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Abstract
This article aims to present a general study of the Helmholtz problem in slowly
varying waveguides. This work is of particular interest at locally resonant fre-
quencies, where a phenomenon close to the tunnel effect for Schrödinger equa-
tion in quantum mechanics can be observed. In this situation, locally resonant
modes propagate in the waveguide under the form of Airy functions. Using pre-
vious mathematical results on the Schrödinger equation, we prove the existence
of a unique solution to the Helmholtz source problem with outgoing conditions
in such waveguides. We provide an explicit modal approximation of this solu-
tion, as well as a control of the approximation error in H1

loc. The main theorem
is proved in the case of a waveguide with a monotonously varying profile and
then generalized using a matching strategy. We finally validate the modal ap-
proximation by comparing it to numerical solutions based on the finite element
method.
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1. Introduction

In this article, we study the propagation in the time harmonic regime of
waves generated by sources in a slowly varying waveguide of dimension 2. The
waveguide is described by

Ω̃ :=
{

(x, y) ∈ R2 | 0 < y < h(x)
}
, (1)

where h ∈ C2(R)∩W 2,∞(R) is a positive profile function defining the top bound-
ary. Here, the bottom boundary is assumed to be flat but a similar analysis can
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be conducted with both slowly varying top and bottom boundaries. In the
time harmonic regime, the wave field ũ satisfies the Helmholtz equation with
Neumann boundary conditions{

∆ũ+ k2ũ = −f̃ in Ω̃,
∂ν ũ = b̃ on ∂Ω̃,

(2)

where k > 0 is the frequency, f̃ is an interior source term and b̃ is a possible
boundary source term. In this work, a waveguide is said to be slowly vary-
ing when there exists a small parameter η > 0 such that ‖h′‖L∞(R) ≤ η and
‖h′′‖L∞(R) ≤ η2. Such waveguides are good models of ducts or corroded pipes,
and studying the sound transmission through this type of structure can be used
to reduce noise emission (see [1]) or to perform non destructive monitoring of
pipes or blood vessels (see [2]).

1.1. Scientific context
Wave propagation in varying waveguides, whether acoustic or elastic, has

already been studied by several authors. From a numerical point of view, the
articles [3, 4, 5] give different methods to adapt the finite element method to
numerically compute the wave field in varying waveguides. In [6], the authors
study from the theoretical point of view the propagation of waves in a gen-
eral varying elastic waveguide using a modal decomposition. The same kind of
method is used in [7], in the case of a slowly varying waveguide. However, in
these articles, the authors choose to avoid all the locally resonant frequencies of
the waveguide, which are the frequencies k > 0 such that k = πn/h(x?) for a
mode n ∈ N and a longitudinal position x? ∈ R.

In another approach, the authors of [8, 1, 9] choose to work near locally
resonant frequencies of the waveguide. They mainly show that this problem is
very close to the tunneling effect seen in quantum mechanics for the Schrödinger
equation (see for instance [10]). Indeed, the wave field can be decomposed as a
sum of modes ũ(x, y) =

∑
n∈N un(x)ϕn(y) (see section 2 for more details) and

when k = nπ/h(x?), for some x? ∈ R, the equation satisfied by the mode un is
close to the Schrödinger equation

∂xxun(x) + (V (x)− E)un(x) = 0, (3)

where V and E depend on h, f̃ and b̃ and satisfy V (x?)−E = 0. This equation
for a simple mode was studied from a mathematical point of view by F. W.
J. Olver in [11] and [12], and it was proved that the solution un could be
expressed using Airy functions of the first and second kind [13]. In all the
articles [8, 1, 9], the same methodology is used: firstly, the authors assume that
mode coupling is negligible in a slowly varying waveguide. Under this so-called
adiabatic approximation, every mode is independent from the others. Secondly,
they seek solutions expressed as Wentzel–Kramers–Brillouin (WKB) asymptotic
series (see [14]), and they use the study of the Schrödinger equation to find an
approximation of the wave field in the waveguide.
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Our work is inspired by this methodology and provides a similar approxi-
mation of the wave field in a slowly varying waveguide. However, contrary to
the work mentioned above, we are not making any a priori assumptions on the
wave field such as WKB asymptotic development or the adiabatic decoupling of
modes. Like them, we use the work of [11, 12] to get an approximation of the
Schrödinger equation, but we improve it by providing precise control of the ap-
proximation error. More importantly, we provide a way to justify the adiabatic
decoupling of the modes using a Born approximation of the wave field. To this
end, we again rely on [11, 12] to control the wave field by the general source
term that generated it. The main result of our article is given by Theorem 1
that proves the existence of a unique solution of the problem (2) when h is an
increasing function in C2(R)∩W 2,∞(R) and when η is small enough (compared
to supp(h′), min(h) and the distance between k and the left and right resonances
of the waveguide). This theorem also provides an approximation of the solution
of (2) and a control of the approximation error.

Finally, we provide a numerical validation of the approximation of the wave
field in a slowly varying waveguide. By comparing our approximation to solu-
tions generated by a finite element method, we show that this approximation
is an excellent tool to numerically compute the wave field in a slowly varying
waveguide in a very fast way.

1.2. Outline of the paper
The paper is organized as follows. In section 2, we briefly explain the modal

decomposition in general waveguides, and we recall classical results used in
the rest of the paper. In section 3, we study the particular case of a slowly
varying waveguide where the width h is an increasing function of x, and we
prove Theorem 1. In section 4, we adapt the method developed in section 3 to
the general case of a varying waveguide provided the variations of the profile
are sufficiently slow, and we describe more precisely the cases of compressed
or dilated waveguides. In section 5, we numerically validate our results by
comparing the approximations derived in sections 3 and 4 with the solutions
generated using a finite element solver with PML (perfectly matched layers, see
[15]) in a truncated waveguide.

1.3. Notations
The varying waveguide is denoted by Ω̃, and its boundary ∂Ω̃. The subscript

“top” (resp. “bot”) indicates the upper boundary of the waveguide (resp. lower).
The straight waveguide is defined by Ω = R×(0, 1), and its boundary is denoted
by ∂Ω. For every r > 0, we set Ωr = (−r, r) × (0, 1) and Γr = (−r, r) × {0} ∪
(−r, r) × {1}. For both, ν denotes the outer normal vector. The spaces H1,
H2, W 1,1 H1/2 over Ω̃, Ω or their boundaries are the usual Sobolev spaces on
piece wise smooth domains. The space H̃

1/2
(−r, r) is the closure of D(−r, r),

the space of distributions with support in (−r, r), for the H1/2(R) norm (see
[16] for more details).
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The operator norm between two Banach spaces E1 and E2 is denoted ‖ ·
‖E1,E2 and is defined for every linear operator S : E1 → E2 by

‖S‖E1,E2 := sup
x∈E1 | ‖x‖E1 =1

‖S(x)‖E2 . (4)

The Airy function of the first kind (resp. second kind) is denoted by A
(resp. B). These functions are linear independent solutions of the Airy equation
y′′−xy = 0 (see [13] for more results about Airy functions) and are depicted in
Figure 1.
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Figure 1: Representation of the Airy functions A and B.

2. Modal decomposition and local wavenumbers in a varying waveg-
uide

In this section, we recall some classical results about modal decompositions,
the proofs of which can be found in [17, 18].

Definition 1. We define the sequence of functions (ϕ̃n)n∈N

∀(x, y) ∈ Ω̃, ϕ̃n(x, y) :=


1/
√
h(x) if n = 0,√

2√
h(x)

cos
(
nπy

h(x)

)
if n ≥ 1, (5)

which for any x ∈ R defines an orthonormal basis of L2(0, h(x)). In the special
case of a regular waveguide where h = 1 everywhere, this sequence of functions
is independent of x, takes the form

∀y ∈ (0, 1), ϕn(y) :=
{

1 if n = 0,√
2 cos (nπy) if n ≥ 1. (6)

and defines an orthonormal basis of L2(0, 1).
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Hence, any solution ũ ∈ H2
loc
(
Ω̃
)
of (2) admits a unique modal decomposition

ũ(x, y) =
∑
n∈N

ũn(x)ϕ̃n(x, y) where ũn(x) :=
∫ h(x)

0
ũ(x, y)ϕ̃n(x, y)dy. (7)

Note that when h is constant (outside of supph′), each mode ũn satisfies the
simple equation ũ′′n + k2

nũn = −g̃n where kn is the wavenumber. When h is
variable, the decomposition (7) motivates the following definition:

Definition 2. The local wavenumber function of the mode n ∈ N is the complex
function kn : R→ C defined by

k2
n(x) := k2 − n2π2

h(x)2 , (8)

with Re(kn), Im(kn) ≥ 0.

One of the main difficulties of this work is that as h(x) is non constant, kn(x)
can vanish for some x ∈ R and change from a positive real number to a purely
imaginary number. We distinguish three different situations.

Definition 3. A mode n ∈ N falls in one of the three following situations:

1. If n > kh(x)/π for all x ∈ R then kn(x) ∈ (0,+∞) for all x ∈ R and the
mode n is called propagative.

2. If n < kh(x)/π for all x ∈ R then kn(x) ∈ i(0,+∞) for all x ∈ R and the
mode n is called evanescent.

3. If there exists x? ∈ R such that n = kh(x?)/π the mode n is called locally
resonant. The associated points x? are called resonant points. They are
simple if h′(x?) 6= 0, and multiple otherwise.

A frequency k > 0 for which there exists at least a locally resonant mode is
called a locally resonant frequency.

Using the wavenumber function, one can adapt the classic Sommerfeld (or
outgoing) condition, defined in [17] for regular waveguides, to general varying
waveguides Ω̃. This condition will be used later to guarantee uniqueness for the
source problem (2).

Definition 4. A wavefield ũ ∈ H2
loc
(
Ω̃
)
is said to be outgoing if it satisfies∣∣∣∣ũ′n(x) x

|x|
− ikn(x)ũn(x)

∣∣∣∣ −→|x|→+∞
0 ∀n ∈ N, (9)

where ũn is given in (7).
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3. The Helmholtz equation in a waveguide with increasing width

In all this work, we make the following assumptions:

Assumption 1. We assume that h ∈ C2(R) ∩W 2,∞(R) and satisfies

∀x ∈ R 0 < hmin ≤ h(x) ≤ hmax <∞,

‖h′‖L∞(R) < η, ‖h′′‖L∞(R) < η2, supph′ ⊂
(
−R
η
,
R

η

)
,

for some η > 0 and R > 0.

Moreover, in all this section, and we assume that h is increasing in supph′
(the general case will be treated in section 4). Such a waveguide is represented
in Figure 2.

Ω̃

Figure 2: A waveguide with increasing width.

The aim of this section is to state and prove the main theorem of this work,
which is a triple result. It provides existence and uniqueness of the solution
ũ ∈ H2

loc
(
Ω̃
)
to the source problem

∆ũ+ k2ũ = −f̃ in Ω̃,
∂ν ũ = b̃top on ∂Ω̃top,

∂ν ũ = b̃bot on ∂Ω̃bot,
ũ is outgoing.

(H̃)

It also gives an explicit modal approximation of ũ, and provides a computable
error bound for the local H1-norm between the approximation and the exact
solution. We first explain our strategy for proving such an existence result.

3.1. Sketch of proof
In order to use results on the modal decomposition in the regular waveguide,

the first step is to map the perturbed waveguide to the regular one using the
canonical mapping ψ : Ω → Ω̃ defined by ψ : (x, y) 7→ (x, h(x)y). The problem(
H̃
)
is then equivalent to

∆hu+ k2u = −f in Ω,
∂νu−Dhu = btop on ∂Ωtop,

∂νu = bbot on ∂Ωbot,
u is outgoing,

(H)
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where u := ũ ◦ ψ, f := f̃ ◦ ψ, btop := b̃top
√

1 + (h′)2/h and bbot = b̃bot/h. The
operators ∆h and Dh are differential operators of order two and one respectively
(see their expressions in (H)). As there is no easy way to solve explicitly this
equation we shall approach it by a simpler problem. To this end, we neglect
the small terms in the operators ∆h and Dh, which depend on h′ and h′′. This
leads to a much simpler problem that reads

∂xxv + 1
h(x)2 ∂yyv + k2v = −f in Ω,

∂νv = btop on ∂Ωtop,
∂νv = bbot on ∂Ωbot,

v is outgoing.

(H′)

Next, we seek a solution to (H′) in a modal form. To this end, we use the
fact that the wave field v and the source f can be decomposed in a sum of modes
in the straight guide

v(x, y) =
∑
n∈N

vn(x)ϕn(y) where vn(x) :=
∫ 1

0
w(x, y)ϕn(y)dy,

f(x, y) =
∑
n∈N

fn(x)ϕn(y) where fn(x) :=
∫ 1

0
f(x, y)ϕn(y)dy.

(10)

We deduce that the two dimensional problem (H′) is equivalent to a sequence
of one dimensional problems for n ∈ N:{

v′′n(x) + kn(x)2vn(x) = −(fn + ϕn(1)btop + ϕn(0)bbot)(x) in R,
vn is outgoing, (H′n)

where kn is the local wavenumber function given in (8). As explained in [18],
the modal problem (H′n) is well-defined when {x ∈ R | kn(x) = 0} has zero
measure. Since h is increasing on supph′, this only occurs when k 6= nπ/hmin
or k 6= nπ/hmax. We assume this is the case and that

δ = min
n∈N

(√∣∣∣∣k2 − n2π2

hmin
2

∣∣∣∣,
√∣∣∣∣k2 − n2π2

hmax
2

∣∣∣∣
)
> 0. (11)

which is supposed to be positive.
For each type of modes n ∈ N, the study of the equation v′′n + k2

nvn = 0 has
been carried out in [11] and [12]. We summarize the main ideas bellow. The
analysis depends on whether the mode n is propagative, evanescent or locally
resonant.

(a) If n is propagative or evanescent, |kn(x)| > 0 for all x ∈ R and we set
z(x) =

∫ x |kn|. There is has a one-to-one correspondence between x and
z and if we define wn =

√
zvn, then wn satisfies the partial differential

equation
∂zzwn ± wn = ζ(x, z)wn, (12)

7

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4049395

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



where ‖ζ‖L∞(R) = O(η). The solutions of y′′ = ±y are exponential func-
tions, and since ζ is small, we can prove that wn is almost equal to a sum
of two exponential functions and we can control the approximation error
(see (30) and (33) for more details).

(b) If n is locally resonant, since h is increasing on supph, there is a single
resonant point x? ∈ R and we define

ξ(x) :=



(
−3

2 i
∫ x?

x

kn(t)dt
)2/3

if x < x?,

−
(

3
2

∫ x

x?

kn(t)dt
)2/3

if x > x?.

(13)

This new variable is in one-to-one correspondence with x and if we denote
wn = −(

√
kn/ξ

1/4)vn, then wn satisfies the partial differential equation

∂ξξwn − ξwn = ζ(ξ)wn, (14)

where ‖ζ‖L∞(R) = O(η). The solutions of y′′ = xy are known as the Airy
functions, and since ζ is small, we can prove that wn is approximated by
a sum of Airy functions and we can control the approximation error (see
(47) for more details).

Using these results, we prove that (H′n) has a unique solution and we provide
an explicit approximation of this solution. By equivalence, this approach yields
the unique solution to (H′) and its approximation. With a control of the ap-
proximation error between (H) and (H′), we obtain an explicit approximation
of (H) and by change of variable, of (H̃).

3.2. Main result
We now state the main result of this work, which shows existence and unique-

ness of the solution u of (H) (and thus of the solution of (H̃)) and provides an
approximation of u with control of the approximation error in H1

loc.

Theorem 1. Let h be an increasing function which defines a varying waveguide
Ω̃ that satisfies assumption 1. Consider sources f ∈ L2(Ω), b = (bbot, btop) ∈
(H1/2(R))2 both with compact support contained in Ωr and Γr respectively, for
some r > 0. Assume that there is a unique locally resonant mode N ∈ N,
associated with a simple resonant point x? ∈ R.

There exists η0 > 0, depending only on hmin, hmax, δ, r and R, such that if
η < η0, then the problem (H) admits a unique solution u ∈ H2

loc
(
Ω). Moreover,

this solution is approximated by uapp defined for almost every (x, y) ∈ Ω by

uapp(x, y) =
∑
n∈N

∫
R
Gapp
n (x, s)

(
fn + ϕn(1)btop + ϕn(0)bbot

)
(s)dsϕn (y) , (15)
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where fn is defined in (10), ϕn is defined in (6) and Gapp
n (x, s) is equal to

i

2
√
kn(s)kn(x)

exp
(
i

∣∣∣∣∫ x

s

kn

∣∣∣∣) , if n < N,

1
2
√
|kn|(s)|kn|(x)

exp
(
−
∣∣∣∣∫ x

s

|kn|
∣∣∣∣) , if n > N,

π(ξ(s)ξ(x))1/4√
kn(s)kn(x)

(
iA+ B

)
◦ ξ(s)A ◦ ξ(x) if x < s,

π(ξ(s)ξ(x))1/4√
kn(s)kn(x)

(
iA+ B

)
◦ ξ(x)A ◦ ξ(s) if x > s,

if n = N.

(16)

Th function kn is the wavenumber function defined in definition 2 and the func-
tion ξ is given in equation (13). Moreover, there exists a constant C > 0
depending only on hmin, hmax, δ, r and R such that

‖u− uapp‖H1(Ωr) ≤ ηC
(
‖f‖L2(Ω) + ‖b‖(H1/2(R))2

)
. (17)

Remark 1. If there are no resonant modes, the result can be adapted by delet-
ing the line n = N in (16). On the other hand, if there are multiple locally
resonant modes, the third line of (16) becomes true for every resonant mode.

Remark 2. If Ω̃ is a regular waveguide, we find the same expression for the
wave field as in [17]. We also see that the behavior of propagative and evanescent
modes in a perturbed waveguide is similar to that in a regular waveguide. The
term

∫ x
s
|kn| simply acts as a change of variable in the phase.

Remark 3. Looking at the proof, we can see that the constant C has a depen-
dence on δ, r and R of the form C = O(r2δ−6 + rRδ−8). Doing the same proof
using W2,∞ spaces instead of H2, we can also prove that for every x ∈ R,

|uN (x)− uapp
N (x)| ≤ ηC

(
‖f‖L∞(R) + ‖b‖(L∞(R))2

)
, (18)

where the constant C has a dependence on δ, r and R of the form C = O(δ−6 +
Rδ−8)

Corollary 1. Under the same assumptions as Theorem 1, the problem (H̃)
admits a unique solution ũ ∈ H2

loc(Ω̃), which can be approximated by ũapp defined
for almost every (x, y) ∈ Ω̃ by

ũapp(x, y) = uapp
(
x,

y

h(x)

)
. (19)

Moreover, there exists a constant C̃ > 0 depending only on hmin, hmax, δ, r and
R such that

‖ũ− ũapp‖H1(Ω̃r) ≤ ηC̃
(
‖f̃‖L2(Ω̃) + ‖b̃‖(H1/2(∂Ω̃)

)
. (20)
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Proof. We use the equivalence between (H̃) and (H), and we notice that

‖ũ− ũapp‖H1(Ω̃r) ≤ hmax‖u− uapp‖H1(Ωr), ‖f̃‖L2(Ω̃) ≥ hmin‖f‖L2(Ω),

‖b̃‖(H1/2(R))2 ≥ hmin‖b‖(H1/2(∂Ω̃)
)2 .

3.3. Modal Green functions and their approximations
As mentioned in the previous section, we start by studying equations (H′n)

for every n ∈ N. To this end, we denote by Gn(x, s) the modal Green functions
associated to (H′n). It satisfies for every s ∈ R the partial differential equation{

∂xxGn(x, s) + kn(x)2Gn(x, s) = −δs in R,
Gn(·, s) is outgoing. (21)

We prove the following theorem which provides an approximation of Gn for
every n ∈ N and the control of the approximation error in W1,1(R).

Theorem 2. For every s ∈ R, the equation{
∂xxGn(x, s) + kn(x)2Gn(x, s) = −δs in R,
Gn(·, s) is outgoing. (22)

has a unique solution Gn(·, s) ∈ W1,1(R). This solution can be decomposed as
Gn = Gapp

n +O(η) where Gapp
n has the explicit form given in (16) and O(η) is

a term that tends to 0 in W1,1(R) uniformly in s as η tends to 0. Moreover,
let r > 0. There exist η1 > 0 depending on R, r, hmin, hmax and δ such that
if η < η1, there exists α, β > 0 depending only on hmin, hmax, r, δ and R such
that for every s ∈ R,

‖Gn(·, s)‖L1(−r,r) ≤ α(1)
n :=

{
α if n ≤ N,
α

min(|kn|)2 if n > N, (23)

‖∂xGn(·, s)‖L1(−r,r) ≤ α(2)
n :=

{
α if n ≤ N,
α

min(|kn|)
if n > N, (24)

‖Gn(·, s)−Gapp
n (·, s)‖L1(−r,r) ≤ β(1)

n := η

 β if n ≤ N,
β

min(|kn|)2 if n > N,
(25)

‖∂xGn(·, s)−∂xGapp
n (·, s)‖L1(−r,r) ≤ β(2)

n := η

 β if n ≤ N,
β

min(|kn|)
if n > N.

(26)
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Remark 4. The following proof shows that we can choose

η1 ≤ min
(

1
9CN−1

,
|kN+1|
9CN+1

,
1

4c8πCN

)
, (27)

where CN−1 and CN+1 are defined in (32), c8 is defined in Lemma 3 and CN
comes from Theorem 2 in [12]. It shows that η has to be small compared to r,
R, hmin and δ for this theorem to apply.

Remark 5. By looking at the proof, we can see that α, β and Cn depend on
δ, r and R as rδ−1, rRδ−6, and Rδ−5 respectively.

To prove this theorem, we first need a technical lemma to connect solutions
of the partial differential equation (22) defined for x < s and x > s.

Lemma 1 (Connection of the Green functions). Let s ∈ R. Assume that u is
a solution to u′′ + k2

nu = −δs and that there exist A,B ∈ R and w1, w2 ∈ C2(R)
such that

u(x) =
{
Aw1(x) if x < s,
Bw2(x) if x > s,

(28)

then

A = w2(s)
w′1(s)w2(s)− w′2(s)w1(s) , B = w1(s)

w′1(s)w2(s)− w′2(s)w1(s) (29)

Proof. Since u is continuous in s, Aw1(s) = Bw2(s). Then, using the jump
formula for distributions, we find that

Bw′2(s)−Aw′1(s) = −1 ⇒ A(w1(s)w′2(s)− w2(s)w′1(s)) = −w2(s)

Next, we study the Green function for the three types of waves, depending
on the value of n.

3.4. Proof of Theorem 2
Proof. The propagative case (n < N)]

We denote un = Gn(·, s). Changing variable to σ = ηx, we see that wn =
un(σ/η) satisfies the equation w′′n + k2

n(σ/η)w2
n/η

2 = 0 for every σ 6= ηs where
in the case at hand, k2

n(σ/η) > 0. Using Theorem 4 in [11] on wn, shows that
there exist A,B ∈ C such that

un(x) =


A√
kn(x)

exp
(
−i
∫ x

s

kn

)
(1 + ε(x)) if x < s,

B√
kn(x)

exp
(
i

∫ x

s

kn

)
(1 + ε(x)) if x > s,

(30)

where ε ∈ C1(R) is such that for all x ∈ R,

|ε(x)| ≤ eF/2 − 1, |ε′(x)| ≤ 2kn(x)(eF/2 − 1), (31)
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and

|F | ≤
∫
R
η

∣∣∣∣∣ 1√
kn(σ/η)

∂σσ

(
1√

kn(σ/η)

)∣∣∣∣∣dσ.
Using the expression of kn, we see that

|F | ≤ η
∫ R

−R

1
η2

∣∣∣∣n2π2(h′′h− 3(h′)2)
2h4k3

n

+ 5(h′)2n4π4

4h6k5
n

∣∣∣∣ (σ/η)dσ. (32)

We deduce that there exist a constant γ1 > 0 depending on hmin, hmax and R
such that

|F | ≤ ηγ1

(
(N − 1)2π2

δ3 + (N − 1)4π4

δ5

)
:= ηCN−1.

Using Lemma 1, we find that

A = i(1 + ε(s))
2
√
kn(s)(1 +R)

, B = i(1 + ε(s))
2
√
kn(s)(1 +R)

,

where

R = 2Re(ε(s)) + |ε(s)|2 + Im(ε′(s)(1 + ε(s))
kn(s) .

It follows that

Gn(x, s) =


Gapp
n (x, s) (1 + ε(x))(1 + ε(s))

1 +R
if x < s,

Gapp
n (x, s) (1 + ε(x))(1 + ε(s))

1 +R
if x > s,

,

and

∂xGn(x, s) = ∂xG
app
n (x, s)1 + ε(s)

1 +R
×[(

1 + ε(x) + 2ε′(x)kn(x)2h(x)3

2ikn(x)3h(x)3 − n2π2h′(x)

)
1(−∞,s)(x)

+
(

1 + ε(x) + 2ε′(x)kn(x)2h(x)3

2ikn(x)3h(x)3 − n2π2h′(x)

)
1(s,+∞)(x)

]
.

Assuming that η < 1
9CN−1

,then |F | ≤ 1/9,

eF/2 − 1 ≤ |F |/2
1− |F |/4 ≤ min

(
3
4ηCn,

1
16

)
,

and

|R| ≤ 2|ε(x)|+ |ε|2 + |ε
′(x)|(1 + |ε(x)|)

kn(x) ≤ 4(eF/2 − 1)eF/2 ≤ 1
2 .

12
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It follows that∣∣∣∣∣1− (1 + ε(x))(1 + ε(s))
1 +R

∣∣∣∣∣ ≤ |ε′(x)|(1 + ‖ε‖L∞(R))/kn(x)
1− |R| ≤ 6ηCn,

and that
‖Gn(·, s)−Gapp

n (·, s)‖L1(−r,r) ≤ η
6Cnr

min(kn) ,

‖Gn(·, s)‖L1(−r,r) ≤
2r

min(kn) .

In the same way,∣∣∣∣1 + ε(s)
1 +R

∣∣∣∣ ∣∣∣∣ 2ε′(x)kn(x)2h(x)3

2ikn(x)3h(x)3 − n2π2h′(x)

∣∣∣∣ ≤ 43
2
Cnηkn(x)3h(x)3

kn(x)3h(x)3 ≤ 6Cnη

and so

‖∂xGn(·, s)− ∂xGapp
n (·, s)‖L1(−r,r) ≤ η

12Cnr
min(kn)×(
‖kn‖L∞(R) + n2π2

18Cn min(kn)2h3
min

)
,

and

‖∂xGn(·, s)‖L1(−r,r) ≤
3r

min(kn)

(
‖kn‖L∞(R) + n2π2

18Cn min(kn)2h3
min

)
.

The evanescent case (n > N). We denote un = Gn(·, s). Changing variable to
σ = ηx, we see that wn = un(σ/η) satisfies the equation w′′n+k2

n(σ/η)w2
n/η

2 = 0
for every σ 6= ηs. Theorem 3 in [11] on wn yields the existence of A,B ∈ C such
that

un(x) =


A√
|kn|(x)

exp
(∫ x

s

|kn|
)

(1 + ε2(x)) if x < s,

B√
|kn|(x)

exp
(
−
∫ x

s

|kn|
)

(1 + ε1(x)) if x > s,
(33)

where ε1, ε2 ∈ C1(R) are such that for i = 1, 2 and all x ∈ R,

|εi(x)| ≤ eF/2 − 1, |ε′i(x)| ≤ 2|kn|(x)(eF/2 − 1), (34)

where F satisfies (32). It follows that there exist a constant γ2 > 0 depending
on hmin, hmax and R such that

|F | ≤ ηγ2(N + 1)2π2

min(|kn|)δ2

(
1 + (N + 1)2π2

δ2

)
:= η

CN+1

min(|kn|)
.
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Using Lemma 1, we find that

A = 1 + ε1(s)
2
√
kn(s)(1 +R)

, B = 1 + ε2(s)
2
√
kn(s)(1 +R)

,

where
R =

(
ε2 + ε1 + ε1ε2 + ε′2(1 + ε1)

2|kn|
− ε′1(1 + ε2)

2|kn|

)
(s).

It follows that

Gn(x, s) =


Gapp
n (x, s) (1 + ε2(x))(1 + ε1(s))

1 +R
if x < s,

Gapp
n (x, s) (1 + ε1(x))(1 + ε2(s))

1 +R
if x > s,

and

∂xGn(x, s) = ∂xG
app
n (x, s)×[

1 + ε1(s)
1 +R

(
1 + ε2(x)− 2ε′2(x)|kn(x)|2h(x)3

h′(x)n2π2 + 2|kn(x)|3h(x)3

)
1(−∞,s)(x)

+ 1 + ε2(s)
1 +R

(
1 + ε1(x)− 2ε′1(x)|kn(x)|2h(x)3

h′(x)n3π2 + 2|kn(x)|3h(x)3

)
1(s,+∞)(x)

]
.

We also notice that∥∥∥∥e−∫ x

s
|kn|
∥∥∥∥

L1(−r,r)
≤ ‖e−min(|kn|)|x−s|‖L1(−r,r) ≤

2
min(|kn|)

.

Assuming that η < |kN+1|
9CN+1

then |F | ≤ 1/9,

eF/2 − 1 ≤ |F |/2
1− |F |/4 ≤ min

(
3
4
ηCN+1

min(|kn|)
,

1
16

)
,

and

|R| ≤ 2(eF/2 − 1) + (eF/2 − 1)2 + 2eF/2(eF/2 − 1) ≤ 4(eF/2 − 1)eF/2 ≤ 1
2 .

It follows that∣∣∣∣1− (1 + ε1(x))(1 + ε2(s))
1 +R

∣∣∣∣ ≤
|ε1(x)|(1 + ‖ε2‖L∞(R)) + |ε2(x)|(1 + ‖ε1‖L∞(R))

2|kn(x)|(1− |R|) ≤ 6ηCN+1

min(|kn|)
.

and that
‖Gn(·, s)−Gapp

n (·, s)‖L1(−r,r) ≤ η
12CN+1r

min(|kn|)2 , (35)
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‖Gn(·, s)‖L1(−r,r) ≤
4r

min(|kn|)2 , (36)

In the same way,∣∣∣∣1 + ε1(s)
1 +R

∣∣∣∣ ∣∣∣∣ 2ε′2(x)|kn(x)|2h(x)3

h′(x)n2π2 + 2|kn(x)|3h(x)3

∣∣∣∣
≤ 43

2
2CN+1η|kn(x)|3h(x)3/min(|kn|)

2|kn(x)|3h(x)3 ≤ 6CN+1η

min(|kn|)
,

and so

‖∂xGn(·, s)− ∂xGapp
n (·, s)‖L1(−r,r) ≤ η

24r
min(|kn|)2

(
‖kn‖L∞(R) + (N + 1)2π2

2δ2h3
min

)
,

(37)
and

‖∂xGn(·, s)‖L1(−r,r) ≤
6r

min(|kn|)2

(
‖kn‖L∞(R) + (N + 1)2π2

2δ2h3
min

)
. (38)

Remark 6. We notice that the control of Gn, ∂xGn and ∂xGn − ∂xG
app
n is

uniform in n > N , with
η <

|kN+1|
9CN+1

. (39)

This uniform control is essential to obtain the global control η < η1 in Theorem
2. We could also provide a uniform control in inequalities (35), (36), (37) and
(38). However, in the following, we add these inequalities and thus we keep
track of the factors 1/min(|kn|) to ensure fast decrease when n goes to infinity.

It remains to deal with the case n = N . This case is more complicated, since
x 7→ kn(x)2 is not of constant sign. We first introduce two technical Lemmas
used to give an approximation of the Green function for n = N .

Lemma 2. Let us define

ξ(x) =



(
−3

2 i
∫ x∗

x

kN

)2/3

if x < x∗,

−
(

3
2

∫ x

x∗
kN

)2/3
if x > x∗.

(40)

This function is a decreasing bijection from R to R. Moreover, the function

φ : x 7→ (−ξ(x))1/4/
√
kn(x), (41)

is in C2(R) and for all x ∈ R, there exists a constant cφ such that |φ′(x)| ≤
cφ|φ(x)|.
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Proof. This lemma can be proved by adapting section 4 of [12].

Lemma 3. Let us define the following functions:

E(x) = exp
(

2
3x

3/2
)

1x>0 + 1x≤0, (42)

M =
√
E2A2 + E−2B2, N =

√
E2(A′)2 + E−2(B′)2 (43)

There exist a constant c1 ≈ 0.4 such that for all x ∈ R,

|M(x)E(x)A′(x)| ≤ c1,
∣∣∣∣B(x)N(x)

E(x)

∣∣∣∣ ≤ c1, |M(x)N(x)| ≤ c1, (44)

∣∣∣∣B′(x)M(x)
E(x)

∣∣∣∣ ≤ c1, |A(x)E(x)N(x)| ≤ c1. (45)

There also exist constants c2, c3 depending on hmin, hmax, k and R such that
for every x ∈ R,∣∣∣∣∣ (−ξ(x))1/4√

kn(x)
M(ξ(x))

∣∣∣∣∣ ≤ c6,
∣∣∣∣∣
√
kn(x)

(−ξ(x))1/4N(ξ(x))

∣∣∣∣∣ ≤ c7. (46)

Proof. Using Airy’s asymptotic expansions presented in section 10.4 of [13], we
obtain the first constant and the control

M(x) = O|x|→∞
(

1
|x|1/4

)
, N(x) = O|x|→∞

(
|x|1/4

)
.

Since h′ is compactly supported, we conclude the proof by noticing that

kn(x) = O|x|→∞(1), ξ(x) = O|x|→∞(|x|).

The locally resonant case (n = N). We set un = Gn(·, s). Changing variable to
σ = ηx, we see that wn = un(σ/η) satisfies the equation w′′n+k2

n(σ/η)w2
n/η

2 = 0
for every σ 6= ηs. This equation is very similar to the Airy equation and from
Theorem 2 in [12], we know that there exist A,B ∈ C such that

un(x) =


A(−ξ(x))1/4√

kn(x)
(A+ ε1)(ξ(x)) if x < s,

B(−ξ(x))1/4√
kn(x)

(iA+ B + iε1 + ε2)(ξ(x)) if x > s,

(47)

where ε1, ε2 ∈ C1(R) are such that there exist CN depending on hmin, hmax, δ
and R such that for all x ∈ R,∣∣∣∣ E(ξ)

M(ξ)

∣∣∣∣ |ε1(ξ)| ≤ 1
λ1

(eηCNλ1 − 1),
∣∣∣∣E(ξ)
N(ξ)

∣∣∣∣ |ε′1(ξ)| ≤ 1
λ1

(eηCNλ1 − 1), (48)
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∣∣∣∣ 1
E(ξ)M(ξ)

∣∣∣∣ |ε2(ξ)| ≤ λ2

λ1
(eηCNλ1 − 1),

∣∣∣∣ 1
E(ξ)N(ξ)

∣∣∣∣ |ε′2(ξ)| ≤ λ2

λ1
(eηCNλ1 − 1),

(49)
where λ1 > λ2 are known constants. Using Lemma 1 and the fact that BA′ −
B′A = −1/π, we find that

A = −π(−ξ(s))1/4(iA(ξ(s)) + B(ξ(s)) + iε1(ξ(s)) + ε2(ξ(s)))
(1−Rπ)

√
kn(s)

,

B = −π(−ξ(s))1/4(A(ξ(s)) + ε1(ξ(s)))
(1−Rπ)

√
kn(s)

,

where
R = (A′ε2 + ε′1B + ε′1ε2 − B′ε1 −Aε′2 − ε′2ε1)(ξ(s)).

It follows that

Gn(x, s) = Gapp
n (x, s)×[(

1 + ε1(ξ(x))
A(ξ(x))

)
1

1−Rπ

(
1 + iε1(ξ(s)) + ε2(ξ(s))

iA(ξ(s)) + B(ξ(s))

)
1(−∞,s)(x)

+
(

1 + iε1(ξ(x)) + ε2(ξ(x))
iA(ξ(x)) + B(ξ(x))

)
1

1−Rπ

(
1 + ε1(ξ(s))
A(ξ(s))

)
1(s,+∞)(x)

]
,

and

∂xG
app
n (x, s) = −π(−ξ(s))1/4

(1−Rπ)
√
kn(s)

×[(
(A′ + ε′1)(ξ(x))

√
kn(x)

(−ξ(x))1/4 + (A+ ε1)(ξ(x))φ′(x)
)

× (iA+ B + iε1 + ε2)(ξ(s))1(−∞,s)(x)

+
(

(iA′ + B + iε′1 + ε′2)(ξ(x))
√
kn(x)

(−ξ(x))1/4 + (iA+ B + iε1 + ε2)(ξ(x))φ′(x)
)

× (A+ ε1)(ξ(s))1(x,+∞)(x)
]
.

We define c4 = (4λ2 + 2)c1. Assuming that η ≤ 1/(4CNc4π), we know that
η ≤ 1/(CNλ1) and (eηCNλ1 − 1)/λ1 ≤ 2ηCN , so

|R| ≤ 2ηCNc4,
∣∣∣∣ Rπ

1−Rπ

∣∣∣∣ ≤ 2ηCNc4π
1− 2ηπCNc4

≤ 4ηπCNc4 ≤ 1,

∣∣∣∣∣ (−ξ(s))1/4(−ξ(x))1/4√
kn(s)

√
kn(x)

A(ξ(x))(iε1(ξ(s)) + ε2(ξ(s)))

∣∣∣∣∣ ≤∣∣∣∣∣ (−ξ(s))1/4(−ξ(x))1/4√
kn(s)

√
kn(x)

∣∣∣∣∣ 4λ2ηCNM(ξ(x))M(ξ(s)) ≤ 4λ2ηCNc
2
2,
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∣∣∣∣∣ (−ξ(s))1/4(−ξ(x))1/4√
kn(s)

√
kn(x)

ε1(ξ(x)) (iA(ξ(s)) + B(ξ(s)) + iε1(ξ(s)) + ε2(ξ(s)))

∣∣∣∣∣
≤ (1 + 2λ2ηCN )4ηCNc22.

It follows that

|Gn(x, s)−Gapp
n (x, s)| ≤ 4ηπCNc4|Gapp

n (x)|+
(
8πc22λ2ηCN + 24πηCNc22

)
,

which leads to

|Gn(x)−Gapp
n (x)| ≤ 4ηCNπ

(
c4|Gapp

n (x)|+ c22 (2λ2 + 6)
)
.

Using the same idea, we prove that

|Gapp
n (x, s)| ≤ 2c22π,

and it follows that

‖Gn(·, s)−Gapp
n (·, s)‖L1(−r,r) ≤ η16rCNπc22(c4π + λ2 + 3),

and
‖Gn(·, s)‖L1(−r,r) ≤ 4rc22π

(
2 + λ2 + 3

c4π

)
.

Using the same technique also prove that

‖∂xGn(·, s)− ∂xGapp
n (·, s)‖L1(−r,r) ≤ η8rCNπc2(c3 + c2cφ)(2c4 + 3λ2),

‖∂xGn(·, s)‖L1(−r,r) ≤ 16rπc2(c3 + c2cφ).

3.5. Proof of Theorem 1
As mentioned at the beginning of section 3.1, we map the deformed waveg-

uide Ω̃ to the regular waveguide Ω by a change of variables ψ : (x, y) 7→
(x, h(x)y). The problem (H̃) is equivalent in Ω to the problem

∂xxu+ k2u+ 1
h2 ∂yyu−

h′′h− 2(h′)2

h3 y∂yu

+(h′)2

h4 y2∂yyu−
2h′

h2 y∂yxu = −f in Ω,

∂νu = btop + h′

h
∂xu on ∂Ωtop,

∂νu = bbot on ∂Ωbot,
u is outgoing.

(H)

If we try and use the modal decomposition on this equation, mode coupling
appears. We can however try to approach the solutions of (H) by the solutions
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of the following system
∂xxv + 1

h(x)2 ∂yyv + k2v = −f in Ω,

∂νv = btop on ∂Ωtop,
∂νv = bbot on ∂Ωbot,

v is outgoing,

(H′)

which is amenable to modal decomposition. To estimate the error of such an
approximation, we need to control the dependence between the source and the
solution of (H′). In Proposition 1, we provide a control of the wave field gener-
ated by a source term in the waveguide, and in Proposition 2, we do the same
thing for a source term on its boundary. The proofs of both propositions are
given in the appendix.

Remark 7. (H′) was obtained from (H) by formally eliminating the terms
likely to cause mode coupling. We cannot however neglect the term 1

h(x)2 ∂yyu

and approximate
1

h(x)2 ≈
1

h(x0)2 + ηOx→x0(x− x0),

for a constant x0 ∈ R. Indeed, if x is large enough, x− x0 � η and
1

h(x0)2 −
1

h2
min

= O(1), 1
h(x0)2 −

1
h2

max
= O(1).

Proposition 1. Let r > 0 and f ∈ L2(Ωr). The equation
∂xxu+ 1

h2 ∂yyu+ k2u = −f in Ω,
∂νu = 0 on ∂Ω,

u is outgoing,
(50)

has a unique solution u ∈ H2
loc(Ω). Using notations of Theorem 2, if η < η1

then the operator

Γ : L2(Ωr) → H2(Ωr)
f 7→ u|Ωr

, where u is the solution to (50), (51)

is well defined, continuous and there exists a constant D1 depending on δ, hmin,
hmax, R and r such that

‖u‖H2(Ωr) ≤ D1‖f‖L2(Ωr). (52)

Proposition 2. Let r > 0 and b = (btop, bbot) ∈ (H̃
1/2

(−r, r))2. The equation
∂xxu+ 1

h2 ∂yyu+ k2u = 0 in Ω,
∂νu = btop on ∂Ωtop,
∂νu = bbot on ∂Ωbot,

u is outgoing.

(53)
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has a unique solution u ∈ H2
loc(Ω). Using notations of Theorem 2, if η < η1

then the operator

Π :

(
H̃

1/2
(−r, r)

)2
→ H2(Ωr)

b = (btop, bbot) 7→ u|Ωr

, where u is the solution to (53), (54)

is well defined, continuous and there exists a constant D2 depending on δ, hmin,
hmax, R and r such that

‖u‖H2(Ωr) ≤ D2‖b‖(̃H
1/2

(−r,r))2
. (55)

Using these two propositions, we are now able to justify the approximation
of (H) by (H′) which, as in [19] and [17], is a Born approximation. However,
here we show that this approximation remains valid near resonance frequencies.

Proposition 3 (Born approximation). Let S : H2(Ωr) → L2(Ωr) and T :
H2(Ωr) → (H̃

1/2
(−r, r))2 and D1, D2 the constants defined in Propositions 1

and 2. Let f ∈ L2(Ωr) and b ∈ (H̃
1/2

(−r, r))2. If

µ := D1‖S‖H2(Ωr),L2(Ωr) +D2‖T ‖H2(Ωr),(H̃
1/2

(−r,r))2
< 1, (56)

then the equation

u = Γ(f) + Π(b) + Γ(S(u)) + Π(T (u)), (57)

has a unique solution u ∈ H2(Ωr). Moreover, if we define v = Γ(f) + Π(b) then

‖u− v‖H2(Ωr) ≤
(
D1‖f‖L2(Ωr) +D2‖b‖(H̃

1/2
(−r,r))2

) µ

1− µ. (58)

Proof. If (56) is satisfied then Γ◦S+Π◦T is a contraction and u can be expressed
into a Born series (see [19]). We conclude using the results on geometrical
series.

Coming back to equation (H), we define the operators

S :
H2(Ωr) → L2(Ωr)

u 7→ h′′h− 2(h′)2

h3 y∂yu−
(h′)2

h4 y2∂yyu+ 2h′

h2 y∂yxu
,

and

T :
H2(Ωr) → H̃

1/2
(−r, r)

u 7→ h′

h
∂xu|y=1

.

With these definitions, (H) can be rewritten as (57). We define

η0 = min

1, η1,
1

2 D1
hmin2

(
3 + 1

hmin2 + 2
hmin

)
+ 2D2

1
hmin

 ,

20

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4049395

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



and we notice that if η ≤ η0 then

‖S‖H2(Ωr),L2(Ωr) ≤
η

hmin
2

(
3 + 1

hmin
2 + 2

hmin

)
,

‖T ‖
H2(Ωr),(H̃

1/2
(−r,r))2

≤ η 1
hmin

.

We choose µ as in (56) and we define v = Γ(f)+Π(btop, bbot). Using Proposition
3, the problem (H) has a unique solution u ∈ H2(Ωr) and

‖u− v‖H2(−r,r) ≤ 2η
(

D1

hmin
2

(
3 + 1

hmin
2 + 2

hmin

)
+D2

1
hmin

)
×
(
D1‖f‖L2(Ωr) +D2‖b‖(H̃

1/2
(−r,r))2

)
.

Using the modal decomposition, we know that

v(x, y) =
∑
n∈N

(∫
R
Gn(x, s)(fn(s) + btop(s)ϕn(1) + bbot(s)ϕn(0))ds

)
ϕn(y).

We now estimate the error between v and uapp given by (15), following the
same idea as in the proof of Proposition 1. We denote gn = fn + btopϕn(1) +
bbotϕn(0) and g =

∑
n∈N gnϕn. Using the Young inequality for integral opera-

tors and the results and notations of Theorem 2,

‖vn−uapp
n ‖L2(−r,r) ≤ β(1)

n ‖gn‖L2(−r,r), ‖v′n−(uapp
n )′‖L2(−r,r) ≤ β(2)

n ‖gn‖L2(−r,r).

It follows that

‖v − uapp‖2H1(Ωr) ≤
N∑
n=0

(2 + n2π2)β2η2‖gn‖2L2(−r,r)

+
∑
n>N

(
(1 + n2π2)β2η2

min(|kn|)4 + η2β2

min(|kn|)2

)
‖gn‖2L2(−r,r),

and so

‖v − uapp‖2H1(Ωr) ≤ β
2η2 max

(
2 +N2π2,

1 + (N + 1)2π2

δ4 + 1
δ2

)
‖g‖2L2(Ωr).

We conclude by noticing that

‖u− uapp‖H1(Ωr) ≤ ‖u− v‖H2(Ωr) + ‖v − uapp‖H1(Ωr).

4. Extension to general slowly varying waveguides

4.1. The cut and match strategy
In the previous section, we constructed an approximation for the solution

to the Helmholtz equation in a slowly increasing waveguide. In this section,
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we generalize our result by considering a 2D infinite waveguide Ω̃ = {(x, y) ∈
R2 | 0 < y < h(x)} where h ∈ C2(R) is such that h′ is compactly supported and
there exists a parameter η, assumed to be small compared to R and hmin, such
that ‖h′‖L∞(R) ≤ η and ‖h′′‖L∞(R) ≤ η2.

When we look at the proof of Theorem 1, we notice that the condition that h
is increasing is only required to properly define the change of variable x 7→ ξ(x)
in Theorem 2 when n = N . In order to generalize Theorem 1, we only need
to generalize Theorem 2 for the case n = N . To this end, we follow a strategy
developed in the context of the Schrödinger equation, see for instance [10]. We
partition Ω̃ in J regions (Sj)j=1,..,J , on which h′ has a constant sign, as shown
in Figure 3.

S1 S2 S3

Figure 3: Representation of the sections in a slowly varying waveguide.

If there exists x ∈ R such that kn(x) = 0 in Sj , we denote this coordinate by
x∗j . Otherwise, as in Section 5 of [12], x∗j is chosen to be greater than max(Sj) if
k2
n is positive on Sj (resp. smaller than min(Sj) if k2

n is negative on Sj). Then,
if h is increasing in Sj , we define

ξj(x) =



(
−3

2 i
∫ x∗j

x

kn(t)dt
)2/3

if x < x∗j and x ∈ Sj ,

−

(
3
2

∫ x

x∗
j

kn(t)dt
)2/3

if x > x∗j and x ∈ Sj .

(59)

Otherwise, if h is decreasing in Sj , we define

ξj(x) =


−

(
3
2

∫ x∗j

x

kn(t)dt
)2/3

if x < x∗j and x ∈ Sj ,(
−3

2 i
∫ x

x∗
j

kn(t)dt
)2/3

if x > x∗j and x ∈ Sj .

(60)

In both cases, we denote

φj(x) = (−ξj(x))1/4√
kn(x)

. (61)

Given s ∈ R, we study the problem{
∂xxGn(x, s) + kn(x)2Gn(x, s) = −δs in R,
Gn(·, s) is outgoing. (62)
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We denote Sj0 the region such that s ∈ Sj0 , and we assume that j0 6= 1 and
j0 6= J even if it means adding an artificial section before or after the coordi-
nate s. Theorem 2 in [12] shows that (62) has a solution and that there exist
(Aj)j=1,...,J , (Bj)j=1,...,J ∈ C such that Gn(x, s) is close to

Gapp
n (x, s) =



A1φ1(x)w1(x) if x ∈ S1,

AJφJ(x)wJ(x) if x ∈ SJ ,
φj(x)(AjA(ξj(x)) +BjB(ξj(x))) if x ∈ Sj , j 6= j0,

φj0(x)(Aj0A(ξj0(x)) +Bj0B(ξj0(x))) if x ∈ Sj0 , x < s,

φj0(x)(btopA(ξj0(x)) +BJB(ξj0(x))) if x ∈ Sj0 , x > s,
(63)

where
w1(x) =

{
A(ξ1(x)) if h′ > 0 in S1,

iA(ξ1(x)) + B(ξ1(x)) if h′ < 0 in S1,
(64)

wJ(x) =
{
iA(ξJ(x)) + B(ξJ(x)) if h′ > 0 in SJ ,

A(ξJ(x)) if h′ < 0 in SJ .
(65)

To find the value of the constants Aj and Bj , we first use the continuity of Gapp
n

and ∂xGapp
n on the shared boundaries of each section, which gives 2J − 2 linear

equations. Moreover, using the continuity of Gapp
n at x = s, we find that

Aj0A(ξj0(s)) +Bj0B(ξj0(s)) = btopA(ξj0(s)) +BJBj0B(ξj0(s)). (66)

Using the jump formula for distributions, we also have

btopA′(ξj0(s)) +BJB′(ξj0(s))−Aj0A′(ξj0(s))−Bj0B′(ξj0(s)) = −φj0(s). (67)

Altogether, we obtain a linear system of 2J equations for the constants Aj , Bj ,
1 ≤ j ≤ J . We study its invertibility in the particular case J = 2 in the next
section.

4.2. Exemple of dilations or compressions in waveguides
In this section, we apply the method described previously to the simplest

case, when the sign of h′ changes only once, at x = t. If h is increasing then
decreasing, we say that the waveguide is dilated. On the other hand, if h is
decreasing then increasing, we say that the waveguide is compressed. First, we
study the case of dilations. Up to a change of variable x 7→ −x, we can assume
that s > t, as represented in Figure 4.

We know from Section 2 that Gn(x, s) is close to

Gapp
n (x, s) =

 A1φ1(x)A(ξ1(x)) if x ∈ S1,
φ2(x)(B1A(ξ2(x)) +B2B(ξ2(x))) if x ∈ S2, x < s,

A2φ2(x)A(ξ2(x)) if x ∈ S2, x > s,
(68)
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t s

S1 S2

Figure 4: Parametrization of a dilated waveguide: t is the unique coordinate
in the interior of supph′ such that h′(t) = 0, S1 (resp. S2) is the section at the
left (resp. right) of t, and s is a coordinate satisfying s > t.

where φ1, φ2 are defined in (61). The constants A1, A2, B1, B2 satisfy the linear
system

M(s, t)


A1
B1
B2
A2

 = V (s) :=


0
0
0

−φ2(s)

 , (69)

where M(s, t) =
−(φ1A(ξ1))(t) (φ2A(ξ2))(t) (φ2B(ξ2))(t) 0
−(φ1A(ξ1))′(t) (φ2A(ξ2))′(t) (φ2B(ξ2))′(t) 0

0 −A(ξ2(s)) −B(ξ2(s)) A(ξ2(s))
0 −(A(ξ2))′(s) −(B(ξ2))′(s) (A(ξ2))′(s)

 . (70)

We next study when M is invertible.

Proposition 4. The determinant D of M(s, t) defined in (70) is

D = 1
π

(−φ1(t)A(ξ1(t))(φ2A(ξ2))′(t) + (φ1A(ξ1))′(t)φ2(t)A(ξ2(t))) . (71)

Proof. We expand of the determinant along the first column and use the fact
that BA′ − B′A = −1/π.

Remark 8. Using the asymptotics of A provided in [8, 13], the conditionD = 0
asymptotically reduces to

cos
(∫ x?

2

x?
1

kn(x)dx
)

= 0. (72)

Under this condition, it is not possible to find the values of (A1, B1, B2, A2).
This may be explained by the potential presence of trapped modes in the dilated
waveguide under this condition.

Except for special values of k such that D = 0, we can find constants
(A1, B1, B2, A2) by computing either symbolically or numerically the solution
of M(s, t)X = V (s).
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We also study the case of compressions. Again, we assume that s > t, and
we know that Gn(x, s) is close to

Gapp
n (x, s) =

 A1φ1(x)(iA(ξ1(x)) + B(ξ1(x))) if x ∈ S1,
φ2(x)(B1A(ξ2(x)) +B2B(ξ2(x))) if x ∈ S2, x < s,
A2φ2(x)(iA(ξ2(x)) + B(ξ2(x))) if x ∈ S2, x > s.

(73)

The constants A1, A2, B1, B2 satisfy the linear system

M(s, t)


A1
B1
B2
A2

 = V (s) :=


0
0
0

φ2(s)

 , (74)

where we define F = iA+ B and M(s, t) =
−(φ1F(ξ1))(t) (φ2A(ξ2))(t) (φ2B(ξ2))(t) 0
−(φ1F(ξ1))′(t) (φ2A(ξ2))′(t) (φ2B(ξ2))′(t) 0

0 −A(ξ2(s)) −B(ξ2(s)) F(ξ2(s))
0 −(A(ξ2))′(s) −(B(ξ2))′(s) (F(ξ2))′(s)

 . (75)

Proposition 5. The matrice M(s, t) defined in (75) is invertible.

Proof. Its determinant D is

D = 1
π

(−φ1(t)(iA+ B)(ξ1(t))(φ2(iA(ξ2) + B(ξ2))′(t)

+ (φ1(iA(ξ1) + B(ξ1))′(t)φ2(t)(iA+ B)(ξ2(t)).

The asymptotic expansions provided in [13, 8] show that there exists β1 > 0
such that

φ1(t)(iA(ξ1(t)) + B(ξ1(t)) ≈
1

2
√
π
√
kn(t)

exp
(

2
3

∫ t

x?
1

|kn|(x)dx
)

if |t− x?1| � η−1/3,

1√
β1

(iA+ B)(β1(t− x?1)) if |t− x?1| � η−1/2,

and since h′(t) = 0,

(φ1(iA(ξ1) + B(ξ1))′(t) ≈
|kn(t)|

2
√
π
√
kn(t)

exp
(

2
3

∫ t

x?
1

|kn|(x)dx
)

if |t− x?1| � η−1/3,√
β1(iA′ + B′)(β1(t− x?1)) if |t− x?1| � η−1/2.
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This case distinction covers every relative positions of t, x?1 and x?2 since η−1/2 �
η−1/3. We can do the same in S2, and find β2 > 0 such that

φ2(t)(iA(ξ2(t)) + B(ξ2(t)) ≈
1

2
√
π
√
kn(t)

exp
(

2
3

∫ x?
2

t

|kn|(x)dx
)

if |t− x?2| � η−1/3,

1√
β2

(iA+ B)(β2(x?2 − t)) if |t− x?2| � η−1/2,

(φ2(iA(ξ2) + B(ξ2))′(t) ≈ −
|kn|

2
√
π
√
kn(t)

exp
(

2
3

∫ x?
2

t

|kn|(x)dx
)

if |t− x?2| � η−1/3,

−
√
β2(iA′ + B′)(β2(x?2 − t)) if |t− x?2| � η−1/2.

If |t− x?2| � η−1/3 and |t− x?1| � η−1/3 then

D ≈ exp
(

2
3

∫ t

x?
1

|kn|(x)dx
)

exp
(

2
3

∫ x?
2

t

|kn|(x)dx
)
6= 0.

The remaining three relative positions of t, x?1 and x?2 can be analyzed in the
same way. It follows that ∀(t, s) ∈ R, D 6= 0.

Contrarily to the case of dilations, the matrix M is always invertible, and
we can compute again the values of (A1, B1, B2, A2). Figure 10 and 11 show
examples of such computation.

5. Numerical illustrations

In this section, we illustrate our results. We compare the asymptotic ex-
pression of u to data generated using the software Matlab to solve numerically
the equation (H̃) satisfied by the wave field in Ω̃. In the following, we assume
that h′ is supported between x = −7 and x = 7. To generate the solution ũ of
(H̃) on Ω̃7, we use the finite element method and a perfectly matched layer (see
[15]) placed on the left side of the waveguide between x = −15 and x = −8, and
on the right side between x = 8 and x = 15. The coefficient of absorption for
the perfectly matched layer is defined by α = −k((x− 8)1x≥8 − (x+ 8)1x≤−8)
and k2 is replaced in the Helmholtz equation by k2 + iα. The structured mesh
is built with a stepsize of 10−3.

5.1. Computation of the modal Green function
To test the validity of the expression (16) of the Green function, we consider

a profile with α = 0.1, β = 0.04/30 and

h(x) = α+ β

[(
−1 +

√
x+ 4√

2

)
1[−4,4](x) + 1(4,+∞)(x)− 1(−∞,−4)(x)

]
, (76)
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with k = 31.5. There is only one locally resonant mode N = 1 associated
to the resonant point x? ≈ −2.72. We place an internal source f(x, y) =
d(x)ϕn(y/h(x)) with n ∈ N where d is a Gaussian approximation of δs at s ∈ R
with

d(x) = 1√
2πσ

exp
(
− (x− s)2

2σ2

)
, (77)

and σ = 0.005. We measure the wave field ũ at y = 0, and we compare it to the
expression (16). In Figure 5 (resp 6), we illustrate the case where n = 0 < N
(resp. n = 2 > N). In Figures 7, 8 and 9, we illustrate the case where n = N
for different values of s. The approximation seems to be accurate, and the small
discrepancies observed for instance in the imaginary part of Figure 8 are caused
by the imprecise approximation of the Dirac function δs by d. However, even in
this particular case, the relative L2 error is still very small.

sx?

zoom

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1

0

1

2
·10−2

Re(u(x, 0))
Re(Gapp

n )

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1

0

1

2
·10−2

Im(u(x, 0))
Im(Gapp

n )

Figure 5: Representation of ũ(x, 0) (in blue) and Gapp
n (x) (in red) for a prop-

agative mode n = 0 and s = 0 in an expanding waveguide, in the zoomed area
(−2, 2). Top: representation of h, x? and s. Middle: comparison between real
parts of ũ(x, 0) and Gapp

n (x). Bottom: comparison between imaginary parts of
ũ(x, 0) and Gapp

n (x). Here, the relative L2 error between ũ(x, 0) and Gapp
n (x) is

0.93%.

We also consider a more general waveguide. As in section 3.2, we choose
the simplest case of dilation and compression, and we compare ũ(x, 0) to Gapp

n

defined in (68) and (73). First, we choose to work with a dilated waveguide,
described by its width

h(x) = 0.1 + 0.0025 sin
( π

10(x+ 5)
)
1[−5,5](x), (78)
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sx?

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 80

2

4

6
·10−3

Re(u(x, 0))
Re(Gapp

n )

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−4

−2

0

2

4
·10−8

Im(u(x, 0))
Im(Gapp

n )

Figure 6: Representation of ũ(x, 0) (in blue) and Gapp
n (x) (in red) for an evanes-

cent mode n = 2 and s = 0 in an expanding waveguide. Top: representation
of h, x? and s. Middle: comparison between real parts of ũ(x, 0) and Gapp

n (x).
Bottom: comparison between imaginary parts of ũ(x, 0) and Gapp

n (x). Here, the
relative L2 error between ũ(x, 0) and Gapp

n (x) is 3.68%.

at frequency k = 31. The only locally resonant mode is still N = 1, associated
to two resonant points x?1 ≈ −3.19 and x?2 = −x?1. We choose the same internal
source f as before, and we illustrate the case n = N in Figure 10. Figure 11
illustrates the case of a compressed waveguide, with profile

h(x) = 0.1− 0.0005(x+ 5)1[−5,0](x) + 0.0025
4 (x− 4)1(0,4](x), (79)

at frequency k = 32.1 with a resonant mode N = 1 and resonant points x?1 ≈
−0.74 and x?2 ≈ 0.59.

5.2. General source terms
We now validate the approximation provided in (15) for general sources, in

the same expanding waveguide defined by its width in (76). We choose two
different types of sources : a vertical internal source (see Figure 12), and a
boundary source (see Figure 13). To compute the approximation in (15), we
choose to reduce the sum to 15 modes. Every time, we compute the relative
error made between ũ and its approximation ũapp defined by (15).

5.3. Dependence of the error of approximation with respect to η
Finally, we evaluate in this section the influence of the parameter η in the

approximation error ‖ũ − ũapp‖H1(Ω̃r). First, we chose large values of η to
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Figure 7: Representation of ũ(x, 0) (in blue) and Gapp
n (x) (in red) for a locally

resonant mode n = 1 and s = −4 in an expanding waveguide. Top: represen-
tation of h, x? and s. Middle: comparison between real parts of ũ(x, 0) and
Gapp
n (x). Bottom: comparison between imaginary parts of ũ(x, 0) and Gapp

n (x).
Here, the relative L2 error between ũ(x, 0) and Gapp

n (x) is 5.32%.

illustrate the control provided in Theorem 1. We work at k = 5.23, with an
increasing waveguide parametrized by

h(x) = 0.5 + 0.2ηx1−5<x<−5+1/η + 0.21x≥−5+1/η, (80)

and a boundary source bbot = 14<x<5. We present in Figure 14 the error of
approximation with respect to η. We can see that the error grows a little bit
slower than the 1 slope expected. We also notice than for small values of η, the
error seems to reach a level where it is almost constant. This is the error due
to the finite element method.

6. Conclusion

In this paper, we have presented a complete proof of the existence of a
unique solution to the Helmholtz equation in slowly variable waveguides. We
also provide a suitable approximation of this solution and a control of the error
of approximation in H1

loc(Ω). We validate this approximation numerically, and
show that this expression is an excellent way to compute quickly the wave field
in a slowly varying waveguide.

We believe that this work could be extended to elastic waveguides in two
dimensions, using the modal decomposition in Lamb modes as in [8]. One could
also try to generalize the ideas of this article to acoustic waveguides in three
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Figure 8: Representation of ũ(x, 0) (in blue) and Gapp
n (x) (in red) for a locally

resonant mode n = 1 and s = −1.5 in an expanding waveguide. Top: repre-
sentation of h, x? and s. Middle: comparison between real parts of ũ(x, 0) and
Gapp
n (x). Bottom: comparison between imaginary parts of ũ(x, 0) and Gapp

n (x).
Here, the relative L2 error between ũ(x, 0) and Gapp

n (x) is 7.24%.

dimensions. We think it would be possible to recover some Laplacian eigenvalues
of local sections, and from that to recover some information on the waveguide
shape.

Finally, we plan to use this work to develop a new multi-frequency method
to recover the width of a waveguide given measurements of the wave field at
the surface or on a section of the waveguide. Indeed, for a locally resonant
frequency, the wave field in a perturbed waveguide is very different from the
one in a regular waveguide, even if the width h is close to a constant function.
This should provide a very high sensibility inversion method to reconstruct the
width of the waveguide, and will be done in a future work.

Appendix A. Proofs of Proposition 1 and 2

Source f . This proof is an adaptation of the proof presented in Appendix B of
[17]. Using the results on the modal decomposition presented in Appendix A of
[17], we know that the equation (50) is equivalent to

∀n ∈ N
{
u′′n + kn(x)2un = −fn in R,

un is outgoing,
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Figure 9: Representation of ũ(x, 0) (in blue) and Gapp
n (x) (in red) for a locally

resonant mode n = 1 and s = 5 in an expanding waveguide. Top: representation
of h, x? and s. Middle: comparison between real parts of ũ(x, 0) and Gapp

n (x).
Bottom: comparison between imaginary parts of ũ(x, 0) and Gapp

n (x). Here, the
relative L2 error between ũ(x, 0) and Gapp

n (x) is 6.08%.

where un, fn ∈ L2
loc(R) and

u(x, y) =
∑
n∈N

un(x)ϕn(y), f(x, y) =
∑
n∈N

fn(x)

Using Theorem 2, there exist a unique Green function Gn(x, s) associated to
this equation, and

∀n ∈ N un(x) =
∫
R
Gn(x, s)fn(s)ds.

We also notice that for every (x, s) ∈ R2, Gn(x, s) = Gn(s, x), and using controls
from Theorem 2, for every s ∈ R and x ∈ R,

∀n ∈ N ‖Gn(·, s)‖L1(−r,r), ‖Gn(x, ·)‖L1(−r,r) ≤ α(1)
n .

Using Young’s inequality for integral operators,

∀n ∈ N ‖un‖L2(−r,r) ≤ α(1)
n ‖fn‖L2(−r,r).

Using Parseval equality and the results of Theorem 2,

‖u‖2L2(Ωr) ≤ α
2
N∑
n=0
‖fn‖2L2(−r,r) + α2

δ4

∑
n>N

‖fn‖2L2(−r,r)

≤ α2 max
(

1, 1
δ4

)
‖f‖2L2(Ωr).
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Figure 10: Representation of ũ(x, 0) (in blue) and Gapp
n (x) (in red) for n = 1

and s = 0.5 in a dilated waveguide. Top: representation of h, x?1, x?2 and
s. Middle: comparison between real parts of ũ(x, 0) and Gapp

n (x). Bottom:
comparison between imaginary parts of ũ(x, 0) and Gapp

n (x) Here, the relative
L2 error between ũ(x, 0) and Gapp

n (x) is 10.09%.

Applying Young’s inequality to u′n, we get

‖∇u‖2L2(Ωr) ≤ α
2
N∑
n=0

(
1 + n2π2) ‖fn‖2L2(−r,r)

+ α2
∑
n>N

(
1

min(|kn|)2 + n2π2

min(|kn|)4

)
‖fn‖2L2(−r,r).

We deduce that

‖∇u‖2L2(Ωr) ≤ α
2 max

(
1 +N2π2,

1
δ2 + (N + 1)2π2

δ4

)
‖f‖2L2(Ωr).

Finally,
‖u′′n‖L2(−r,r) ≤ |kn|2‖un‖L2(−r,r) + ‖fn‖L2(−r,r)

It follows that

‖∇2u‖2L2(Ωr) ≤
N∑
n=0

α2 ((k2
n + 1)2 + 2n2π2 + n4π4) ‖fn‖2L2(−r,r)

+
∑
n>N

α2

((
|kn|2

min(|kn|)2 + 1
)2

+ 2n2π2

min(|kn|)2 + n4π4

min(|kn|)4

)
‖fn‖2L2(−r,r),

32

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4049395

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



sx?1 x?2

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−0.2

0

0.2
Re(u(x, 0))
Re(Gapp

n )

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
−0.2

0

0.2
Im(u(x, 0))
Im(Gapp

n )

Figure 11: Representation of ũ(x, 0) (in blue) and Gapp
n (x) (in red) for n = 1

and s = 0.5 in a compressed waveguide. Top: representation of h, x?1, x?2 and
s. Middle: comparison between real parts of ũ(x, 0) and Gapp

n (x). Bottom:
comparison between imaginary parts of ũ(x, 0) and Gapp

n (x). Here, the relative
L2 error between ũ(x, 0) and Gapp

n (x) is 4.39%.
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Figure 12: Representation of the wave field u generated by a source f(x, y) =
d(x)y where d is defined in (77) with s = 0. Up, the absolute value |ũ|, down,
the error of approximation |ũ− ũapp|. Here, the relative L2 error between ũ and
ũapp is 6.22%.
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|ũ− ũapp|

0
5
10
15
20

·10−2

Figure 13: Representation of the wave field ũ generated by a source bbot =
1−1≤x≤1. Up, the absolute value |ũ|, down, the error of approximation |ũ−ũapp|.
Here, the relative L2 error between ũ and ũapp is 7.73%.

and so

‖∇2u‖2L2(Ωr) ≤ α
2 max

[ (
(k2
N + 1)2 + 2N2π2 +N4π4)

+
((
|kN+1|2

δ2 + 1
)2

+ 2(N + 1)2π2

δ2 + (N + 1)4π4

δ4

)]
‖f‖2L2(Ωr).

Source b. Using the same arguments as before, the equation (53) is equivalent
to

∀n ∈ N
{
u′′n + k2

nun = −btopϕn(1)− bbotϕn(0) in R,
un is outgoing,

and we know that

∀n ∈ N un(x) =
∫
R
Gn(x, s)(btopϕn(1) + bbotϕn(0))ds.

We notice that |ϕn(1)|, |ϕn(0)| ≤
√

2. Using Theorem 2.3.2.9 in [20], there exist
a constant d(r) and µ > 0 such that

‖u‖H2(Ωr) ≤ d(r)
(∥∥∥∥−∂xxu− 1

h2 ∂yyu+ µu

∥∥∥∥
L2(Ωr)

+ ‖b‖
(H̃

1/2
(−r,r))2

)
,

and it follows that

‖u‖H2(Ωr) ≤ d(r)
(

(k2 + µ)‖u‖L2(Ωr) + ‖b‖
(H̃

1/2
(−r,r))2

)
.
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Figure 14: Representation of ‖ũ − ũapp‖H1(Ω̃7) for different values of η to
illustrate the result of Theorem 1.

Finally,

‖u‖2L2(Ωr) ≤ 2α2‖b‖2
(H̃

1/2
(−r,r))2

(
N + 1 +

∑
n>N

1
min(|kn|)4

)
,

which concludes the proof.
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