
Inverse Problems and Imaging doi:10.3934/ipi.2021056

SMALL DEFECTS RECONSTRUCTION IN WAVEGUIDES FROM

MULTIFREQUENCY ONE-SIDE SCATTERING DATA
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Abstract. Localization and reconstruction of small defects in acoustic or elec-

tromagnetic waveguides is of crucial interest in nondestructive evaluation of

structures. The aim of this work is to present a new multi-frequency inver-
sion method to reconstruct small defects in a 2D waveguide. Given one-side

multi-frequency wave field measurements of propagating modes, we use a Born

approximation to provide a L2-stable reconstruction of three types of defects:
a local perturbation inside the waveguide, a bending of the waveguide, and a

localized defect in the geometry of the waveguide. This method is based on
a mode-by-mode spacial Fourier inversion from the available partial data in

the Fourier domain. Indeed, in the available data, some high and low spa-

tial frequency information on the defect are missing. We overcome this issue
using both a compact support hypothesis and a minimal smoothness hypoth-

esis on the defects. We also provide a suitable numerical method for efficient

reconstruction of such defects and we discuss its applications and limits.

1. Introduction. In this article, we present a method to detect and reconstruct
small defects in a waveguide of dimension 2 from multi-frequency wave field mea-
surements. The measurements are taken on one section of the waveguide, and we
assume that only the propagative modes can be detected. Indeed, in most of practi-
cal cases, measurements are made far from the defects where the evanescent modes
vanish. In a waveguide Ω ⊂ R2, in the time harmonic regime the wave field uk
satisfies the Helmholtz equation

(1) ∆uk + k2(1 + q)uk = −s,

where k is the frequency, q is a compactly supported bounded perturbation inside
the waveguide and the function s is a source of waves.

We focus on the inversion of three main types of defects represented in Figure 1:
a local perturbation of the index q, a bend of the waveguide, and a localized defect
in the geometry of Ω. The detection of such defects can be used as a non destructive
means to monitor pipes, optical fibers, or train rails for instance (see [20, 19]). A
controlled source s generates wave fields in Ω for some frequencies k ∈ K ⊂ R∗+
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Figure 1. Representation of the three types of defects: in (1)
a local perturbation q, in (2) a bending of the waveguide, in (3)
a localized defect in the geometry of Ω. A controlled source s
generates a wave field uinc

k . When it crosses the defect, it generates
a scattered wave field usk. Both uinc

k and usk are measured on the
section Σ.

and we assume the knowledge of the corresponding measurements uk(x, y) for every
(x, y) ∈ Σ where Σ is a fixed section of Ω.

The detection of bends or shape defects in a waveguide is mentioned in the
articles [21, 2, 1]. To solve the forward problem, the authors use a conformal
mapping or a local orthogonal transformation to map the geometry to that of a
regular waveguide. This method is very helpful to understand the propagation of
waves in irregular waveguides but is not easily adaptable for the inverse problem and
for the reconstruction of defects, since the transformation to a regular waveguide is
not explicit and proves numerically expensive.

The recovery of inhomogeneities in a waveguide using scattered field data has
been extensively studied. In [13], the authors use a spectral decomposition and
assume knowledge of the far-field scattered wave field to reconstruct the inhomo-
geneities in a 2D waveguide. The authors in [10] adapt the Linear Sampling Method
[11] to waveguides detection of inhomogeneities in 2D or 3D. In [4], an asymptotic
formula of the scattered field is used to localize small inclusions. Periodic waveguides
are considered in [9]. In all these articles, the frequency in the Helmholtz equation
is fixed and it is assumed that incident waves can be sent on every propagative
mode in the waveguide. However, as defects may be invisible at some frequencies
(as shown in [14]) the frequency has to be chosen wisely.

Our work concerns a different approach, also used in [6, 5], where we assume
that data is available for a whole interval of frequencies. This provides additional
information that should help not only localize but reconstruct the shape of the
defect. The use of multi-frequency data provides uniqueness of the reconstruction
(see [3]) and better stability (see [7, 18, 23]). In this work we assume that one
only send the first propagative mode at different frequencies in the waveguide as an
excitation source. This situation seems to correspond to the practice of monitoring
pipes in mechanical experiments [20]. In this study, we assume that the defects are
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small in amplitude and/or in support in order to approximate the wave field using
its Born approximation. This seems to be a reasonable assumption considering the
applications that this work intends to address. This approximation is described in
[12], and is also used in [13, 4]. Our strategy to study the impact of small geometrical
defects is to provide a well suited mapping from the perturbed waveguide to a perfect
waveguide that generates some change in the Helmholtz equation itself. Through
the reconstruction of these modifications in the equation while assuming a perfect
waveguide, it is possible to recover the defects in the geometry.

An important difficulty in detecting inhomogeneities using one sided multi fre-
quencies measurements in a waveguide is that low spacial frequency information
carried by vanishing modes about the inhomogeneities may be missing. Indeed,
these modes are not measurable in practice due to their exponential decay.

One of the key results of this article is given by Theorem 2.7 that provides con-
ditions to control the error of approximation in the recovery of a function from
an incomplete knowledge of its Fourier transform. In this result, we assume that
both high frequencies and a reasonable amount of low frequencies are missing. Nev-
ertheless, a stable inversion in L2 remains possible assuming a reasonable a priori
knowledge of the smoothness and the support of the unknown perturbation. This re-
sult provides a theoretical stability argument that allows us to run a mode-by-mode
well-conditioned inversion using a penalized least-square technique. This method
is numerically efficient, and can be applied to recover defects of the three different
types.

The paper is organized a follows. In section 2, we recall some properties of the
forward source problem in a waveguide using the modal decompositions of both
the wave field and the source. We then study the inverse source problem with full
frequency data and then with partial frequency data.

In section 3, we apply the results to recover all three types of defects that we are
interested in: internal inhomogeneities, bending or shape defects.

In section 4, we present the numerical method used to detect defects and some
numerical simulations. To avoid the so called “inverse crime” in the numerical tests,
we use two different codes. We use a finite element based solver with PML’s [8] to
generate the data from a waveguide with defects. Another solver, based on a modal
decomposition, allows us to recover the inhomogeneities from the simulated data.
Only the second code is used in the inversion procedure.

2. Forward and inverse source problem in a waveguide. In this section, we
present the tools required to study the forward and inverse source problems in a
waveguide. First, we recall some classical results about the forward source problem
and modal decomposition. These results can also be found in [10, 13]. Next,
assuming that the perturbation is small enough, we show existence, uniqueness and
stability of a solution to the perturbed forward source problem. Finally, we present
an inversion strategy using the measurements of the wave field on a section of the
waveguide for full and partial frequency data.

2.1. Forward source problem in a perfect waveguide. We consider a 2D
infinite perfect waveguide Ω = R× (0, 1) in which waves can propagate at frequency
k > 0 according to the homogeneous Helmholtz equation

(2) ∆uk + k2uk = 0.
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We choose a Neumann condition on the boundary ∂Ω, but this condition can be
changed to a Dirichlet or a Robin condition without altering of our results. It is
known that the homogeneous Neumann spectral problem for the negative Laplacian
on (0, 1) has an infinite sequence of eigenvalues λn for n ∈ N, and that it is possible
to find eigenvectors ϕn that form an orthonormal basis of L2(0, 1). Precisely,

(3) λn = n2π2, ϕn =

{
1 if n = 0,

y 7→
√

2 cos(nπy) otherwise.

This basis proves quite helpful in the study of waveguides since every function
f ∈ L2

loc(Ω) can be decomposed as a sum of modes:

(4) f(x, y) =
∑
n∈N

fn(x)ϕn(y) f. a. e. (x, y) ∈ Ω, fn ∈ L2
loc(R).

Let ν be the outward unit normal on ∂Ω. Using this orthonormal basis, the
solutions to the homogeneous problem

(5)

{
∆uk + k2uk = 0 in Ω,

∂νuk = 0 on ∂Ω,

are linear combinations of (x, y) 7→ ϕn(y)e±iknx where k2
n = k2− n2π2 and Re(kn),

Im(kn) ≥ 0. This solution is called the n-th mode. In the following, we assume
that kn 6= 0, meaning that we do not choose a wavelength k = nπ for n ∈ N. Two
types of modes appear in the decomposition of uk. Propagative modes correspond
to n < k/π and then kn ∈ R, while evanescent modes feature n > k/π and kn ∈ iR.
The amplitude of evanescent modes decays exponentially fast at one end of the
waveguide. An extra condition is then needed to ensure the uniqueness of a solution
to the Helmholtz problem (5).

Definition 2.1. A solution uk ∈ H2
loc(Ω) of (2) is outgoing if it satisfies the radia-

tion conditions:

(6)

∣∣∣∣〈uk(x, ·), ϕn〉′
x

|x|
− ikn〈uk(x, ·), ϕn〉

∣∣∣∣ −→|x|→+∞
0 ∀n ∈ N,

where 〈·, ·〉 is the inner scalar product in L2(−1, 1).

Remark 1. This condition is an adaptation to our problem of the Sommerfeld
condition used in free space. The articles [13, 10] adopt another radiation condition
called Dirichlet to Neumann condition, which is equivalent to our radiation condition
when s is compactly supported.

Using the previous conditions, the following proposition holds, the proff of which
is given in the Appendix A.

Proposition 1. For every s ∈ L1(Ω) ∩ L2
loc(Ω), the problem

(7)

 ∆uk + k2uk = −s in Ω,
∂νuk = 0 on ∂Ω,

uk is outgoing,

has a unique solution uk ∈ H2
loc(Ω), which decomposes as

(8) uk(x, y) =
∑
n∈N

uk,n(x)ϕn(y) where uk,n(x) =
i

2kn

∫
R
sn(z)eikn|x−z|dz,

if the decomposition of s is s(x, y) =
∑
n∈N

sn(x)ϕn(y).
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Remark 2. It is interesting to note that s does not need to have a compact support
in this context, as is the case in the free space Helmholtz problem.

Let Ωr := (−r, r) × (0, 1) where r > 0 denote a restriction of length 2r of the
waveguide. We assume that every source defined on Ωr is extended by 0 in Ω and
we define the forward Helmholtz source operator Hk by

(9) Hk :
L2(Ωr) → H2(Ωr)

s 7→ uk Ωr

where uk is the solution to (7).

The following proposition quantifies the dependence between u and the source s.
Its proof is given in Appendix B.

Proposition 2. The forward Helmholtz source operator Hk is well defined, con-
tinuous and there exists C > 0 depending only on k and r such that for every
s ∈ L2(Ωr),

(10) ‖uk‖H2(Ωr) ≤ C‖s‖L2(Ωr).

Remark 3. We notice from the proof that C increases when the distance between
k and πN decreases.

In the following, we also need to consider the problem where the source is located
on the boundary of the waveguide. Let ∂Ωtop = R × {1} and ∂Ωbot = R × {0}.
Similarly to Proposition 1, we have

Proposition 3. Let b1, b2 ∈ L1(R) ∩H
1/2
loc (R). The Helmholtz equation

(11)


∆uk + k2uk = 0 in Ω,

∂νuk = b1 on ∂Ωtop,
∂νuk = b2 on ∂Ωbot,

uk is outgoing,

has a unique solution uk ∈ H2
loc(Ω), which decomposes as

(12) uk(x, y) =
∑
n∈N

uk,n(x)ϕn(y)

where

(13) uk,n(x) =
i

2kn

∫
R

(b1(z)ϕn(1) + b2(z)ϕn(0))eikn|x−z|dz.

In the restricted guide Ωr, we assume again that every source defined on (−r, r) is
extended by 0 on R and we define the forward Helmholtz boundary source operator
Gk by

(14) Gk :

(
H̃

1/2
(−r, r)

)2

→ H2(Ωr)

(b1, b2) 7→ uk

where uk is the solution to (11),

and H̃
1/2

(−r, r) is the closure of D(−r, r), the space of distributions with support

in (−r, r), for the H1/2(R) norm (see [22] for more details). A result similar to
Proposition 2 holds:

Proposition 4. The forward Helmholtz boundary source operator Gk is well defined,
continuous and there exists a constant D depending only on k and r such that for

every b1, b2 ∈ H̃
1/2

(−r, r),

(15) ‖G(b1, b2)‖H2(Ωr) ≤ D
(
‖b1‖H̃1/2

(−r,r) + ‖b2‖H̃1/2
(−r,r)

)
.
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Remark 4. Combining Propositions 1 and 3, we see by linearity that the problem

(16)


∆uk + k2uk = −s in Ω,

∂νuk = b1 on ∂Ωtop,
∂νuk = b2 on ∂Ωbot,

uk is outgoing,

has a unique solution uk ∈ H2
loc(Ω).

2.2. Forward source problem with perturbations . In the following we in-
troduce a theoretical framework for a perturbed Helmholtz problem in a perfect
waveguide. Under the Born hypothesis, we prove existence and uniqueness of a so-
lution for the perturbed problem. Then, we provide estimates on the error between
the exact solution of the perturbed problem and its Born approximation.

The perturbed Helmholtz equation takes the form

(17)


∆wk + k2wk = −s− S(wk) in Ω,

∂νwk = b1 + T1(wk) on ∂Ωtop,
∂νwk = b2 + T2(wk) on ∂Ωbot,
wk is outgoing,

where S, T1, T2 are linear operators depending on wk. Moreover, we assume that
there exists r > 0 such that supp(S(wk)) ⊂ Ωr and supp(T1(wk)), supp(T2(wk)) ⊂
(−r, r) for every wk ∈ H2

loc(Ω).
Using the forward Helmholtz source operator Hk and the forward Helmholtz

boundary source operator Gk defined in (9) and (14), we can rewrite this equation
on Ωr:

(18) wk = Hk(s) + Gk(b1, b2) +Hk(S(wk)) + Gk(T1(wk), T2(wk)).

Proposition 5. Let r > 0 such that S : H2(Ωr) → L2(Ωr) and T1, T2 : H2(Ωr) →
H̃

1/2
(−r, r). Let C and D be the constants defined in Propositions 2 and 4. Let

s ∈ L2(Ωr), b1, b2 ∈ H̃
1/2

(−r, r) and assume that

µ := C‖S‖H2(Ωr)→L2(Ωr)

+D
(
‖T1‖H2(Ωr)→H̃

1/2
(−r,r) + ‖T2‖H2(Ωr)→H̃

1/2
(−r,r)

)
< 1.

(19)

Then (18) has a unique solution wk ∈ H2(Ωr) and

(20) wk =
∑
m∈N

[Hk ◦ S + Gk ◦ (T1, T2)]
m

(Hk(s) + Gk(b1, b2)) .

Proof. If (19) is satisfied then Hk ◦ S + Gk ◦ (T1, T2) is a contraction, and the
expression (20) is the expansion of wk into a Born series (see for instance [12]).

Remark 5. In this work, we only consider perturbations which affect the PDE
via a linear operator. However, the above Proposition also extends to non linear
operators, assuming they are Lipschitz.

To compute numerically wk, we approximate the Born series by its first term.

Definition 2.2. Let wk be defined by (20). We define vk, the Born approximation
of wk by

(21) vk = Hk(s) + Gk(b1, b2).
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Proposition 6. Assume that µ satisfies (19) as in Proposition 5. Let wk be the
solution of (18) and vk its Born approximation. Then

(22) ‖wk−vk‖H2(Ωr) ≤
(
C‖s‖L2(Ωr) +D

(
‖b1‖H̃1/2

(−r,r) + ‖b2‖H̃1/2
(−r,r)

)) µ

1− µ
.

Proof. We use the definitions of wk and vk and the sum of geometrical series.

Remark 6. If f, g1 and g2 are small, we have proved that the solution of (17) is
very close to the solution of

(23)


∆vk + k2vk = −s in Ω,

∂νvk = b1 on ∂Ωtop,
∂νvk = b2 on ∂Ωbot,

vk is outgoing,

and we have quantified the error made by approximating wk by vk.

2.3. Inverse source problem in a perfect waveguide. In this section, we con-
sider the inverse problem of reconstructing a real-valued source s. The goal is to
determine the location of s form measurements made on the section {0} × (0, 1) at
every frequency k > 0.

uk
s Ω

x = 0

For every k > 0 and 0 < y < 1, uk(0, y) is measured. Using Proposition 1, we
know that

(24) uk(0, y) =
∑
n∈N

uk,n(0)ϕn(y) where uk,n(0) =
i

2kn

∫
R
sn(z)eikn|z|dz,

if the decomposition of s is s(x, y) =
∑
n∈N sn(x)ϕn(y). Since

(25) uk,n(0) =

∫
R
uk(0, y)ϕn(y)dy,

we can theoretically have access to uk,n(0) for every n ∈ N. However, in real-life
experiments, noise is likely to pollute the response of evanescent mode, so we assume
that we only have access to uk,n(0) for every n ∈ N such that n < k/π:

(26) uk,n(0) =
i

2kn

∫
R
sn(z)eikn|z|dz ∀k > 0, ∀n ∈ N, n < k/π.

We notice that this expression depends on kn =
√
k2 − n2π2. Since (k, n) 7→

(ω, n) := (
√
k2 − n2π2, n) is one-to-one from {(k, n) ∈ R∗+×N, n < k/π} to R∗+×N,

the available data is then

(27) dω,n :=
i

2ω

∫
R
sn(z)eiω|z|dz ∀n ∈ N, ∀ω ∈ R∗+.

This change of variable means that given a mode n and a value ω > 0, there exists
a frequency k > 0 such that n is a propagative mode and kn = ω. In order to
remove the absolute value in the expression of the available data, we assume that
supp(s) ⊂ (0,+∞)× (0, 1), i.e. that the source is located to the right of the section
where the measurements are made.
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Definition 2.3. Let H be the Hilbert space defined by

(28) H :=

{
û : R∗+ → C |

∫ +∞

0

ω2|û(ω)|2dω < +∞
}
, ‖û‖2H =

∫ +∞

0

ω2|û(ω)|2dk.

We denote by Γ the forward modal operator and by Fsource the forward source
operator for problem (7). Then Γ and Fsource are defined by

(29) Γ :
L2(R+) → H

f 7→
(
ω 7→ i

2ω

∫ +∞

0

f(z)eiωzdz

)
,

(30) Fsource :
L2(Ω) → `2(H)

s 7→ (Γ(sn))n∈N
,

if the decomposition of s is s(x, y) =
∑
n∈N

sn(x)ϕn(y).

We choose the following definition for the Fourier transform:

F(f)(ω) =

∫
R
f(z)e−iωzdz.

Since s is real-valued, Γ is related to the Fourier transform:

F(f)(ω) =

{
2ω
i Γ(f)(ω) if ω > 0

−2ω
i Γ(f)(−ω) if ω < 0

.

Using the properties of the Fourier transform, we can prove the following Proposi-
tion:

Proposition 7. The forward modal operator Γ and the forward source operator
Fsource satisfy the relations

(31) ‖Γ(f)‖2H =
π

4
‖f‖2L2(R+) ∀f ∈ L2(R+),

(32) ‖Fsource(s)‖2`2(H) =
π

4
‖s‖2L2(Ω) ∀s ∈ L2(Ω),

and their inverse operators are given by

(33) Γ−1 :

H → L2(R)

v 7→
(
x 7→ i

π

∫ +∞

0

ωv(ω)eiωxdω +
i

π

∫ 0

−∞
ωv(−ω)eiωxdω

)
,

(34) F−1
source :

`2(H) → L2(Ω)

(vn)n∈N 7→

(
(x, y) 7→

∑
n∈N

Γ−1(vn)(x)ϕn(y)

)
.

We can use the same framework for problem (11) when the source therme is a
boundary term. In this case, the measured data is

(35) uk,n(0) =
i

2kn

∫
R

(−b1(z)ϕn(1) + b2(z)ϕn(0))eikn|z|dz ∀n ∈ N,

As (k, n) 7→ (
√
k2 − n2π2, n) is one-to-one from {(k, n) ∈ R∗+ × N, n < k/π} to

R∗+ × N, we assume that the available data is

(36) dω,1 =
i

2ω

∫
R
(b1(z) + b2(z))eiω|z|dz ∀ω ∈ R∗+,
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(37) dω,2 =
i

2ω

∫
R
(−
√

2b1(z) +
√

2b2(z))eiω|z|dz ∀ω ∈ R∗+.

Again, we assume that supp(b1), supp(b2) ⊂ (0,+∞) and with the help of Proposi-
tion 3, we define the forward operator.

Definition 2.4. The forward Helmholtz boundary source operator Fbound for the
problem (11) is defined by

(38) Fbound :

(
H1/2(R+)

)2

→ H×H

(b1, b2) 7→

 ω 7→ i

2ω

∫ +∞

0

(b1(z) + b2(z))eiωzdz

ω 7→ i√
2ω

∫ +∞

0

(b2(z)− b1(z))eiωzdz

 .

This operator is invertible:

Proposition 8. The forward Helmholtz boundary source operator Fbound is invert-
ible:

(39) F−1
bound :

H×H →
(

H1/2(R+)
)2

(v1, v2) 7→

(
Γ−1

(√
2v1 − v2

2
√

2

)
,Γ−1

(√
2v1 + v2

2
√

2

))
.

Propositions 7 and 8 show that the measurements of the wave on a section of the
waveguide for every frequency k > 0 are sufficient to reconstruct the source. Thus,
the inverse operators can be computed explicitly and in a stable way. However, it
is unrealistic to measure uk for every frequency k > 0 in practice. We address this
issue of limited data in the next subsection.

2.4. Inverse source problem from limited frequency data. In this section, we
assume that the frequency data are only known in a given interval. To reconstruct
every sn in (7), we need to find a way to reconstruct a function f knowing only the
values of its Fourier transform on a given interval. This problem is called Fourier
synthesis, and has been studied in [17] for instance. If the given interval has the form
(0, ω1), some regularity on the function is sufficient to provide a good reconstruction
of f and to control the approximation error (see [15]). On the other hand, we have
to deal in the next section with intervals of the form (ω0,+∞). This case is harder,
and it seems difficult to get a good reconstruction of the function f . However, if
the function f is compactly supported, its Fourier transform is analytic. Thus, the
values of Γ(f)(ω) for ω in a interval (ω0, ω1) completely determine Γ(f)(ω) for ω in
(0,+∞). In the following, we address the issue of the stability of this reconstruction.

We start with a lemma to control the L2 norm on (0, ω0) of an analytic function
in therms of its values on (ω0, ω0 + σ) where ω0 and σ are positive real numbers.

Lemma 2.5. Let f be a function in C∞(R+) ∩ L2(R+) and assume that for every

j ∈ N and ω ∈ R+, |f (j)(ω)| ≤ c r
j

jα ‖f‖L2(R+) where r, α, c ∈ R∗+. Let ω0, σ ∈ R∗+
and ε ∈ (0, 1). There exists a constant ξ, depending only on ω0, σ, r, α, c, ε, such
that

(40)
‖f‖L2(0,ω0)

‖f‖L2(R+)

≤ ξ
(‖f‖L2(ω0,ω0+σ)

‖f‖L2(R+)

)1−ε

.
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Proof. Let n ∈ N, we define δj = c r
j

jα and write the Taylor expansion of f at ω0 up

to order n:

f(ω) =

n∑
j=0

(ω − ω0)j

j!
f (j)(ω0) +Rn(ω),

with

|Rn(ω)| ≤
δn+1‖f‖L2(R+)|ω − ω0|n+1

(n+ 1)!
.

We denote by Pn ∈ Rn[X] the Taylor polynomial associated with this expansion:

Pn =

n∑
j=0

aj(X − ω0)j :=

n∑
j=0

f (j)(ω0)

j!
(X − ω0)j ,

and the operator

In :
Rn[X] ∩ L2(ω0, ω0 + σ) → Rn[X] ∩ L2(0, ω0)

P 7→ P
,

endowed with the norm

‖In‖ := sup
P∈Rn[X]

‖P‖L2(0,ω0)

‖P‖L2(ω0,ω0+σ)

.

We immediately see that

‖f‖L2(0,ω0) ≤ ‖f − Pn‖L2(0,ω0) + ‖Pn‖L2(0,ω0)

≤ ‖Rn‖L2(0,ω0) + ‖In‖‖Pn‖L2(ω0,ω0+σ)

≤ ‖Rn‖L2(0,ω0) + ‖In‖‖Rn‖L2(ω0,ω0+σ) + ‖In‖‖f‖L2(ω0,ω0+σ).(41)

Let us compute ‖In‖. Let P =
∑n
j=0 ak(X − ω0)j be a polynomial in Rn[X], then

‖P‖2L2(0,ω0) =

∫ ω0

0

n∑
k,p=0

akap(ω − ω0)k+pdω

=

n∑
k,p=0

akap
−(−ω0)k+p+1

k + p+ 1
= ω0W

THnW,

where W :=
(
ak(−ω0)k

)
k=0,··· ,n and Hn =

(
1

k+p+1

)
p,k=0,··· ,n

is the Hilbert matrix.

In the same way,

‖P‖2L2(ω0,ω0+σ) =

∫ ω0+σ

ω0

n∑
k,p=0

akap(ω − ω0)k+pdω

=

n∑
k,p=0

akap
σk+p+1

k + p+ 1
= σV THnV.

where V :=
(
akσ

k
)
k=0,··· ,n. Let λmin and λmax be the lowest and greatest eigenva-

lues of Hn. It follows that

(42) ω0W
THnW ≤ ω0‖W‖22λmax, σV THnV ≥ σ‖V ‖22λmin.

Notice that

‖W‖22 ≤ max(1, ω0)2n
n∑
k=0

|ak|2 ≤
max(1, ω0)2n

min(1, σ)2n

n∑
k=0

|ak|2σ2k ≤ max(1, ω0)2n

min(1, σ)2n
‖V ‖22.
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Thus, if ω0 ≤ σ, then ‖W‖22 ≤ ‖V ‖22. We follow [24] to estimate the condition
number of the Hilbert matrix: There exists cH > 0 such that cond2(Hn) for the
euclidean norm satisfies

λmax

λmin
= cond2(Hn) ≤ cH

(1 +
√

2)4n

√
n

.

We conclude that

‖P‖2L2(0,ω0) ≤
ω0

σ

(
1ω0≤σ + 1ω0>σ

max(1, ω0)2n

min(1, σ)2n

)
cH

(1 +
√

2)4n

√
n

‖P‖2L2(ω0,ω0+σ).

We define C1 :=
√

cHω0

σ and C2 :=
(
1 +
√

2
)2 (

1ω0≤σ + 1ω0>σ
max(1,ω0)
min(1,σ)

)
, then

(43) ‖In‖ ≤ C1
Cn2
n1/4

.

We next bound Rn in L2(0, ω0) by

‖Rn‖L2(0,ω0) ≤
δn+1‖f‖L2(R+)

(n+ 1)!

(∫ ω0

0

(ω0 − ω)2n+2dω

)1/2

≤
δn+1‖f‖L2(R+)

(n+ 1)!

(
ω2n+3

0

2n+ 3

)1/2

,

and in L2(ω0, ω0 + σ) by

‖Rn‖L2(ω0,ω0+σ) ≤
δn+1‖f‖L2(R+)

(n+ 1)!

(∫ ω0+σ

ω0

(ω − ω0)2n+2dω

)1/2

≤
δn+1‖f‖L2(R+)

(n+ 1)!

(
σ2n+3

2n+ 3

)1/2

.

Substituting in (41) we find

‖f‖L2(0,ω0) ≤
δn+1‖f‖L2(R+)

(n+ 1)!

ω
n+3/2
0√
2n+ 3

+
δn+1‖f‖L2(R+)

(n+ 1)!

σn+3/2

√
2n+ 3

C1C
n
2

n1/4

+
C1C

n
2

n1/4
‖f‖L2(ω0,ω0+σ).

(44)

To simplify the notations, we define

C3 :=
2√
2

max
(
ω

1/2
0 , C1σ

1/2
)

= max (1,
√
cH)
√

2ω0, C4 := max(ω0, σC2).

We notice that

C4 = max

[
ω0,
(

1 +
√

2
)2
(

1ω0≤σσ + 1ω0>σ
σmax(1, ω0)

min(1, σ)

)]
= σc2.

The expression (44) can be simplified and

‖f‖L2(0,ω0)

‖f‖L2(0,+∞)

≤ C3
δn+1C

n+1
4

(n+ 1)!
√
n+ 1

+ C1C
n
2

‖f‖L2(ω0,ω0+σ)

‖f‖L2(0,+∞)

∀n ∈ N.

The first term does not depend on f , and this expression shows that it is impossible
to obtain a Lipschitz estimate. To optimize this estimate, we play on the degree
n of the polynomials. Indeed, the first therm on the right hand side may be large
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for small values of n, while the second therm blows up when n is large. We set
Q := ‖f‖L2(ω0,ω0+σ)/‖f‖L2(R+) and for ε ∈ (0, 1) we choose the integer

n =

⌊
− ε

ln(C2)
ln(Q) +

ln(C5)

ln(C2)

⌋
,

where C5 > 0 is a constant to be determined later, and b c is the floor function.

Invoking the Stirling formula n! ≥
√

2πnn
n

en and the fact that δn+1 = c rn+1

(n+1)α , we

obtain

C3
δn+1C

n+1
4

(n+ 1)!
√
n+ 1

≤ C3c(erC4)n+1

(n+ 1)α+1
√

2π(n+ 1)n+1
=

C3c√
2π

(erC4)n+1

(n+ 1)n+α+2
.

To simplify the notations, we define

γ := erC4, A :=
ln(C5)

ln(C2)
, B :=

ε

ln(C2)
.

Using the fact that A−B ln(Q) ≤ n+ 1 ≤ A−B ln(Q) + 1, we see that

(ert)n+1

(n+ 1)n+α+2
≤ exp[(A−B ln(Q) + 1) ln(γ)

− (A−B ln(Q) + α+ 1) ln(A−B ln(Q))]

= γA+1Q−B ln(γ)+B ln(A−B ln(Q))(A−B ln(Q))−(A+α+1).

The exponent of Q is greater that 1− ε provided

Q ≤ exp

(
− 1

B

[
exp

(
1− ε
B

+ ln(γ)

)
−A

])
.

Since Q ≤ 1, this condition is satisfied if

A = exp

(
1− ε
B

+ ln(γ)

)
+B ln(η) = erC4C

1−ε
ε

2 ,

which fixes the value of

C5 = C
erC4C

1−ε
ε

2
2 .

Using the fact that A−B ln(Q) ≥ erC4C
1−ε
ε

2 , it follows that

‖f‖L2(0,ω0)

‖f‖L2(R+)

≤ ξ
(‖f‖L2(ω0,ω0+σ)

‖f‖L2(R+)

)1−ε

,

where

(45) ξ :=
C3c√

2π
C
− 1−ε

ε

(
1+α+erC4C

1−ε
ε

2

)
2 (erC4)

−α
+ C1C

erC4C
1−ε
ε

2
2 .

Remark 7. The expression (45) certainly over-estimates the optimal constant in
(40), in particular in view of (42).

We now consider two functions f and fapp of one variable. The following theorem
provides a control over the distance between f and fapp using only the values of
their Fourier transforms on the interval [ω0,+∞).
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Theorem 2.6 (Reconstruction with low frequency gap in the Fourier transform).
Let f, fapp ∈ L2(−r, r) where r ∈ R∗+. Let ω0, σ ∈ R∗+. We assume that there exists
M ∈ R∗+ such that

(46) ‖f‖L2(−r,r) ≤M, ‖fapp‖L2(−r,r) ≤M.

For every 0 < ε < 1, there exists ξ, depending on r, ω0, σ, ε, such that

‖f − fapp‖2L2(−r,r) ≤
(
8πM2

)ε
π

ξ2‖F(f)−F(fapp)‖2−2ε
L2(ω0,ω0+σ)

+
1

π
‖F(f)−F(fapp)‖2L2(ω0,+∞).

(47)

Proof. We know that

‖f − fapp‖2L2(−r,r) =
1

π
‖F(f)−F(fapp)‖2L2(0,ω0) +

1

π
‖F(f)−F(fapp)‖2L2(ω0,+∞).

Since f is compactly supported as a function of L2(R), we know that for every
j ∈ N, ω ∈ R+,∣∣∣∣ dj

dωj
(F(f)−F(fapp))(ω)

∣∣∣∣ ≤ (2

∫ r

0

x2jdx

)1/2

‖f − fapp‖L2(−r,r)

≤
rj
√
r‖F(f)−F(fapp)‖L2(R+)√

π
√

2j + 1
.

It follows from Lemma 2.5 that

‖f − fapp‖2L2(−r,r) ≤
1

π
ξ2‖F(f)−F(fapp)‖2εL2(R+)‖F(f)−F(fapp)‖2−2ε

L2(ω0,ω0+σ)

+
1

π
‖F(f)−F(fapp)‖2L2(ω0,+∞).

Since ‖F(f) − F(fapp)‖2ε
L2(R+)

≤
(

2π‖f − fapp‖2L2(−r,r)

)ε
≤
(
8πM2

)ε
, the result

follows.

Next, we generalize Theorem 2.6 to the case when we control the Fourier trans-
form of f on a finite interval [ω0, ω1].

Theorem 2.7 (Reconstruction from a finite interval of the Fourier transform). Let
f, fapp ∈ H1(−r, r) where r > 0. Let ω0, ω1 ∈ R∗+, ω0 < ω1. We assume that there
exists M ∈ R∗+ such that

(48) ‖f‖H1(−r,r) ≤M, ‖fapp‖H1(−r,r) ≤M.

For every 0 < ε < 1, there exists ξ, depending on r, ω0, ω1, ε,M , such that

‖f − fapp‖2L2(−r,r) ≤
(
8πM2

)ε
π

ξ2‖F(f)−F(fapp)‖2−2ε
L2(ω0,ω1)

+
1

π
‖F(f)−F(fapp)‖2L2(ω0,ω1) +

8

ω2
1

M2.

(49)
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Proof. We choose σ = max(1, ω1) in the Theorem 2.6. Since f − fapp ∈ H1(−r, r),

‖F(f)−F(fapp)‖2L2(ω1,+∞) =

∥∥∥∥ω 7→ F(f ′)(ω)−F(f ′app)(ω)

ω

∥∥∥∥2

L2(ω1,+∞)

≤ 2π

ω2
1

‖f ′ − f ′app‖2L2(−r,r).

Remark 8. Using (45), we notice that ξ −→
ω0→0

0 and that 8πM2

ω2
1

−→
ω1→+∞

0. Moreover,

if we define d = Γ(f) and dapp = Γ(fapp) then 2|ω(d− dapp)(ω)| = |F(f − fapp)(ω)|
so

(50)
1

π
‖F(f)−F(fapp)‖2L2(ω0,ω1) −→

[ω0,ω1]→(0,+∞)

4

π
‖d− d̃‖2H,

which is consistent with Proposition 7.

Theorem 2.7 provides a theoretical control of the error of the reconstruction
between f and fapp. However, since ξ can be very large, such control might not be
sufficient to ensure a numerical convergence of fapp to f . To illustrate this point,
we consider a source s supported on [1 − r, 1 + r]. Let X be the discretization of
[1 − r, 1 + r] with NX points. We define h = 2r/(NX − 1). Using the fast Fourier
transform, we compute the discretization of the Fourier transform F(s) on a set
K of frequencies. We notice that F(s)(K) = Ms(X) where M := h(eixk)x∈X,k∈K ,
and that s(X) = M−1F(s)(K). To simulate the low frequency gap, we truncate
K and define Kt = {k ∈ K, k > ω0} and Mt = h(eixk)x∈X,k∈Kt . Then, s(X) =
(MT

t Mt)
−1MT

t F(s)(Kt). Even if MT
t Mt is invertible, its condition number strongly

depends on r and ω0 just like the constant ξ in Lemma 2.5. Figure 2 illustrates this
fact for different values of ω0 and r.

To conclude, if we only have access to perturbed Fourier transform data on a
given interval of frequencies, we can build an approximation of f provided f is
compactly supported and an a priori bound on the norm of f is known. However,
depending of ω0 and r, the error between f and its approximation can be large. We
can reduce it by increasing ω1 and by diminishing ω0 and r.

3. Application to the identification of shape defects, bending or inhomo-
geneity. We propose a method to identify shape defects or bends in a waveguide,
which is almost identical to our method of source detection. We first map the de-
formed waveguide to a regular waveguide, and then use the source inverse method
discussed in the first section to reconstruct the parameters that characterize the
defect.

3.1. Transformation of the deformed waveguide. Let φ0 and φ1 in C1(R). We
consider a deformed waveguide

(51) Ω̃ =
⋃
x∈R

(φ0(x), φ1(x)) = {φ0(x) < y < φ1(x), x ∈ R}.

A wave ũ in Ω̃ satisfies the equation

(52)


∆ũ+ k2ũ = −s̃ in Ω̃,

∂ν ũ = b̃1 on ∂Ω̃top,

∂ν ũ = b̃2 on ∂Ω̃bot,
ũ is outgoing,
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Figure 2. Condition number of MT
t Mt for different sizes of sup-

port and values of ω0. Here, X is the discretization of [1− r, 1 + r]
with 500r+ 1 points. The x-axis represents the evolution of r, and
the y-axis cond2(MT

t Mt). Each curve corresponds to value of ω0

as indicated in the left rectangle.

where s̃ ∈ L2
loc(Ω̃), b̃1 ∈ H

1/2
loc (∂Ω̃top), and b̃2 ∈ H

1/2
loc (∂Ω̃bot). To use the tools

developed in the previous section, we map Ω̃ to the regular waveguide Ω = (0, 1)×R.

Let φ be a one-to-one function that maps Ω into Ω̃. Such a function exists and can
even be assumed to be conformal (see for instance [2]). We define u = ũ◦φ the wave
in the regular guide, Jφ the Jacobien matrix of φ, τ = |det(Jφ)|, t1 = |∇φ0| , and

t2 = |∇φ1|. The variational formulation of (52) shows that for every ṽ ∈ H1(Ω̃),

∫
Ω̃

∇ũ · ∇ṽ − k2

∫
Ω̃

ũṽ =

∫
Ω̃

s̃ṽ +

∫
∂Ω̃top

b̃1ṽ +

∫
∂Ω̃bot

b̃2ṽ,

or equivalently,∫
Ω

(∇ũ ◦ φ) · (∇ṽ ◦ φ)τ − k2

∫
Ω

(ũ ◦ φ)(ṽ ◦ φ)τ =

∫
Ω

(s̃ ◦ φ)(ṽ ◦ φ)τ

+

∫
R

(b̃1 ◦ φ1 t1 + b̃2 ◦ φ0 t2) ṽ ◦ φ.
(53)

Using the fact that ∇u = JφT∇ũ ◦ φ, we set s = s̃ ◦ φ, b1 = b̃1 ◦ φ1, b2 = b̃2 ◦ φ0,
and obtain that for every v ∈ H1(Ω),

(54)

∫
Ω

S∇u · ∇v − k2

∫
Ω

u v τ =

∫
Ω

s v τ +

∫
∂Ωtop

b1 v t1 +

∫
∂Ωbot

b2 v t2.
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where S = Jφ−1
(
Jφ−1

)T
τ , which yields the equation satisfied by u:

(55)

 ∇ · (S∇u) + k2τu = −τs in Ω,
S∇u · ν = b1t1 on ∂Ωtop,
S∇u · ν = b2t2 on ∂Ωbot.

We write S = I2 +M and τ = 1 + ε, where M and ε are expected to be small if the
deformation is small. The above partial differential equation becomes

(56)

 ∆u+ k2u = −τs−∇ · (M∇u)− k2εu in Ω,
∇u · ν = b1t1 −M∇u · ν on ∂Ωtop,
∇u · ν = b2t2 −M∇u · ν on ∂Ωbot.

For r > 0, we set

(57) Σ :
H2(Ωr) → L2(Ωr)

u 7→ ∇ · (M∇u) + k2εu
, Π : H2(Ωr) → H̃

1/2
(−r, r)

u 7→ M∇u · ν
.

The next Proposition follows from the definitions of Σ and Π and the dependence
between ‖M‖C1(Ωr), ε and φ.

Proposition 9. The operator Σ and Π are continuous if M ∈ C1(Ωr). In addition,
there exists constants A(φ), B(φ) depending only on k and r such that

(58) ‖Σ(u)‖L2(Ωr) ≤ A(φ)‖u‖H2(Ωr), ‖Π(u)‖H1/2(Ωr) ≤ B(φ)‖u‖H2(Ωr).

Recalling Section 2.2 and Definition 2.2, we define the Born approximation v of
u by

(59)


∆v + k2v = −τs in Ω,
∇v · ν = b1t1 on ∂Ωtop,
∇v · ν = b2t2 on ∂Ωbot,
v is outgoing.

Proposition 5 and 6 yield the following:

Proposition 10. Let C and D be the constants defined in Propositions 2 and 4,
and A(φ), B(φ) defined in Proposition 9. If CA(φ) + 2DB(φ) < 1 then (56) has a
unique solution u and

‖u− v‖H2(Ωr) ≤
CA(φ) + 2DB(φ)

1− CA(φ) + 2DB(φ)
[C‖τs‖L2(Ωr)

+D
(
‖b2t2‖H̃1/2

(−r,r) + ‖b1t1‖H̃1/2
(−r,r)

)
].

(60)

The Born approximation leads to a problem of source inversion similar to that
of section 2. Using the results proved in this section, we recover τs, b1t1 and b2t2.
In the following, we study how to characterize a defect by recovering one of those
functions. In the case of a bend, one can fix b1 = b2 = 0 and reduce the inversion
to the sole recovery of τs. In the case of a bump, s = 0 and the problem reduces to
the reconstruction of b1t1 and b2t2.
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Figure 3. Representation of a bend in a waveguide.

3.2. Detection of bends. We first consider bends which are parallel portions of
circular arcs, whose geometry is determined by the center and the arc-length of
these arcs, or equivalently by the distance xc where the guide starts bending, the
angle θ and the radius of curvature r (see Figure 3).

More precisely, we define the mapping φ from Ω to Ω̃ as follow:

• If x ≤ xc, φ(x, y) = (x, y).
• If x ∈ (xc, xc + θ(r + 1)), then

φ(x, y) =

(
xc + (r + y) sin

(
x− xc
r + 1

)
,−r + (r + y) cos

(
x− xc
r + 1

))
.

• If x ≥ xc + θ(r + 1) then

φ(x, y) = (xc + (r + y) sin θ + (x− xc − θ(r + 1)) cos θ,−r + (r + y) cos θ

−(x− xc − θ(r + 1)) sin θ).

The matrix Jφ is orthogonal if x 6∈ (xc, xc + θ(r+ 1)) and so τ = 1 in this range. If
x ∈ (xc, xc + θ(r + 1)), then

Jφ(x, y) =

 r+y
r+1 cos

(
x−xc
r+1

)
sin
(
x−xc
r+1

)
− r+yr+1 sin

(
x−xc
r+1

)
cos
(
x−xc
r+1

)  , τ =
r + y

r + 1
,

(61) S = Jφ−1
(
Jφ−1

)T
τ =

( r+1
r+y 0

0 r+y
r+1

)
.

Moreover, t1 = 1 for every x ∈ R, t2 = 1 if x 6∈ (xc, xc + θ(r + 1)) and t2 = r
r+1

otherwise.
We assume along this section that the bend is located to the right of the section

{0} × (0, 1). We introduce a source s̃k = −2ikδ0(x), and we notice that sk =
s̃k ◦ φ = s̃k. In the absence of defect, the wave field generated by this source would
be uinc

k := eik|x|. Let usk be the scattered wave field defined by usk := uk − uinc
k .

Using (56), we notice that usk satisfies the equation

(62)

 ∇(S∇usk) + k2τusk = −τsk −∇(S∇uinc
k )− k2duinc

k in Ω,
S∇usk · ν = −S∇uinc

k · ν on ∂Ω,
usk is outgoing.

The fact that S∇uinc
k · ν = 0, and

(63) − τsk −∇(S∇uinc
k )− k2duinc

k = −1x∈[xc,xc+θ(r+1)]k
2eikxhr(y),



18 E. Bonnnetier, A. Niclas, L. Seppecher and G. Vial

with hr(y) = (y − 1)
(

1
r+y + 1

r+1

)
leads to the equation

(64)

 ∇(S∇usk) + k2τusk = −1x∈[xc,xc+θ(r+1)]k
2eikxhr(y) in Ω,

S∇usk · ν = 0 on ∂Ω,
usk is outgoing.

Under the assumptions of Proposition 10, usk is close to the solution vk of

(65)

 ∆vk + k2vk = −1x∈[xc,xc+θ(r+1)]k
2eikxhr(y) in Ω,

∇vk · ν = 0 on ∂Ω,
vk is outgoing.

The measurements consist in the first mode vk,0 of vk for every frequency k ∈
(0, kmax) where kmax ∈ R∗+ is given. To simplify the source in (64), we define

(66) f = 1x∈[xc,xc+θ(r+1)]

∫ 1

0

hr(t)dt.

Proposition 1 yields

(67) vk,0(0) =
i

2k

∫ +∞

0

k2f(y)e2ikydy = 2k2Γ(f)(2k) ∀k ∈ (0, kmax),

which shows that we have access to Γ(f)(k) for all k ∈ (0, 2kmax). We denote by
d = Γ(f)(k) the data and by dapp the perturbed data. We use the method described
in section 2 to reconstruct an approximation fapp of f . The error is controlled by
the following:

Proposition 11. Let f and fapp be two indicator functions supported in (−a, a)
where a > 0. We assume that the size of the supports of f and fapp is greater than δ.
Let kmax ∈ R∗+, d(k) = Γ(f)(k) and dapp(k) = Γ(fapp)(k) defined for k ∈ (0, 2kmax).

Let c(k) = (
∫ +∞
k

sinc2(x)dx)1/2. Then there exists a constant M ∈ R∗+ such that

(68) ‖f − fapp‖2L2(−a,a) ≤
4

π
‖d− dapp‖2H +Mc(δ kmax).

Proof. We notice that |F(f)(k)| = 2|kΓ(f)(k)| and we use the fact that the Fourier
transform of a indicator function is a sinc function.

Remark 9. This bound of the error of approximation highlights two different
sources of error: the error due to the perturbed data, and the error due to the lack of
measurements for frequencies above 2kmax. The uncertainty on the measurements
can lead to small perturbations of the data, but the most important source of
perturbation comes from the Born approximation and the error given in Proposition
10.

To recover the parameters of the bend from f , we see that∫ 1

0

hr(t)dt = 1− 1

2(r + 1)
− (r + 1) ln

(
r + 1

r

)
= −1

r
+ or→+∞

(
1

r

)
.

If r is large enough, we can use the approximation 1/r or inverse the exact expres-
sion. The values of xc and θ are then deduced from the size of supp(f).

To conclude, with the measurements on a section of the waveguide of the scat-
tered field due to a source s̃k = −2ikδ0(x) for every frequency in (0, kmax), we are
able to reconstruct an approximation of f from which we can derive the parameters
of the bend. Moreover, we can quantify the error of this approximation, and this
error decreases as kmax increases and as θ decreases or r increases.
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Remark 10. This inversion can also be applied for a succession of bends, each
parametrized as in Figure 3. In this case, the function f is a sum of disjoint indicator
functions. Our framework could also certainly be used to reconstruct more general
geometries of bends. However, the expression of S is then more complicated and
the source function in (64) may no longer reduces to indicator function.

3.3. Detection of bumps. We now consider shape defects as those depicted in
Figure 4: the goal is to reconstruct the functions g and h that define the bump
geometries, from the measurements.

uinc
k

h(x)

g(x)

Figure 4. Representation of a shape defect in a waveguide.

We assume that supp(h), supp(g) are compact, that 1 + h > g, and that h, g ∈
C2(R) so Proposition 10 applies. Note that h−1 and g do not need to be of constant
sign. We define φ(x, y) = (x, (1 + h(x)− g(x))y + g(x)) and compute

(69) Jφ(x, y) =

(
1 0

(h′(x)− g′(x))y + g′(x) 1 + h(x)− g(x)

)
,

Jφ−1(x, y) =

(
1 0

− (h′(x)−g′(x))y+g′(x)
1+h(x)−g(x)

1
1+h(x)−g(x)

)
.

Moreover,

τ = |det(Jφ)| = 1 + h(x)− g(x), t1 =
√

1 + h′(x)2, t2 =
√

1 + g′(x)2

and

S =

(
1 + h(x)− g(x) −(h′(x)− g′(x))y − g′(x)

−(h′(x)− g′(x))y − g′(x)
((h′(x)−g′(x))y+g′(x))

2

1+h(x)−g(x) + 1
1+h(x)−g(x)

)
.

Assuming that the bumps are located to the right of the section {0} × (0, 1),
we introduce a source s̃k = −2ikδ0(x), and notice that sk = s̃k ◦ φ = s̃k. In the
absence of defect, the wave field generated by this source would be uinc

k := eik|x|.

Let ũsk := ũk − uinc
k be the scattered wave field which solves

(70)

 ∆ũk + k2ũk = s̃k in Ω̃,

∂ν ũk = 0 on ∂Ω̃,
ũk is outgoing.
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Using the expression of uinc
k and the fact that if x > 0 then eik|x| = eikx, ũk

s satisfies
the equation

(71)


∆ũk

s + k2ũk
s = 0 in Ω̃,

∂ν ũk
s = h′(x)√

1+h′(x)2
ikeikx on ∂Ω̃top,

∂ν ũk
s = −g′(x)√

1+g′(x)2
ikeikx on ∂Ω̃bot,

ũk
s is outgoing.

Transforming the deformed guide to a regular guide leads to

(72)


∆usk + k2us = −∇ · (M∇usk)− k2εusk in Ω,
∂νu

s
k = −M∇usk · ν + h′(x)ikeikx on Ωtop,

∂νu
s
k = −M∇usk · ν − g′(x)ikeikx on Ωbot,

usk is outgoing.

If the assumptions of Proposition 10 are satisfied, usk is close to the solution vk of

(73)


∆vk + k2vk = 0 in Ω,
∂νvk = h′(x)ikeikx on Ωtop,
∂νvk = −g′(x)ikeikx on Ωbot,
vk is outgoing.

Given kmax > 0, we measure the first mode vk,0 of vk for all frequencies k ∈ (0, kmax).
However, since we assumed that we can measure only propagative modes, we have
access to vk,1 the second mode of vk for all frequencies k > π, so for k ∈ (π, kmax).
Using Proposition 3 and the inversion of source, we have access to

(74) vk,0(0) =
i

2k

∫ +∞

0

(h′(z)− g′(z))ikeikzeikzdz ∀k ∈ (0, kmax),

(75) vk,1(0) =
−i√
2k1

∫ +∞

0

(h′(z) + g′(z))ikeikzeik1zdz ∀k ∈ (π, kmax).

We notice that

(76) vk,0(0) = 2ikΓ(h′ − g′)(2k) ∀k ∈ (0, kmax),

(77) vk,1(0) = −
√

2ik(k1 + k)

k1
Γ(h′ + g′)(k + k1) ∀k ∈ (π, kmax).

We define s0 = h′ − g′ and s1 = h′ + g′. We have access to Γ(s0)(k) for all

k ∈ (0, 2kmax), and since k 7→ k+
√
k2 − π2 is one-to-one from (π, kmax) to (π, kmax+√

k2
max − π2), we have access to Γ(s1)(k) for all k ∈ (π, kmax +

√
k2

max − π2). We
denote by d0(k) = Γ(s0)(k), d1(k) = Γ(s1)(k) the data and consider the perturbed
data d0app

, d1app
. The method described in Section 2 provides approximations s0app

,
s1app

which we can control by the following:

Proposition 12. Let s0, s1, s0app , s1app ∈ H1(−r, r) where r ∈ R∗+. Let kmax ∈ R∗+,
d0 = Γ(s0), d0app

= Γ(s0app
) defined on (0, 2kmax), d1 = Γ(s1), d1app

= Γ(s1app
)

defined on (π, kmax +
√
k2
max − π2). Assume that there exists M ∈ R∗+ such that

‖si‖H1(−r,r) ≤ M and ‖siapp‖H1(−r,r) ≤ M for i = 0, 1. Then for every 0 < ε < 1,
there exists a constant ξkmax , depending on r,M, ε, such that

(78) ‖s0 − s0app
‖2L2(−r,r) ≤

4

π
‖d0 − d0app

‖2H +
2π

k2
max

M2,
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‖s1 − s1app
‖2L2(−r,r) ≤ ξkmax

‖d1 − d1app
‖2−2ε
H +

4

π
‖d1 − d1app

‖2H

+
8π(

kmax +
√
k2
max − π2

)2M
2.

(79)

Proof. Noticing that |F(h′)(k)| = 2|kΓ(h′)(k)|, we apply Theorem 2.7 and Remark

8 with ω0 = 0 and ω1 = 2kmax, and then ω0 = π and ω1 = kmax +
√
k2

max − π2.

Remark 11. This estimate highlights the different sources of error: the error due
to the perturbed data, the error due to the lack of measurements at high frequencies,
and due to the lack of measurements for the low frequencies of s1. Note that the
error diminishes if K increases and if the bump gets smaller. Numerical illustrations
can be found in Section 4.4.

3.4. Detection of inhomogeneities. This case is different from the two previous
cases, as the presence of an inhomogeneity affects the index of the medium and
leads to changes in the homogeneous Helmholtz equation:

(80) ∆u+ k2(1 + h(x, y))u = 0.

We assume that supp(h) is compact and that the inhomogeneity is located to the
right of the section {0} × (0, 1). To detect the defect, we introduce a source sk =
−2ikδ0(x). In the absence of defect, the wave field generated by this source would
be uinc

k := eik|x|. Let usk be the scattered wave field defined by usk := uk − uinc
k . We

know that uk satisfies the equation (7), and so

(81)

 ∆usk + k2usk = −k2huinc
k − k2huinc

k in Ω,
∂νu

s
k = 0 on ∂Ω,

usk is outgoing.

Let S(u) := k2hu which satisfies the hypothesis of Proposition 5, and for every
r > 0,

(82) ‖S‖H2(Ωr)→L2(Ωr) ≤ k2‖h‖L∞(−r,r).

Proposition 5 shows that if k2‖h‖L∞(−r,r) is small enough, usk is close to vk the
solution of

(83)

 ∆vk + k2vk = −k2huinc
k in Ω,

∂νvk = 0 on ∂Ω,
vk is outgoing.

and that, with C the constant defined in Proposition 4,

(84) ‖u− v‖H2(−r,r) ≤
C2k4‖h‖2L∞(−r,r)‖u

inc
k ‖L2(−r,r)

1− Ck2‖h‖L∞(−r,r)
.

We assume that the measurements consist in the n-th propagative mode vk,n for
all frequencies k ∈ (0, kmax) where kmax > 0 is given. Proposition 1 shows that for
every k ∈ (0, kmax),

(85) vn,k(0) =
i

2kn

∫ +∞

0

k2hn(z)eikzeiknzdz =
(k + kn)k2

kn
Γ(hn)(k + kn).

Since we assume that only the propagative modes are measured, the frequency k
must satisfy k > nπ, and kn ∈ R. The function k 7→ k +

√
k2 − n2π2 is one-to-one

from (nπ, kmax) to (nπ, kmax +
√
k2

max − n2π2). This means that we have access to

Γ(hn)(k) for every k ∈ (nπ, kmax +
√
k2

max − n2π2). We denote by dn = Γ(hn) the
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data and by dnapp the perturbed data. We use the method described in section 2 to
reconstruct hnapp , an approximation of hn, and control the error using Theorem 2.7.

Proposition 13. Let n ∈ N, hnapp
, hn ∈ H1(−r, r) where r > 0. Let kmax > nπ,

dn(k) = Γ(hn)(k) and dnapp(k) = Γ(hnapp)(k) for k ∈ (nπ, kmax +
√
k2
max − n2π2).

We assume that there exists M ∈ R∗+ such that ‖hn‖H1(−r,r) ≤M , ‖hnapp
‖H1(−r,r) ≤

M . Then for every 0 < ε < 1 there exists a constant ξn,kmax
depending on r,M, ε

such that

‖hn − hnapp
‖2L2(−r,r) ≤ ξn,kmax

‖dn − dnapp
‖2−2ε
H +

4

π
‖dn − dnapp‖2H

+
8π(

kmax +
√
k2
max − n2π2

)2M
2.

(86)

Corollary 1. Let kmax ∈ R∗+ and N ∈ N such that N < kmax/π. Let happ, h ∈
H1(Ωr) where r > 0 and d = F (h), dapp = Fs(happ) such that dn and dnapp are

defined on (nπ, kmax +
√
k2
max − n2π2). We assume that there exists M ∈ R∗+ such

that ‖h‖H1(Ωr) ≤ M and ‖happ‖H1(Ωr) ≤ M . Then for every 0 < ε < 1 there exists
a constant ξN,kmax

depending on r,M, ε such that

‖h− happ‖2L2(Ωr) ≤ ξN,kmax(N + 1)ε‖d− dapp‖2−2ε
`2(H) +

4

π
‖d− dapp‖2l2(H)

+
8π(N + 1)

K2
M2 +

4

N2π2
M2.

(87)

Proof. Using the previous proposition,

‖h− happ‖2L2(Ωr) ≤
N∑
n=0

ξn,kmax‖dn − dnapp‖2−2ε
H +

4

π
‖dn − dnapp‖2H

+
8πM2(

kmax +
√
k2

max − n2π2
)2 +

∑
n>N

‖hn − hnapp‖2L2(−r,r).

We define ξN,kmax
= maxn=0,..,N ξn,kmax

and using the concavity of x 7→ x1−ε, we
deduce that

‖h− happ‖2L2(Ωr) ≤ ξN,kmax
(N + 1)ε‖d− dapp‖2−2ε

`2(H) +
4

π
‖d− dapp‖2`2(H)

+
8πM2(N + 1)

k2
max

+
‖∂y(h− happ)‖2

L2(Ωr)

N2π2
.

We conclude using the upper bound on ‖h‖H1(Ωr) and ‖happ‖H1(Ωr).

Remark 12. Again, this estimate highlights the different sources of error: the lack
of measurements if the mode if greater than 1 in the low frequencies, the perturbed
data, the lack of measurements in the high frequencies and finally the truncation
to the N -th mode. The predominant term here seems to be the first one, and we
need to find a balance between increasing N to decrease the error of truncation and
diminishing N to lower the value of ξN,kmax

.

Unlike the two previous cases, the detection of inhomogeneities requires more
modes than just the first two modes. However, using measurements on one section
of the scattered field associated with a source sk = −2ikδ0(x) allows reconstruction
of an approximation of h with quantified error.
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4. Numerical results.

4.1. Numerical source inversion from limited frequency data. In Proposi-
tion 7, we have seen that the forward modal operator Γ is inversible. Knowing the
measurements of the wavefield generated by a source for every frequency, we are
theoretically abble to reconstruct the source. Moreover, Theorem 2.7 shows that
if the source is compactly supported, measurements are only needed for a finite
interval of frequencies to approximate the source. In this section, we discuss the
numerical aspects of the inversion.

We assume that the wavefield in the waveguide is generated by a source f com-
pactly supported, located between the sections x = xm and x = xM . The interval
[xm, xM ] is regularly discretized by a set of NX values X, and seek an approxima-
tion of f(X). The measurements of the wavefield are made for a discrete set of NK
frequencies denoted K. Let h = xM

NX−1 denote the stepsize of the discretization X.

Using Definition 2.3 and Equation (29), the operator f 7→ (k 7→ kΓ(f)(k)) maps
L2(R) onto L2(R∗+) and can be discretized by the operator

(88) γ :

CNX → CNK

y 7→

(
ih
2

∑
x∈X

yxe
ikx

)
k∈K

.

To invert this operator, we use a least square method. Given the data d =
γ(f(X)), we seek an approximation of f(X) by minimizing the quantity

1

2
‖γ(y)− d‖2

`2(CNX ).

To avoid small oscillations in the reconstruction we also define the discrete gradient

(89) G :
CNX → CNX

y 7→ (yi − yi−1)1≤i≤NX
,

with the convention that x0 = xNX and xNX+1 = x1. Note that the adjoints of γ
and G, denoted by γ∗ and G∗, can be easily computed. For λ > 0, we minimize the
quantity

(90) J(y) =
1

2
‖γ(y)− d‖2

`2(CNK ) +
λ

2
‖G(y)‖,

`2(CNX )
.

with a steepest descent method, with the initialization y0 = (0)x∈X :

(91) ym+1 = ym −
‖∇J(ym)‖2

`2(CNX )

‖S(∇J(ym))‖2
`2(CNK )

+ ‖G(∇J(ym))‖2
`2(CNX )

∇J(ym),

where

(92) ∇J(ym) = γ∗(γ(ym)− d) + λG∗(G(ym)).

We use this algorithm to illustrate the results given in Theorem 2.7. Firstly, we
reconstruct a source f with a gap in the high frequencies, i.e. for which measure-
ments of the wavefield generated by f are available for a discrete set of frequencies
between 0 and ω1. Figure 5 presents the comparison between a function f and
its reconstruction for different values of ω1. As expected, we observe convergence
when ω1 increases, and the reconstruction becomes almost perfect visually. The
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speed of convergence is illustrated in Figure 6, and as expected from Theorem 2.7,
the L2-error between the function and its approximation decreases like 1/ω1.
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Figure 5. Reconstruction of f(x) = (x− 0.8)(1.2− x)10.8≤x≤1.2

for different values of ω1 using the discrete operator γ and the
algorithm (91) with λ = 0.001. Here, X is the discretization of
[0.5, 1.5] with 10ω1 points, and K is the discretization of [0.01, ω1]
with 1000 points.

100.5 100.6 100.7 100.8 100.9 101 101.1 101.2 101.3 101.4 101.5 101.6 101.7
10−4

10−3

10−2

ω1

‖f
−
f a

p
p
‖ 2

‖f − fapp‖2
−1 slope

Figure 6. L2-error between f(x) = (x − 0.8)(1.2 − x)10.8≤x≤1.2

and its reconstruction fapp for different values of ω1 using the dis-
crete operator γ and the algorithm (91) with λ = 0.001. Here,
X is the discretization of [0.5, 1.5] with 10ω1 points, and K is the
discretization of [0.01, ω1] with 1000 points.

Secondly, we investigate the influence of r and ω0 in Theorem 2.7. Consistently
with Propositions 12 and 13, we choose ω0 to be a multiple of π. In Figure 7, we
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present the comparison between a 1D function f and its reconstruction is repre-
sented for different values of ω0, when the support of f is fixed. Figure 8 depicts
the comparison between a 1D function f and its reconstruction for different sizes r
of support when ω0 is fixed. As expected from the definition of the constant C in
Theorem 2.7, the quality of the reconstruction deteriorates when r and ω0 increase.
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Figure 7. Reconstruction of f(x) = (x− 0.8)(1.2− x)10.8≤x≤1.2

for different values of ω0 and r = 0.5 using the discrete operator γ
and the algorithm (91) with λ = 0.001. Here, X is the discretiza-
tion of [0.5, 1.5] with 251 points, and K is the discretization of
[ω0, 50] with 1000 points.

The reconstruction of a source is almost perfect for ω0 = 0 if we increase suffi-
ciently ω1. However, if ω0 > 0, the problem is ill-conditioned and if the size of the
support of the source or ω0 increase, the quality of the reconstruction is poor.

4.2. Generation of data for the detection of defects. Applying the results of
Section 3 requires measurements generated by a defect on a section of the wavefield.
This data is generated by solving numerically the PDE with Matlab, and evaluating
its solution on a section of the waveguide. The equations of propagation in a regular
waveguide Ω for a bend, a bump and a inhomogeneity are given by (64), (72) and
(81) respectively. In the following, we assume that the interesting part of the
waveguide is located between x = 0 and x = 8, and that the measurements are
made on the section {1} × (0, 1). To generate the solution of these equations of
propagation on [0, 8] × [0, 1], we use the finite element method and a perfectly
matched layer between x = −19 and x = 0 on the left side of the waveguide and
between x = 8 and x = 27 on the right side. The coefficient of absorption for the
perfectly matched layer is defined by −k((x − 8)1x≥8 − x1x≤0). The structured
mesh is built with a stepsize 0.01.

4.3. Detection of bends. Using the method described in the previous subsection,
we generate the solution of (64) for a set of frequencies K and we evaluate the
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Figure 8. Reconstruction of f(x) = (x− 0.8)(1.2− x)10.8≤x≤1.2

for different sizes of support r and ω0 = 3π using the discrete
operator γ and the algorithm (91) with λ = 0.001. Here, X is the
discretization of [1 − r, 1 + r] with 500r + 1 points, and K is the
discretization of [3π, 50] with 1000 points.

solutions on the section {1}× (0, 1). As explained in section 3.2 and equation (67),
the corresponding data amounts to knowing Γ(s)(2k) for every k ∈ K, where

(93) s = 1x∈[xc,xc+θ(r+1)]

(
1− 1

2(r + 1)
− (r + 1) ln

(
r + 1

r

))
.

Note that algorithm (91) could be used to construct an approximation sapp of s.
However, since we are looking for a rectangular function, we can directly define
sapp = −p11x∈[p2,p2+p3] and see that

(94) Γ(sapp)(k) = − ip1

k
eik

2p2+p3
2 sin

(p3

2
k
)
.

We determine (p1, p2, p3) by minimizing ‖Γ(sapp)(2k)− Γ(s)(2k)‖`2(CNK ), and the

approximations of xc, r and θ follow. We present in Figure 9 the reconstructions of
two different bends, and in Table 1 the relative error on the estimation of (xc, r, θ)
for different bends. We note that if the bend is really small, the reconstruction is
very good. On the other hand, when r increases or when θ decreases, the recon-
struction deteriorates due to the fact that the Born approximation is no longer a
good approximation of the wavefield in the waveguide. As mentionned in Remark
10, our algorithm can also be used to recover a succession of bends, as shown in
Figure 10.

4.4. Detection of bumps. Using the method described in section 4.2, we generate
the solutions of (72) for a set of frequencies K and we evaluate the solutions on the
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(xc, r, θ) = (4, 10, π/12) (xc, r, θ) = (2, 5, π/6)

Figure 9. Reconstruction of two different bends. The black lines
represent the initial shape of Ω, and the red the reconstruction of
Ω. In both cases, K is the discretization of [0.01, 40] with 100
points, and the reconstruction is obtain by (94). On the left, the
initial parameters of the bend are (xc, r, θ) = (4, 10, π/12) and on
the right, (xc, r, θ) = (2, 5, π/6).

(xc, r, θ) (2.5, 40, π/80) (4, 10, π/12) (2, 5, π/6)
relative error on xc 1.8% 0% 7.6%
relative error on r 3.0% 7.5% 23.8%
relative error on θ 1.6% 10.7% 16.9%

Table 1. Relative errors on the reconstruction of (xc, r, θ) for
different bends. In each case, K is the discretization of [0.01, 40]
with 100 points, and the reconstruction is obtain by (94).

Figure 10. Reconstruction of a waveguide with two successive
bends. The black lines represent the initial shape of Ω, and the red
the reconstruction of Ω, slightly shifted for comparison purposes. In
both cases, K is the discretization of [0.01, 40] with 100 points. The

parameters of the two bends are (x
(1)
c , r(1), θ(1)) = (2, 10, π/30))

and (x
(2)
c , r(2), θ(2)) = (3.8, 8,−π/20))

section {1}×(0, 1). In view of Remark 3, and to ensure that the Born hypothesis (19)
is satisfied, we do not choose frequencies in [nπ − 0.2, nπ + 0.2], for every n ∈ N.
As explained in Section 3.3 and equations (76), (77), the data only determines

Γ(s0)(2k) for every k ∈ K and Γ(s1)(k +
√
k2 − π2) for every k ∈ K, k > π, where

h and g paramatrize the bump (recall that s0 = h′+g′, s1 = −
√

2h′+g′). Using the
algorithm (91), we find an approximation of h′ and g′, and the approximation of h
and g follows by integration. In figure 11, we represent two different reconstructions
of a shape defect. As predicted in Proposition 10, the reconstruction improves when
‖h‖C1(R) and ‖g‖C1(R) decrease. Table 2 illustrates this point as it depicts the relative
error on a reconstruction of h when its amplitude increases.

4.5. Detection of inhomogeneities. Using the method described in section 4.2,
we generate the solutions of (81) for a set of frequencies K and we evaluate the
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h

happ

g

gapp

h

happ

g

gapp

Figure 11. Reconstruction of two shape defects. In black, the
initial shape of Ω, and in red the reconstruction, slightly shifted
for comparison purposes. In both cases, K is the discretization of
[0.01, 70] \ {[nπ − 0.2, nπ + 0.2], n ∈ N} with 300 points, X is the
discretization of [3, 4.5] with 151 points and we use the algorithm
(91) with λ = 0.08 to reconstruct s0 and s1. On the left, h(x) =
5
1613.2≤x≤4.2(x − 3.2)2(4.2 − x)2 and g(x) = − 35

1613.4≤x≤4(x −
3.4)2(4−x)2. On the right, h(x) = 125

16 13.7≤x≤4.2(x−3.7)2(4.2−x)2

and g(x) = 125
16 13.4≤x≤4(x− 3.4)2(4− x)2.

A 0.1 0.2 0.3 0.5
‖h− happ‖L2(R)/‖h‖L2(R) 8.82% 10.41% 15.12% 54.99%

Table 2. Relative errors on the reconstruction of h for differ-
ent amplitudes A. We choose h(x) = A13≤x≤5(x − 3)2(5 − x)2

and g(x) = 0. In every reconstruction, K is the discretization of
[0.01, 40] \ {[nπ − 0.2, nπ + 0.2], n ∈ N} with 100 points, X is the
discretization of [1, 7] with 601 points and we use the algorithm
(91) with λ = 0.08 to reconstruct h′.

solutions on the section {1}× (0, 1). As explained in section 3.4 and equation (85),
the data only determines Γ(hn)(k+kn) for every k ∈ K, k > nπ where hn is the n-th
mode of h, and h is the inhomogeneity. We define a number of modes N used for the
recontruction of h, and with the algorithm (91), we find an approximation of hn for
every n ≤ N . In Figure 12, we show the reconstruction of hn for 0 ≤ n ≤ N = 9. We
obtain an approximation of h by using the expression h(x, y) =

∑
n∈N hn(x)ϕn(y).

Figures 13 and 14 show two reconstructions of h. In the first one, h has a small
support and is very well reconstructed. In the latter, the support of h is larger.
And albeit it does not yield a good approximation of h, it allows localization of
the inhomogeneity in the waveguide. Moreover, if we assume that h is a positive
function, we can improve the algorithm (91) by reconstructing h on each step and
projecting on the space of positive functions (see the third part of Figure 14).

5. Conclusion. In this paper, we present a new approach to recover defects in
a waveguide. By sending the first propagative mode for frequencies in a given
interval, the scattered wave field generated by the defects are measured on a slice
of the waveguide. Based on the Fourier transform and the Born approximation,
we propose a method to reconstruct the parameters of the defect. We provide a
control of the error in the approximation of the parameters of the defects if they
are “small” enough so that the Born approximation makes sense.

Our numerical results show that the method works well for the three types of
defects considered : bends, bumps, localized inhomogeneities. From measurements
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n = 0 n = 1 n = 2 n = 3 n = 4

n = 5 n = 6 n = 7 n = 8 n = 9

Figure 12. Recontruction of hn for 0 ≤ n ≤ 9, where h(x) =

0.051|( x−4
0.05 ,

y−0.6
0.15 )|≤1

∣∣(x−4
0.05 ,

y−0.6
0.15

)∣∣2. In blue, we represent hn and

in red the reconstruction of hnapp . In every reconstruction, K is the
discretization of [0.01, 150] with 200 points, X is the discretization
of [3.8, 4.2] with 101 points and we use the algorithm (91) with
λ = 0.002 to reconstruct every hn.
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Figure 13. Recontruction of an inhomogeneity h, where h(x) =

0.051|( x−4
0.05 ,

y−0.6
0.15 )|≤1

∣∣(x−4
0.05 ,

y−0.6
0.15

)∣∣2. On the left, we represent the

initial shape of h, and on the right the reconstruction happ. Here,
K is the discretization of [0.01, 150] with 200 points, X is the dis-
cretization of [3.8, 4.2] with 101 points and we use the algorithm
(91) with λ = 0.002 to reconstruct every hn. We used N = 20
modes to reconstruct h.

generated by a finite element method, we were able to numerically recover the
different types of defects using the modal decomposition and a penalized least square
algorithm. Our reconstruction of inhomogeneities is similar to the one presented
in [13]. While the number of propagative modes sent in the waveguide can be
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Figure 14. Recontruction of an inhomogeneity h. From top to
bottom, the initial representation of h, the reconstruction happ and
the reconstruction happ with the knowledge of the positivity of h.
Here, K is the discretization of [0.01, 150] with 200 points, X is the
discretization of [3, 6] with 3001 points and we use the algorithm
(91) with λ = 0.01 to reconstruct every hn. We choose used N = 20
modes to reconstruct h.

increased, for the method presented in this work, to improve the reconstruction, so
can we increase the number of frequencies.

Our work could be extended to other types of defects such as impenetrable ob-
stacles or cracks in the waveguide. One could also try to apply this multi-frequency
point of view to elastic waveguides, where a modal decomposition in terms of Lamb
waves is also available.
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Appendix A: Proof of Proposition 1 and 3. We begin with the proof of
Proposition 1. Let r > 0, Ωr = (−r, r)× (0, 1) and T the application defined by

T :

L2(Ωr) → L2(−r, r)N

u 7→
(∫ 1

0

u(x, y)ϕn(y)dy

)
n∈N

.

Let H1 denote the Hilbert space

H1 :=

{
(un) ∈ `2(H1(−r, r)),

∑
n∈N

n2‖un‖2L2(−r,r) < +∞

}
,

equipped with the inner product

〈(un), (vn)〉H1
=
∑
n∈N

(1 + n2π2)〈un, vn〉L2(−r,r) +
∑
n∈N
〈u′n, v′n〉L2(−r,r).

The mapping T is a Hilbert isomorphism between H1(Ωr) and H1.
The variation formulation of (7) takes the form, for every v ∈ H1(Ωr),

(95)

∫
Ωr

∇uk∇v − k2

∫
Ωr

ukv =

∫
Ωr

sv.

Set T (uk) = (uk,n)n∈N, T (v) = (vn)n∈N, and notice that the above variational
formulation is equivalent to the sequence of problems

(96) ∀vn ∈ H1(−r, r),
∫ r

−r
u′k,nv

′
n + (n2π2 − k2)

∫ r

−r
uk,nvn =

∫ r

−r
snvn.

Setting k2
n = k2−n2π2 with Re(kn) > 0, Im(kn) > 0, the formulation (96) is associ-

ated to the equation u′′k,n+k2
nuk,n = sn. We notice that Gkn(x) = i

2kn
eikn|x| satisfies

the equation G′′kn + k2
nGkn = −δ0 and so we define uk := T−1 ((Gkn ∗ sn)n∈N) and

note that uk ∈ H1(Ωr) and satisfies (95). Moreover, uk is outgoing. Finally, using
results from elliptic regularity theory (see [16]) we deduce that uk ∈ H2(Ωr). As
this result holds for every r > 0, we conclude that uk ∈ H2

loc(Ω).
The solution of (11) is constructed by the same method. The variational formu-

lation gives for every v ∈ H1(Ωr),

(97)

∫
Ωr

∇uk∇v − k2

∫
Ωr

ukv −
∫

Ωtop

b1v −
∫

Ωbot

b2v = 0.

This formulation is equivalent to∫ r

−r
u′k,nv

′
n + (n2π2 − k2)

∫ r

−r
uk,nvn =

∫ r

−r
(b1ϕn(1) + b2ϕn(0))vn ∀n ∈ N.

The function uk := T−1 ((Gkn ∗ (b1ϕn(1) + b2ϕn(0)))n∈N) is in H1(Ωr), is outgoing
and satisfies (97). From the elliptic regularity theory, we deduce that uk ∈ H2(Ωr).

To prove uniqueness for both problems, we notice that uk satisfies ∆uk+k2uk = 0
in Ω. Thus, uk is a classical solution and uk ∈ C∞(Ω) and can be written as a linear
combination of (x, y) 7→ ϕn(y)e±iknx. The outgoing caracter of uk shows that
uk = 0 if s = 0 or b1 = b2 = 0.
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Appendix B: Proof of Proposition 2 and 4. We begin with the proof of propo-
sition 2. Using the same notation as in Appendix A, the function Gkn satisfies

‖Gkn‖L1(−2r,2r) ≤

{
2r
kn

if n < k/π,
1
|kn| min

(
1
|kn| , 2r

)
if n > k/π,

‖G′kn‖L1(−2r,2r) ≤

{
2r if n < k/π,

min
(

1
|kn| , 2r

)
if n > k/π.

We define δ = minn∈N

(√
|k2 − n2π2|

)
, and apply the Young inequality to uk,n:

‖uk,n‖L2(−r,r) ≤ ‖Gkn‖L1(−2r,2r)‖sn‖L2(−r,r).

This leads to

‖uk‖2L2(Ωr) ≤
4r2

δ2

∑
n∈N
‖sn‖2L2(−r,r) =

4r2

δ2
‖s‖2L2(Ωr).

Applying the Young inequality to u′k,n, we get

‖∇uk‖2L2(Ωr) ≤ 4r2
∑
n<k/π

(
1 +

n2π2

k2
n

)
‖sn‖2L2(−r,r)

+4r2
∑
n>k/π

(
1 +

n2π2

|kn|2

)
‖sn‖2L2(−r,r).

If N is the largest propagative mode and if n > k/π > N ,

1 +
n2π2

|kn|2
≤ 1 +

(N + 1)2π2

|kN+1|2
≤ 1 +

(N + 1)2π2

δ2
,

so that

‖∇uk‖2L2(Ωr) ≤ 4r2

(
1 +

(k + π)2

δ2

)
‖s‖2L2(Ωr).

Finally, we notice that

‖∇2uk‖2L2(Ωr) =
∑
n∈N

n4π4‖uk,n‖2L2(−r,r) +
∑
n∈N

2n2π2‖u′k,n‖2L2(−r,r)

+
∑
n∈N
‖u′′k,n‖2L2(−r,r),

and that

‖u′′k,n‖2L2(−r,r) = ‖ − sn − k2
nuk,n‖2L2(−r,r) ≤

(
‖sn‖L2(−r,r) + k2

n‖uk,n‖L2(−r,r)
)2
.

Combining both relations yields

‖∇2u‖2L2(Ωr) ≤
∑
n<k/π

(
4r2n4π4

k2
n

+ 8n2π2r2 + (1 + 2knr)
2

)
‖sn‖2L2(−r,r)

+
∑
n>k/π

[
n4π4

|kn|4
+

2n2π2

|kn|2
+

(
1 +
|kn|2

|kn|
min

(
1

|kn|
, 2r

))2
]
‖sn‖2L2(−r,r).

If N is the largest propagative mode, and if n > k/π,

n4π4 min
(

1
|kn|2 , 4r

2
)

|kn|2
+ 2n2π2 min

(
1

|kn|2
, 4r2

)
≤ (k + π)4

δ4
+ 2

(k + π)2

δ2
,
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and the following estimate holds

‖∇2u‖2L2(Ωr) ≤ [ max

(
4r2,

1

δ2

)(
(k + π)4

δ2
+ 2(k + π)2

)
+ max((1 + 2kr)2, 4) ] ‖s‖2L2(Ωr).

To prove Proposition 4, we deduce from the results in [16] that there exists
constants d(r) and µ > 0, such that

‖uk‖H2(Ωr) ≤ d(r)
(
‖ −∆uk + µuk‖L2(Ωr) + ‖b1‖H1/2(−r,r) + ‖b2‖H1/2(−r,r)

)
,

and if follows that

‖u‖H2(Ωr) ≤ d(r)
(

(k2 + µ)‖u‖L2(Ωr) + ‖b1‖H1/2(−r,r) + ‖b2‖H1/2(−r,r)

)
.

Using the same method as for the estimation of ‖uk,n‖L2(−r,r) with the Young
inequality, we get

‖u‖2L2(Ωr) ≤
(
‖b1‖2H1/2(−r,r) + ‖b2‖2H1/2(−r,r)

) ∑
n<k/π

4r2

k2
n

+
∑
n>k/π

1

k4
n

 .

Finally, we obtain

D = d(r)

(k2 + µ) max

(
2r,

1

δ

)√∑
n∈N

1

k2
n

+ 1

 .

REFERENCES

[1] L. Abrahamsson, Orthogonal grid generation for two-dimensional ducts, J. Comput. Appl.
Math., 34 (1991), 305–314.

[2] L. Abrahamsson and H. O. Kreiss, Numerical solution of the coupled mode equations in duct

acoustics, J. Comput. Phy., 111 (1994), 1–14.
[3] S. Acosta, S. Chow, J. Taylor and V. Villamizar, On the multi-frequency inverse source

problem in heterogeneous media, Inverse Problems, 28 (2012), 075013.

[4] H. Ammari, E. Iakovleva and H. Kang, Reconstruction of a small inclusion in a two-
dimensional open waveguide, SIAM J. Appl. Math., 65 (2005), 2107–2127.

[5] G. Bao and P. Li, Inverse medium scattering problems for electromagnetic waves, SIAM J.

Appl. Math., 65 (2005), 2049–2066.
[6] G. Bao and F. Triki, Reconstruction of a defect in an open waveguide, Sci. China Math., 56

(2013), 2539–2548.

[7] G. Bao and F. Triki, Stability for the multifrequency inverse medium problem, J. Differential
Equations, 269 (2020), 7106–7128.

[8] J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J.
Comput. Phys., 114 (1994), 185–200.

[9] L. Bourgeois and S. Fliss, On the identification of defects in a periodic waveguide from far
field data, Inverse Problems, 30 (2014), 095004.
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