 + ε
α
√
aε2+n2

1− ε
α
√
aε2+n2

= 1,

there exists a constant c > 0 (independent on n and ε) such that∣∣∣∣∣ 1− α
√
a I
′
n

In
(
√
aε)

1− α
√
aK

′
n

Kn
(
√
aε)

∣∣∣∣∣ ≤ c, (4.16)

for all n 6= 0 and ε > 0 (small enough). On the other hand, since 0 < ε < R, we have

0 <
Kn(
√
aR)

Kn(
√
aε)

<
ε

R
. (4.17)

Using Lemma 3.2, we obtain that

0 <
In(
√
aε)

In(
√
aR)

<
ε

R
. (4.18)

Now, our claim (4.13) follows immediately from (4.16), (4.17) and (4.18).
From (4.13), to obtain (4.10) (for n 6= 0), we have only to prove that for ε > 0 (small enough),

1− K ′n(
√
aR)In(

√
aR)

I ′n(
√
aR)Kn(

√
aR)

χ(n, ε) ≥ 0. (4.19)

Using Lemma 3.4 and Lemma 3.5, we obtain that

0 ≤ −K
′
n(
√
aR)

Kn(
√
aR)

≤
1 +

√
(n+ 1)2 + aR2

√
aR

. (4.20)

Using Lemma 3.3 and 3.5, we obtain that

0 ≤ In(
√
aR)

I ′n(
√
aR)

=
1

In+1

In
(
√
aR) + n√

aR

≤
√
aR

n
. (4.21)

From (4.20) and (4.21), we have

0 ≤ −K
′
n(
√
aR)In(

√
aR)

I ′n(
√
aR)Kn(

√
aR)

≤
1 +

√
(n+ 1)2 + aR2

n
,

which implies that the positive sequence

{
−K

′
n(
√
aR)In(

√
aR)

I ′n(
√
aR)Kn(

√
aR)

}
n6=0

is bounded. Thus, from

(4.13), we obtain (4.19).
Case 2. n = 0. We have to show that

A(0, ε)I ′0(
√
aR)− B(0, ε)K ′0(

√
aR)

A(0, ε)I0(
√
aR)− B(0, ε)K0(

√
aR)

≥ 0. (4.22)

Using Lemma 3.6, we obtain that

lim
ε→0+

A(0, ε) = +∞

and
lim
ε→0+

B(0, ε) = 1.
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Thus, we obtain that

lim
ε→0+

A(0, ε)I ′0(
√
aR)− B(0, ε)K ′0(

√
aR)

A(0, ε)I0(
√
aR)− B(0, ε)K0(

√
aR)

=
I ′0
I0

(
√
aR) ≥ 0.

Then, for ε small enough, we have (4.26). �

The following result follows immediately from Proposition 4.9.

Proposition 4.10. There exists a constant c > 0 (independent on ε) such that for ε ≥ 0 small
enough, we have

aε(u, u) ≥ c‖u‖2
H1(ΩR), ∀u ∈ H1(ΩR).

4.3. Asymptotic expansion of Tε −T0 as ε→ 0+. We introduce the linear and continuous
mapping δT : H1/2(∂B(x0, R))→ H−1/2(∂B(x0, R)) defined by

δTϕ :=
1

αRI2
0 (
√
aR)

ϕ0,

for all ϕ ∈ H1/2(∂B(x0, R)).

We have the following result.

Proposition 4.11. We have

‖Tε − T0 − εδT‖L(H1/2(∂B(x0,R)),H−1/2(∂B(x0,R))) = o(ε), as ε→ 0+,

where ‖ · ‖L(H1/2(∂B(x0,R)),H−1/2(∂B(x0,R))) denotes the standard norm on the space of linear and

continuous mappings from H1/2(∂B(x0, R)) to H−1/2(∂B(x0, R)).

Proof. For ϕ ∈ Hs(∂B(x0, R)), let

‖ϕ‖s,∂B(x0,R) :=

(∑
n∈Z

|ϕ|2n(1 + |n|)2s

)1/2

.

It is well-known that ‖ · ‖s,∂B(x0,R) is a norm on Hs(∂B(x0, R)) that is equivalent to its usual
norm.

Let ϕ ∈ H1/2(∂B(x0, R)). From Propositions 4.4 and 4.8, and using Lemmas 3.8 and 3.5, we
have

(Tε − T0)ϕ =
ϕ0

RI0(
√
aR)K0(

√
aR)

1
I0(
√
aR)

K0(
√
aR)
A(0,ε)
B(0,ε)

− 1
+Rεϕ, (4.23)

where

Rεϕ :=
∑
|n|≥1

B(n, ε)ϕne
inθ

RIn(
√
aR)[A(n, ε)In(

√
aR)− B(n, ε)Kn(

√
aR)]

.

Using Lemma 3.7, we obtain that

A(0, ε) =
α

ε
− ln ε+O(1), ε→ 0+ (4.24)

and
B(0, ε) = 1 + o(ε), ε→ 0+. (4.25)

Thanks to (4.24) and (4.25), (4.23) becomes

(Tε − T0 − εδT )ϕ = O(ε2 ln ε)δTϕ+Rεϕ, ε→ 0+.

To obtain the desired result, we have only to show that

‖Rεϕ‖−1/2,∂B(x0,R) = o(ε), ε→ 0+. (4.26)

We have
‖Rεϕ‖2

−1/2,∂B(x0,R) =
∑
|n|≥1

C(n, ε)2(1 + |n|)|ϕn|2,
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where

C(n, ε) :=
|χ(n, ε)|

(1 + |n|)RIn(
√
aR)Kn(

√
aR)|1− χ(n, ε)|

.

Using Lemma 3.9, we obtain that

(1 + |n|)RIn(
√
aR)Kn(

√
aR)→ R

2
, as n→ +∞. (4.27)

On the other hand, from (4.13), there exists a constant c > 0 (independent on n and ε) such
that

|χ(n, ε)|
|1− χ(n, ε)|

≤ cε2, (4.28)

for all n ∈ Z\{0} and ε > 0 (small enough). Now, (4.26) follows from (4.27) and (4.28). �

4.4. Asymptotic expansion of aε − a0 as ε→ 0+. From (4.9), for all ε > 0, we have

(aε − a0)(u, v) =

∫
∂B(x0,R)

[(Tε − T0)u]v d∂B(x0, R), ∀u, v ∈ H1(ΩR).

Then, for all u, v ∈ H1(ΩR), we have

(aε − a0)(u, v) = ε

∫
∂B(x0,R)

(δTu)v d∂B(x0, R) +

∫
∂B(x0,R)

[(Tε − T0 − εδT )u]v d∂B(x0, R)

= εδa(u, v) +

∫
∂B(x0,R)

[(Tε − T0 − εδT )u]v d∂B(x0, R),

where

δa(u, v) =

∫
∂B(x0,R)

(δTu)v d∂B(x0, R), ∀u, v ∈ H1(ΩR). (4.29)

Now, using Proposition 4.11, we obtain the following result.

Proposition 4.12. We have

‖aε − a0 − εδa‖L2(H1(ΩR)) = o(ε), as ε→ 0+.

4.5. Main result. Now, we are ready to state and prove our main result.

Theorem 4.1. We have the following asymptotic expansions:

J(uΩε |∂Ω) = J(uΩ|∂Ω) +
2πε

α
uΩ(x0)pΩ(x0) + o(ε), as ε→ 0+.

Proof. Using Propositions 4.10, 4.1, 4.2 and 4.12, and Lemma 3.1, we obtain that

J(uΩε |∂Ω)− J(uΩ|∂Ω) = F (ε)− F (0)

= εδa(u0, p0) + o(ε)

= εδa(u0, p0) + o(ε)

= εδa(uΩ|ΩR
, pΩ|ΩR

) + o(ε)

= ε

∫
∂B(x0,R)

(δTuΩ)pΩ d∂B(x0, R) + o(ε)

=
2πε

αI0(
√
aR)2

uΩ
0pΩ

0 + o(ε),

where

uΩ
0 =

1

2π

∫ 2π

0

uΩ(R, θ) dθ and pΩ
0 =

1

2π

∫ 2π

0

pΩ(R, θ) dθ.

Since −∆uΩ + auΩ = 0 in B(x0, R), we have

uΩ
0 = I0(

√
aR)uΩ(x0).
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Similarly, we have
pΩ

0 = I0(
√
aR)pΩ(x0).

Then, the result follows. �

5. Numerical results

Recently, topological derivative has been used for solving inverse problems, and more precisely
for imaging small inclusions, see [10, 8, 11, 24, 15] for instance. Let us describe the situation
which will be under discussion here. Given a bounded domain Ω and an inclusion ω ⊂ Ω
(not necessarily connected), we denote by Ωω the perforated domain Ω \ ω. We consider the
scattering of several plane waves g` (` = 1, . . . , L) in Ωω:

−∆u` − k2u` = 0 in Ωω,

u` + α
∂u`
∂n

= 0 on ∂ω,

∂u`
∂n

=
∂g`
∂n

on ∂Ω.

(5.1)

We aim at retrieving ω from the knowledge of the scattered fields measured on the boundary :(
u`|∂Ω

)
`=1,...,L

. To this end, we introduce the cost functional

j(Ωx0,ε) =
L∑
`=1

∫
∂Ω

|u`x0,ε − u`|
2 dσx,

where Ωx0,ε is obtained from Ω after having removed the ball B(x0, ε): Ωx0,ε = ΩB(x0,ε), and
u`x0,ε solves Problem (5.1) for this particular inclusion.

The results developed above in the paper easily extend to this case, and the topological
derivative of j is given by

TD(x) = <

(
L∑
`=1

g`(x)p`(x)

)
, (5.2)

where the adjoint state solves −∆p` − k2p` = 0 in Ω,

∂p`
∂n

= −2(g` − u`) on ∂Ω.
(5.3)

It is clear from Theorem 4.1 that negative values of the topological derivative TD(x) correspond
– at first order – to a decrease of the quadratic misfit j(Ωx,ε). As a consequence, it is natural
to expect TD(x) to have strong negative values for x near x0. This empirical remark has led
to the use of TD as an imaging tool for inclusions ω which are not only small balls, but with
very few mathematical justification. Let us mention the recent works of [2] and [7], giving some
tangible arguments.

In the following, we present numerical simulations. The considered geometries and sets of
parameters are inspired by the existing literature, especially [20, 2, 7]. In the following, Ω is
the unit disk, the parameter involved in the impedance condition α = 0.1 (except for Figure 4
where α = 10), and the wave number k = 2π/λ with a wavelength λ = 0.5. The experiments
have been done with the finite element library Mélina [21] with P2 triangular elements with
mesh size h = λ/10. Rather than TD, its normalized version NTD is considered:

NTD(x) =
TD(x)

max
x∈Ω
|TD(x)|

.

Last, we have chosen plane waves with equally distributed incident directions:

g`(x) = eikx·d` ,

with d` =
(

cos(2i`π/L), sin(2i`π/L)
)

for ` = 1, . . . , L.
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In Figure 1, we present the imaging of a small circular inclusion, centered at (0.3,−0.5) and
of radius 0.05. With L large enough, the reconstruction is quite satisfactory, since NTD(x)
presents large negative values only in the vicinity of the inclusion (plotted in white on the
pictures).

Figure 1. Map of x 7→ NTD(x) for L = 4 (left) and L = 32 (right).

Figure 2. Map of x 7→ NTD(x) for L = 4 (left) and L = 32 (right) for noisy data.

To investigate the robustness of the method, we add a noise to the measured field u` (spatially
and `-independent). The results are presented in Figure 2 for a uniform distribution and a signal
to noise ratio equal to 2. It turns out that for L large enough the reconstruction is quite stable.
Nevertheless, for a small number of incident directions, the results are not very accurate since
many peaks of same amplitude appear at several locations away from the inclusion (see left
picture of Figure 2). Let us mention that this remarkable robustness needs to be weakened
by the fact that the chosen noise (which is the most usually encountered in the literature) is
favorable. A global noise in the medium, for instance, would probably lead to larger differences.

We present in Figure 3 the reconstruction of multiple inclusions. The results are good in
both cases.

The originality of the present work lies in the choice of an impedance boundary condition
of Robin type on the inclusion. It is worth noticing that small values of the parameter α
correspond to a penalization of the Dirichlet condition on the inclusion. Let us emphasize that
the expression of the topological derivative coincide for Dirichlet and Robin conditions. On the
contrary, large values of α can be seen as a penalization of the Neumann boundary condition.
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Figure 3. Map of x 7→ NTD(x) for L = 32 in the case of multiple inclusions.

Let us recall the expression of the topological derivative for Neumann problems – see e.g. [11]

TDN(x) = <

(
L∑
`=1

k2g`(x)p`(x)−∇g`(x) · ∇p`(x)

)
, (5.4)

with the obvious notation NTDN for its normalized counterpart. In Figure 4, we have plotted
the topological derivatives NTD and NTDN for the value α = 10 (and the geometry with a
single circular inclusion already used in Figures 1 and 2). The reconstruction does not fit the
exact inclusion in the case of a Dirichlet/Robin expression for the topological derivative, but
the Neumann expression leads to a good result, which is quite natural.

Figure 4. Map of x 7→ NTD(x) (left) and x 7→ NTDN(x) (right) for L = 32
and α = 10.
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