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RÉSUMÉ. L’objectif de ce travail est de prendre en compte l’influence de la présence de défauts
surfaciques sur le comportement jusqu’à rupture des structures et ce sans description fine de
la géométrie des perturbations. L’approche proposée s’appuie principalement sur deux outils :
une analyse asymptotique fine des équations de Navier et l’utilisation des modèles à discon-
tinuité forte. Une stratégie de couplage des deux approches permettant l’analyse du compor-
tement de la structure jusqu’à rupture est également présentée. L’approche est validée sur un
exemple académique.
ABSTRACT. This work aims to take into account the influence of boundary defects on the be-
havior till rupture of structures without any fine geometrical description of the domain. This
is achieved by appealing to two approaches: an asymptotic analysis of Navier equations and
strong discontinuity models. We present in this work a strategy to couple the two approcahes in
order to provide the analysis till rupture of the structure behavior. The approach is validated
on an academic example.
MOTS-CLÉS : analyse asymptotique de perturbations de frontière, modèles à discontinuité forte,
partition de l’unité, rupture.
KEYWORDS: asymptotic analysis of boundary perturbations, strong discontinuity models, parti-
tion of unity method, failure.
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1. Introduction

This paper aims to take into account the effect of surface defects on the behavior till
rupture. More precisely, the objective is to evaluate the ultimate load of the structure,
dealing with both small surface perturbations and localization zones development.
The main feature of the proposed approach is the use of a coarse description of the
geometry : neither the perturbation shape, nor a fine representation of the cohesive
crack are considered.

Our approach is based on two tools. The first one – an asymptotic analysis with
respect to the characteristic size of the perturbation – provides a way to evaluate how
the size and shape of the defects influence the solution of the problem. The second
one – a strong discontinuity approach – gives an objective description of the post-
peak response until rupture. In the first two sections, we recall the main points of
these techniques. Then, in a third section, we explain the way of coupling them in a
numerical framework in order to compute the behavior till rupture on a mesh as coarse
as possible. We present some first numerical results on a simple traction test.

2. Effect of surface defects : asymptotic analysis

This section presents the keypoints of the asymptotic analysis for a boundary sin-
gular perturbation in an elliptic boundary value problem. The following techniques
make a strong use of linearity of the equations through a superposition principle. We
consider here the Navier equations of linear elasticity. Note that the stated results do
not extend easilly to inelastic material behaviors.

We describe the geometric setting we shall work within, see Figure 1. Let Ω0 be
a bounded domain of R2, with the origin 0 being a regular point on its boundary. In
the following, the first coordinate axis coincides with the tangent direction of ∂Ω0 at
point 0.

We denote by ω another bounded domain, containing 0. The perturbed domain Ωε

is obtained from Ω0 by removing a rescaled version of ω at size ε :

Ωε = Ω0\(εω).
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Figure 1. Initial, perturbed and blown up domains.
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The problem we focus on is the following






−µ∆uε − (λ+ µ) grad div uε = f in Ωε,

uε = ud on Γd,
σ · n = g on Γt,

[1]

where Γd and Γt are the Dirichlet and Neumann boundaries, respectively (the pertur-
bation point 0 naturally lies on the Neumann boundary). Besides, the volumic load f
and the traction g are assumed to vanish near the perturbation. Problem [1] naturally
involves two scales : the size of the structure (scale 1), and the characteristic length ε
of the perturbation (scale ε). At scale 1, the domain Ωε tends to Ω0 as ε → 0, while
the limit domain at scale ε (i.e. limit of Ωε/ε) is the semi-infinite domain H∞ defined
as (see also Figure 1) :

H∞ = (R× R+)\ω.

We briefly recall a result from (Dambrine et al., 2007) concerning the leading terms in
the asymptotic expansion of the solution uε to Problem [1]. This description requests
two variables : x (slow variable) and x/ε (fast variable), corresponding to scale 1 and
scale ε, respectively. The behavior of uε in the fast variable relies on profiles, which
are normalized functions defined in H∞ and contributing to the expansion in variable
x/ε. Let us introduce the profile basis (V`)`=1,2 as the solutions of















−µ∆V` − (λ+ µ) grad div V` = 0 in H∞,

2
∑

j=1

σij(V`)nj = G`,i on ∂H∞,
[2]

with G1 = (n1, 0) and G2 = (0,n1) (n1 is the first component of the outer normal
on ∂H∞). We emphasize that Problem [2] depends exclusively on the geometry. In
particular, V` is independent of the loading of Problem [1].

The expansion of uε takes the form

uε(x) = u0(x)− ε
[

α1V1

(x

ε

)

+ α2V2

(x

ε

)]

+ rε(x), [3]

with

• u0 solve Problem [1] for ε = 0 (i.e. solution in the unperturbed domain Ω0),
• the coefficients α1 and α2 are the stress values associated with u0 at point 0,

namely

α1 = σ11(u0)(0) and α2 = σ12(u0)(0),

• the remainder rε satisfies the following estimate in the energy norm

‖rε‖H1(Ωε) ≤ Cε2. [4]
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As regards the computation of uε for small values of ε, Expansion [3] leads to an
alternative numerical strategy to adaptative mesh refinement. Indeed the knowledge of
the unperturbed solution u0 and of the profiles V` gives a reasonable approximation
of uε, see further in Section 4.

3. Description of localization zones : strong discontinuity approach

In this section, we give a short presentation of the strong discontinuity approach
(SDA, see (Brancherie, 2003; Simo et al., 1993; Oliver, 1995) for more details) used
to model the crack propagation. SDA aims at getting rid of mesh dependence when
describing strain localization. The localization zones are taken into account through
displacement discontinuity surfaces. We do not seek a fine description of such zones,
but only quantify their effect on the global response of the structure. To depict the
dissipative phenomenon arising at the scale of the localization zones, we introduce a
traction/displacement jump law on the discontinuity surface.

The keypoint of SDA is to consider a discontinuous displacement field. If Γs de-
notes the discontinuity surface, the displacement and the associated strain fields read

u(x) = ū(x) + ¯̄uHΓs
(x), ε(x) = ∇

sū(x) + (¯̄u⊗ n) δΓs
[5]

Two constitutive laws are built. The first one is written in the framework of classical
continuum medium thermodynamics. It links the regular part ε̄ = ∇

sū to the stress
state in the bulk material. In the present work, we deal with a linear elastic model for
this first law. The second law, written in the framework of interface thermodynamics,
connects the displacement jump ¯̄u to the traction tΓs

on the discontinuity surface Γs.
It will be handled here by a surface damage model.

Numerical treatment is built on the incompatible modes method (see (Wilson et
al., 1990; Ibrahimbegović et al., 1991)). A discontinuous shape function vanishing
on all nodes of the element is added to the standard shape functions basis. A system
of two equations is then to be solved. The first equation is the classical global weak
form of the equilibrium whereas the second one corresponds to the weak form of the
traction continuity on the discontinuity surface. The main feature of this last equation
is to be written and solved on each localized element. We then take advantage of a
static condensation step at the elements level to solve a classical linearized system
with a modified stiffness matrix.

4. Failure analysis : coupling asymptotic expansion and strong discontinuity
model

Our main objective in this work is to numerically study how the stress concen-
trations generated by the surface defect influence the crack propagation. Moreover,
we want to perform such a simulation on a coarse mesh of the unperturbed domain
ignoring the perturbation shape. To that aim, we first need to compute the solution in
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the perturbed domain Ωε thanks to expansion [3]. For that purpose, we use the parti-
tion of unity method (PUM, see (Melenk et al., 1996)). Then, in order to continue the
computation with SDA, we transfer the resulting displacement field onto the reference
mesh.

4.1. Computation of the profiles

In order to use PUM, we will enrich the finite element space with approximate
profiles Ṽ` corresponding to V`, see [2]. Their approximation is not straightforward
since the domain H∞ and its boundary are unbounded. Among all the possible avai-
lable methods for such problems (boundary elements methods, infinite elements . . .),
we have chosen, for simplicity, to use finite elements in a truncated domain. Let us
fix R > 0 relatively large and define HR = H∞ ∩ B(0, R). We bring the vanishing
condition at infinity on the artificial boundary ∂HR \ ∂H∞. To approximate the real
profile V`, we therefore solve



























−µ∆Ṽ` − (λ+ µ) grad div Ṽ` = 0 in HR,

2
∑

j=1

σij(Ṽ`)nj = G`,i on ∂H∞ ∩HR,

Ṽ` = 0 on ∂HR \ ∂H∞.

[6]

The larger the radiusR, the better the approximation. Indeed, solution of [2] decreases
as |x|−1. Another strategy allowing smaller radii, consists in using higher order ab-
sorbing boundary conditions (for a review on this subject, see (Givoli, 2004)). For
the numerical implementation performed with the finite element library Mélina (see
(Martin, 2007)), high order nodal elements (Q6, Gauss-Lobatto) are used. Since the
solution Ṽ` is expected to be localized around the origin, the mesh can be coarse el-
sewhere. In the results of Section 4.4, we have chosen R = 50 and a radial mesh with
10× 10 elements.

4.2. Kinematic enrichment for the perturbed problem

Our kinematic enrichment consists in adding to the discrete variational space the
approximate profiles Ṽ` previously computed, via partition of unity. Since the pro-
files V` have only local influence, the enrichment is simply needed in the vicinity
of the perturbation referred to as enrichment area. Namely, as suggested by [3], the
approximation of the displacement field is based on

uh
ε (x) = uh

0 (x)− ε
2

∑

`=1

∑

j∈J
N j(x)

[

α
j
`,1Ṽ`,1

(x

ε

)

+ α
j
`,2Ṽ`,2

(x

ε

)]

, [7]

with the notation
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• uh
0 is the nodal approximation of u0 solution of [1] on the unperturbed domain,

• J is the set of indices of the nodes in the enrichment area,
• N j is the standard shape function associated with node j,
• Ṽ`,i is the ith component of the precomputed approximate profile Ṽ`,

• α
j
`,i =

[

(αj
`,i)1, (α

j
`,i)2

]

is the twodimensional vector of the degrees of freedom
corresponding to the previous function Ṽ`,i.

Let us emphasize that the computation is carried out on the mesh of the unperturbed
domain. The perturbation is handled through a dedicated quadrature in the enrichment
area. We have added to the standard two degrees of freedom (dof ) eight other dof per
node in the enrichment area, leading to two types of nodes in the mesh. The treatment
in a classical finite element code is twofold. The first possibility consists in adding
the eight new dof to each node in the mesh imposing vanishing Dirichlet conditions
outside the enrichment area. The second one could be to consider a transition zone of
hybrid elements. Though more natural, the latter requires more technical adaptations.

To fit Expansion [3], we expect to find

(αj
`,1)1 = (αj

`,2)2 = α` and (αj
`,1)2 = (αj

`,2)1 = 0 for all j ∈ J , ` = 1, 2.

As noticed in the context of XFEM ((Chahine et al., 2007)), this problem is badly
conditioned because, far from the perturbation, the added functions Ṽ` almost belong
to the standard finite element space Span(N j). Therefore, we impose the equalities

(αj
`,1)1 = (αj

`,2)2 and (αj
`,1)2 = (αj

`,2)1 [8]

as constraints by a master/slaves strategy. We then obtain the following augmented
problem.





K0
uu

0 ΠT

Kε
αu

Kε
αα

0
0 Π 0









u0

α

λ



 =





f0
fα
0



 , [9]

where

• K0
uu

is the usual stiffness matrix associated with the standard nodal dof of the
unperturbed domain,
• Π is the projection operator onto the constraints [8],
• Kε

αα
is the stiffness part corresponding to the added dof in the enrichment area,

• Kε
αu

is the coupling part of the stiffness matrix,
• λ is the Lagrange multiplier associated with the constraints [8],
• f0, fα are the loadings.

The exponent ε in Kε
αα

and Kε
αu

indicates the use of the dedicated quadrature in
the enrichment area. It consists in increasing the order of the numerical integration in
all the elements in this area. Moreover, to integrate on Ωε instead of Ω0, we modify
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the shape of the element containing 0 to fit the perturbation, and remesh the resulting
geometry to build an adapted quadrature formula.

4.3. Field transfer

The discrete spaces used for the PUM and SDA do not match, since they were
built to describe two different phenomena (geometrical perturbation and fracture pro-
cess). In order to switch from the PUM space to the SDA one (denoted VSDA in the
following), we have to project in a pertinent manner the displacement field uh

ε onto
the SDA approximation space. The chosen pertinency criteria are based on the strain
energy. Precisely, we are led to the minimization problem :

min
u∈VSDA

J(u) = E(u− uh
ε ) u.c. uΓ = g [10]

where the strain energy is defined as

E(v) =
1

2

∫

Ωε

σ(v) : ε(v).

The resulting displacement field is used as an initial value for the continuation of the
computation carried out using the SDA approximation space.

4.4. Numerical results

The capabilities of the proposed approach are illustrated, in this section, on an
academic example. We consider a rectangular specimen of dimension 200 mm ×
100 mm perforated by a semi-circular perturbation of radius 2 mm at point 0 =
(105 mm, 0 mm). The specimen is submitted to a simple traction test by imposing a
displacement U at the free edge and convenient boundary conditions (see Figure4.4).

PSfrag replacements 200 mm

1
0
0

m
m

U

0

Ωε

E = 38 × 10
4MPa , ν = 0.18

Figure 2. Dimensions and boundary conditions of the considered problem

We present further on the results obtained from the computation of the profiles, the
kinematic enrichment and the field transfer leading to a full description of the rupture
process of the specimen.
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4.4.1. Asymptotic analysis superposition

To estimate the solution on the perturbed domain we need to compute an approxi-
mation Ṽ` of the profile V` (see Section 4.1). We present in Figure 3 the profile Ṽ1

and its derivatives on the domain of interest Ωε.
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Figure 3. Profile Ṽ1 and its derivatives on the domain Ωε

It has to be noticed, as expected, that the influence of the perturbation is very
localized around point 0. An approximation of the solution on the perturbed domain
is given by Equation [3] with α1 = σ11(u0)(0) and α2 = σ12(u0)(0) = 0MPa.
Figure 5 gives a map of the local relative strain energy error when comparing the result
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obtained from the superposition suggested by the asymptotic analysis and a Finite
Element computation performed on a fine mesh of the real geometry (see Figure 4).
The results are given for an imposed displacement U = 1 mm.
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(a) Fine mesh of the real geometry
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(b) Zoom around the perturbation

Figure 4. FE mesh of the real geometry

The local error on element e (corresponding to area Ωe) is computed as :

Err(e) =

∫

Ωe
E(uAA − uFE)
∫

Ωe
E(uFE)

[11]

where uAA and uFE are, respectively, the displacement fields obtained from the asymp-
totic analysis and the finite element computation. We note that the maximum local
error is about 5.4%. The global strain energy error is negligible (about 5.5×10−4%).
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Figure 5. log10 of relative strain energy error

4.4.2. Kinematic enrichment

We give here the results obtained when performing the kinematic enrichment pre-
sented in Section 4.2. We consider a coarse mesh of the unperturbed domain (See
Figure 6(a)). As indicated previously the perturbation is taken into account by modi-
fying the integration support of the element containing the perturbation. Figure 6(b)
presents the quadrature mesh. The enrichment area has been chosen of radius 50 mm
around the perturbation.
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(a) Coarse mesh for enriched computation
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for integration

Figure 6. Computation mesh and dedicated integration sub-domain

As in the previous section, we compare the results obtained by the kinematic en-
richment computation and a standard Finite Element one. The map of the local strain
energy error is given in Figure 7. The maximum local error is about 6.2% whereas the
global energy error is here again negligible (around 8.3× 10−4%).
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Figure 7. log10 of relative strain energy error

4.4.3. Field transfer and SDA computation

The contribution of the boundary perturbation being evaluated, the completeness
of the failure analysis of the structure need to project the obtained field to the SDA
space. The stress field obtained is introduced as an initial value for the continuation
of the computation. In order to verify mesh objectivity of the solution, we perform
this analysis for two different meshes : a structured mesh (see Figure 6(a)) and an
unstructured mesh.

Figure 8 presents the maximum principal stress (on which the criterion of intro-
duction of the discontinuity is based) for the two different meshes. We note that the
stress concentration induced by the perturbation is recovered even if smoothen by the
transfer process. Figure 9 presents the result of the SDA computation in terms of crack
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opening and discontinuity line orientation. The discontinuities are, in both cases, ini-
tiated at the element containing the perturbation and propagate, as expected, straight
to the top edge of the specimen. The mesh objectivity of the computation is illustrated
on Figure 10 : the responses and total dissipation evaluation obtained from the two
discretisations are similar.
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(a) Structured mesh
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(b) Unstructured mesh

Figure 8. Maximum principal stress associated with the reconstructed displacement
field u
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Figure 9. Discontinuity line and crack opening

5. Concluding remarks

We have presented two methods and their coupling allowing to describe the be-
haviour till rupture of brittle structures. The main feature of this work is that com-
putations are carried out at a macroscopic level while the models take into account
microscopic geometrical characteristics. This is achieved thanks to an enrichment of
the discrete Finite Element space with the profiles computed from the asymptotic ana-
lysis. This allows us to get rid of a fine mesh of the real geometry.

The perspectives are to consider more general loadings, geometries of the struc-
tures and multiple surface defects. We expect no major difficulties in reaching such
objectives : the tools mentioned above are designed in that spirit.
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Figure 10. Load/displacement response for the two different meshes
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