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Abstract
The presence of small inclusions modifies the solution of the Laplace equation

posed in a reference domain Ω0. This question has been deeply studied for a single
inclusion or well separated inclusions. We investigate the case where the distance
between the holes tends to zero but remains large with respect to their characteristic
size. We first consider two perfectly insulated inclusions. In this configuration we give
a complete multiscale asymptotic expansion of the solution to the Laplace equation.
We also address the situation of a single inclusion close to a singular perturbation of
the boundary ∂Ω0. We also present numerical experiments implementing a multiscale
superposition method based on our first order expansion.

1 Introduction

The presence of small inclusions or surface defects alters the solution of the Laplace equa-
tion posed in a reference domain Ω0. If the characteristic size of the perturbation is small,
one can expect the solution of the problem posed on the perturbed geometry to be close to
the solution of the reference shape. An asymptotic expansion with respect to that small
parameter – the characteristic size of the perturbation – can then be performed.

The case of a single inclusion ω, centered at the origin 0 being either in Ω0 or on ∂Ω0,
has been deeply studied, see [10, 7, 8, 12, 4, 5]. The techniques rely on the notion of profile,
a normalized solution of the Laplace equation in the exterior domain obtained by blow-up of
the perturbation, see (1.2). It is used in a fast variable to describe the local behavior of the
solution in the perturbed domain. Convergence of the asymptotic expansion is obtained
thanks to the decay of the profile at infinity. For example, if we impose Neumann boundary
conditions on the inclusion and Dirichlet on ∂Ω0, the expansion takes the form

uε(x) = u0(x) + εV0(x
ε ) + r1

ε(x), with ‖r1
ε‖H1(Ωε) = O(ε2), (1.1)

where

• u0 is the solution of the Laplace-Dirichlet problem in Ω0: u0 ∈ H1
0(Ω0), −∆u0 = f ,

• V0 is a profile satisfying
−∆V0 = 0 in R2\ω,

∂nV0 = −∇u0(0) · n on ∂ω,

V0 → 0 at infinity,

(1.2)
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where n denotes the unit normal vector pointing into ω.
We present, in this work all the proofs of the results announced in the note [2]. We

consider the case of two singular perturbations. Let Ω0, ω−, and ω+ be three bounded
domains of R2, each containing the origin 0. For ε > 0, small enough, we define the
perturbed domain Ωε as

Ωε = Ω0\
(
ω−ε ∪ ω+

ε

)
, with ω±ε = x±ε + εω±, (1.3)

where x±ε = ±ηεd with a given unitary vector d, and a real number ηε. Shortly, Ωε consists
of Ω0 from which two ε-inclusions at distance 2ηε have been removed, cf. Figure 1(a).
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(a) Two interior inclusions of size ε, at distance 2ηε.
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(b) Boundary perturbation.

Figure 1: Geometrical settings for perturbed domains.

We aim at building an asymptotic expansion of the solution uε of the Laplace problem
in Ωε 

−∆uε = f in Ωε,
uε = 0 on Γ = ∂Ω0,

∂nuε = 0 on ∂ω±ε ,
(1.4)

for some L2 datum f whose support does not contain the origin 0. We restrict ourselves
to homogeneous Neumann boundary conditions on ∂ω±ε , although generalizations to other
conditions are possible. Besides, one of the inclusions may be localized at the boundary
Γ of Ω0 (or even simply be removed, the remaining inclusion moving towards the external
boundary), see Figure 1(b). Note that the origin now lies on ∂Ω0.

The results obtained previously for a single perturbation easily extend to the case of
two (or finitely many) inclusions within two situations:

1. Inclusions at distance O(1). It corresponds to ηε = η independent of ε. In this case
considered in [10, §5.3], the centers x± are independent of ε. The decaying profiles V ±

0 are
harmonic in R2\ω± and satisfy the boundary conditions

∂nV ±
0 = −∇u0(x±) · n on ∂ω±.

At the first order, the holes do not interact with each other, their contributions are merely
superposed

uε(x) = u0(x) + ε
[
V +

0 (x−x+

ε ) + V −
0 (x−x−

ε )
]

+ r1
ε(x), with ‖r1

ε‖H1(Ωε) = O(ε2). (1.5)

2. Inclusions at distance O(ε). It corresponds to ηε = c ε with a constant c ∈ R. Here
the two inclusions constitute a unique pattern at the scale ε. This case is actually handled
as a single inclusion ω = ω+ ∪ ω−, selfsimilar with respect to the origin 0. The expansion
reads

uε(x) = u0(x) + εW0(x
ε ) + r1

ε(x), with ‖r1
ε‖H1(Ωε) = O(ε2), (1.6)
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where the profile W0 is associated with the whole pattern ω.

These two situations show radically different behaviors: no interaction and full interac-
tion. We focus in this work on the intermediate cases, where the inclusions are moderately
close, i.e.

ηε → 0 and ηε/ε → +∞ (as ε → 0). (1.7)

One can expect to have a weak interaction between the two inclusions. To quantify this
effect, we specify the range ηε as ηε = εα with α ∈ (0, 1). The limit case α = 0 corresponds
to inclusions at distance O(1) while the other limit α = 1 corresponds to inclusions at
distance O(ε). Let us mention that a three scales problem has been treated in [10, §5.4,
Example 5.4.2]. It consists in a bump at scale ε1+κ on a ε-boundary singular perturbation
of a smooth domain. Some techniques involved are close to ours and the geometrical
setting is different.

This works is organized as follows. In Section 2, we precise the geometrical setting we
shall work within and state our results. In Section 3, we gathered all the preliminary results
needed to construct and justify the expansions of the solutions of the considered boundary
value problems. Section 4 is devoted to the proofs of the stated results. Finally in Section 5,
we show numerical results obtained with the first order approximation, validating our
theoretical results. We also discuss the limitation in ε of the asymptotic regime as well as
alternative correction methods.

2 Multiscale asymptotic expansions

We now consider the situation of Figure 1, where the distance between the two inclusions
equals εα with α ∈ (0, 1), and we focus on the following two-dimensional problems which
cover the main difficulties and techniques: uε ∈ H1(Ωε) satisfies the Laplace equation
−∆uε = f with various boundary conditions, see Figure 1:
(a) two Neumann inclusions: uε = 0 on Γ and ∂nuε = 0 on ∂ω−ε ∪ ∂ω+

ε ,
(b) a Neumann inclusion and a Dirichlet boundary perturbation1: ∂nuε = 0 on ∂ω−ε , uε = 0
elsewhere.

We start with giving a brief description of the first terms in the expansions. Theo-
rems 2.1 and 2.2 state the complete asymptotics with optimal remainder estimates.

Case (a). For two Neumann inclusions, centered respectively in x−ε and x+
ε (separated

by a distance 2εα), the first correctors involve the profiles V ±
0 as introduced in (1.2)

uε(x) = u0(x)+ε
[
V −

0

(
x−x−ε

ε

)
+ V +

0

(
x−x+

ε
ε

)]
+r1

ε(x), with ‖r1
ε‖H1(Ωε) = O(εmin(1+α,3−2α)).

(2.1)
The profiles satisfy ‖V ±

0 ( · −x±ε
ε )‖H1(Ωε) = O(1) and only depend on the shape of ω± and

on the gradient of the limit term at the origin ∇u0(0). We emphasize that the origins x±ε
of the profiles do vary with ε, unlike x± in equation (1.5) and 0 in (1.6). Moreover the
remainder is of order ε as α → 0 or α → 1 because of the inadequation of the profiles with
the geometry.
We may understand expansion (2.1) in the following way: the main contribution of the
two inclusions is merely the superposition of their individual effect. The remainder r1

ε

contains information about higher order influence. It is interesting to describe further the
structure of this remainder:

1in this case, the definition of the perturbed domain Ωε is slightly different, see [5] or later.
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• for α < 2/3, the inclusions are relatively far away from each other. The leading term
in r1

ε is O(ε1+α) and arises from the Taylor expansion of u0 at the origin 0;

• for 2/3 < α < 1, the inclusions are closer. The remainder r1
ε is O(ε3−2α) and mainly

consists in the interaction between the profiles V −
0 and V +

0 .

Theorem 2.1 The solution uε of problem (1.4) admits the expansion at order N

uε(x) = u0(x) + ε
[
V −

0

(
x−x−ε

ε

)
+ V +

0

(
x−x+

ε
ε

)]
+

∑
(p,q)∈KN

εp+αq
(
vp+αq(x) + ε

[
V −

p+αq

(
x−x−ε

ε

)
+ V +

p+αq

(
x−x+

ε
ε

)])
+ rN

ε (x),

with
KN =

{
(p, q) ∈ Z2 | p ≥ 0, q ≥ −3

2p + 1, q ≥ −p and p + αq ≤ N
}

,

(see Figure 2) and
‖rN

ε ‖H1(Ωε) = O(εN ).

p

q

K4

Figure 2: The set of indices K4 for α = 3
5 .

Case (b). This situation requires a slightly different definition of the geometry: the
origin 0 is assumed to be on the boundary Γ of Ω0, and Γ to coincide with a straight line
in a neighborhood of 0. The perturbed domain Ωε is defined as

Ωε =
[
Ω0\(ω−ε ∪B)

]
∪ (B ∩ εω̆+), (2.2)

where B is a small (but fixed with respect to ε) ball centered in 0 and ω̆+ is a perturbed
upper half plane. Precisely, ∂ω̆+ is composed of three parts: two horizontal straight half
lines rising from S1 and S2 (two points on the x-axis) and a Lipschitz and rectifiable curve
Γ+ connecting S1 to S2 (see Figure 3).

As explained in [5, 14], the inclusion Ωε ⊂ Ω0 may not be satisfied: a cut-off function
has to be introduced to define a counterpart for u0 on Ωε. Precisely, the asymptotic
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Figure 3: Geometrical setting for perturbed upper half plane.

expansion takes the form

uε(x) = ζ(|xε |)u0(x) + ε
[
V −

0

(
x−x−ε

ε

)
+ χ(|x|)V +

0

(
x
ε

)]
+ r1

ε(x), with ‖r1
ε‖H1(Ωε) = O(ε),

(2.3)
where ζ(r) vanishes for r < r• and ζ(r) = 1 for r > r•, and χ(r) = 1 for r < r∗ and
χ(r) = 0 for r > r∗. The remarks about the interaction between the two perturbations in
case (a) still hold.

Theorem 2.2 The solution uε of
−∆uε = f in Ωε,

uε = 0 on ∂Ωε \ ∂ω−ε ,
∂nuε = 0 on ∂ω−ε ,

(2.4)

admits the expansion at order N

uε(x) = ζ(|xε |)u0(x) + ε
[
V −

0

(
x−x−ε

ε

)
+ χ(|x|)V +

0

(
x
ε

)]
+

∑
(p,q)∈KN

εp+αq
(
ζ(|xε |)vp+αq(x) + ε

[
V −

p+αq

(
x−x−ε

ε

)
+ χ(|x|)V +

p+αq

(
x
ε

)])
+ rN

ε (x),

with KN defined in Theorem 2.1 and

‖rN
ε ‖H1(Ωε) = O(εN ).

3 Preliminary results

3.1 Scaling of Sobolev norms on parameter dependent domains

On the trace space of parametrized domains. In the following, we will have to use
the Sobolev space H1/2 of the boundary of an ε-dependent domain Ωε. This space can be
defined in two ways: either as TH1(Ωε) the trace space of H1(Ωε) with the norm

‖f‖TH1(Ωε) = inf{‖u‖H1(Ωε)| u ∈ H1(Ωε) with u = f on ∂Ωε},

either through its usual definition of Sobolev space, i.e. subspace of L2(∂Ωε) with finite
norm (known as intrinsic norm)

‖f‖H1/2(∂Ωε)
= ‖f‖L2(∂Ωε) + [f ]2,∂Ωε ,

with

[f ]22,∂Ωε
=

∫∫
∂Ωε×∂Ωε

|f(x)− f(y)|2

|x− y|2
dσxdσy.
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Gagliardo has shown in [6] that, if the domain is Lipschitz, the two different norms
on H1/2 are equivalent. For a familly of domains parametrized by ε, this means that the
domains should be uniformly Lipschitz with respect to ε.

V. Maz’ya and S. Poborchi discuss in [11, § 4.1.3] situations where this property is
violated. Consider a single interior perturbation Ωε = Ω \ εω where the nucleation center
0 belongs to Ω. The two terms in the intrinsic norm should be weighted. We quote
their result once adapted to the space H1/2 in the case of plane domains: the trace norm
‖f‖TH1(Ωε) is equivalent, uniformly in ε, to the norm

(ε| ln ε|)−1/2 ‖f‖L2(∂Ωε) + [f ]2,∂Ωε . (3.1)

In this work, we use both definitions of the norm on H1/2(∂Ωε): the definition as
‖.‖TH1(Ωε) is involved in a priori estimates, and the intrinsic definition as ‖.‖H1/2(∂Ωε)

is
used to compute the norm of explicit functions. Therefore, we only need a rough inequality
allowing to control the TH1(Ωε) norm with respect to ε for the family of deformations under
consideration.

Lemma 3.1 Let Ωε be defined in (1.3). There is a constant C (independent of ε) such
that for all f ∈ H1/2(∂Ωε)

‖f‖TH1(Ωε) ≤ Cε−2‖f‖H1/2(∂Ωε)
. (3.2)

Proof: Fix ε0 > 0 small enough and consider Ωε0 : this is a Lipschitz domain. By
classical results, there is a continuous extension operator Eε0 : H1/2(∂Ωε0) → H1(Ωε0).

Now, we define a diffeomorphism Φε from Ωε0 onto Ωε involving three different scales:

• Φε coincides with identity at scale 1 (in particular the boundary of Ω0 is invariant),

• is a contraction of ratio (ε/ε0)α around 0,

• is a contraction of ratio ε/ε0 around x±ε0
.

We construct, in two steps, such an application thanks to cut-off functions. Let us intro-
duce some notation. Let R,R± > 0 be such that

B(0, 2R) ⊂ Ωε0 , ω±ε0
⊂ B(x±ε0

, R±) ⊂ B(0, R) and 0 /∈ B(x±ε0
, 2R±).

Now let ϕ be a non increasing function in C∞([0,+∞), [0, 1]) with ϕ(t) = 1 if t < 1 and
ϕ(t) = 0 if t > 2. The application Φε0→εα defined by

Φε0→εα(x) =
[
1− ϕ

( |x|
R

)]
x + ϕ

( |x|
R

)(
ε
ε0

)α
x,

is a diffeomorphism that corresponds to identity outside the ball B(0, 2R) and to a con-
traction around 0 of ratio (ε/ε0)α inside B(0, R). Thus it maps x±ε0

onto x±ε and preserves
0. Note that Φε0→εα(B(x±ε0

, R±)) = B(x±ε , R±(ε/ε0)α). In a similar way, we define Φεα→ε

by

Φεα→ε(x) =
[
1− ϕ

((
ε0
ε

)α |x−x−ε |
R−

)
− ϕ

((
ε0
ε

)α |x−x+
ε |

R+

)]
x

+ϕ
((

ε0
ε

)α |x−x−ε |
R−

) [
x−ε +

(
ε
ε0

)1−α(x− x−ε )
]
+ϕ

((
ε0
ε

)α |x−x+
ε |

R+

) [
x+

ε +
(

ε
ε0

)1−α(x− x+
ε )

]
.
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This is also a diffeomorphism that introduces the third scale. The wanted mapping is
obtained by the composition Φε = Φεα→ε ◦ Φε0→εα and maps ω±ε0

onto ω±ε . One checks
that Φε(Ωε0) = Ωε and that ‖Φ−1

ε ‖W1,∞ ≤ Cε−1.
Now, thanks to Eε0 and Φε, we define an extension operator Eε from H1/2(∂Ωε) into
H1(Ωε) by

Eε(f) = [Eε0(f ◦ Φε)] ◦ Φ−1
ε .

From the definition of the trace norm, we check that

‖f‖H1/2(∂Ωε)
≤ ‖Eε(f)‖H1(Ωε) ≤ C‖Φ−1

ε ‖W1,∞ ‖Eε0(f ◦ Φε)‖H1(Ωε0 ) .

Since Eε0 is a continuous operator, there exists a constant c such that

‖Eε0(f ◦ Φε)‖H1(Ωε0 ) ≤ c ‖f ◦ Φε‖H1/2(∂Ωε0 ) .

Besides Φε behaving like a contraction of ratio ε/ε0 in the vicinity of ∂ω±ε0
, we check that

‖f ◦ Φε‖H1/2(∂Ωε0 ) ≤
ε0

ε
‖f‖H1/2(∂Ωε)

, (3.3)

since

‖f ◦ Φε‖L2(∂Ωε0 ) ≤
ε0

ε
‖f‖L2(∂Ωε)

and [f ◦ Φε]2,∂Ωε0
≤ [f ]2,∂Ωε .

Gathering these estimates, we deduce (3.2).

Remark 1 The weight arising in Lemma 3.1 is clearly not optimal, see (3.3). In partic-
ular, we have lost the dependency in α. Nevertheless, we do not need an equivalent norm
of ‖.‖TH1(Ωε) for our purpose since a coarse estimate is enough to validate the complete
asymptotic expansion.

Remark 2 The case (b) is a direct adaptation of the interior case: the boundary pertur-
bation appears in a flat part of ∂Ω0 and this line is locally invariant under contraction.

Traces of smooth functions In the following pages, we will face the question of eval-
uating on εω (with ω = ω±) various norms of the trace of a function f which is smooth
around 0.

Lemma 3.2 Let f be a smooth function defined around 0. Let M ≥ 0 be such that for all
multi-indices k with |k| < M , ∂kf(0) = 0. Let ω be a regular domain. Then,

‖f‖H1/2(ε∂ω) ≤ CεM , (3.4)

‖f‖TH1(εω) ≤ CεM−2. (3.5)

Proof: Let us first consider the L2 norm. We set x = εX, then

‖f‖2
L2(ε∂ω) =

∫
ε∂ω

|f(x)|2dσx = ε

∫
∂ω
|f(εX)|2dσX .

Therefore, since f is assumed to be smooth around 0, its Taylor expansion provides the
expansion f(εX) = εMPM (X)+O(εM ) (here PM denotes the polynomial term of order M
in the Taylor expansion of f at 0), then

‖f‖2
L2(ε∂ω) ≤ Cε2(M+1). (3.6)
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We now consider the double integral term defining the fractional part of the norm H1/2.
By change of variables, we get∫∫

(ε∂ω)×(ε∂ω)

|f(x)− f(y)|2

|x− y|2
dσxdσy = ε2

∫∫
∂ω×∂ω

|f(εX)− f(εY )|2

|εX − εY |2
dσXdσY

=
∫∫

∂ω×∂ω

|f(εX)− f(εY )|2

|X − Y |2
dσXdσY .

Now we have |f(εX) − f(εY )| ≤ ε|X − Y |‖∇f‖L∞(εω). From Taylor’s expansion of f at
0, we obtain easily ‖∇f‖L∞(εω) ≤ CεM−1. Then,∫∫

∂ω×∂ω

|f(εX)− f(εY )|2

|X − Y |2
dσXdσY ≤ Cε2M .

By definition of the H1/2 norm, we get the upper bound ‖f‖H1/2(ε∂ω) ≤ CεM .

Lemma 3.3 Let ω be a regular domain. Then, for f ∈ H1(ω) with ∆f ∈ L2(ω),

‖∂nf‖H−1/2(ε∂ω) ≤
1
ε
‖∂nF‖H−1/2(∂ω),

where F is deduced from f by dilation and H−1/2 is equipped with the dual norm.

Proof: Let ϕ ∈ H1/2(ε∂ω). Using the scaling X = x
ε and denoting F (X) = f(x),

Φ(X) = ϕ(x), we get by the Green formula∫
ε∂ω

∂nf(x)ϕ(x)dσx =
∫

εω
∇f(x) · ∇ϕ(x)dx−

∫
εω

∆f(x)ϕ(x)dx

=
∫

ω
∇F (X) · ∇Φ(X)dX −

∫
ω

∆F (X)Φ(X)dX

=
∫

∂ω
∂nF (X)Φ(X)dσX .

We deduce

sup
ϕ∈H1/2(ε∂ω)

∫
ε∂ω ∂nf(x)ϕ(x)dσx

‖ϕ‖H1/2(ε∂ω)

= sup
ϕ∈H1/2(ε∂ω)

∫
∂ω ∂nF (X)Φ(X)dσX

‖Φ‖H1/2(∂ω)

‖Φ‖H1/2(∂ω)

‖ϕ‖H1/2(ε∂ω)

≤ C

ε
sup

Φ∈H1/2(∂ω)

∫
∂ω ∂nF (X)Φ(X)dσX

‖Φ‖H1/2(∂ω)

,

according to (3.3).

3.2 Existence and behavior of the profiles

We now consider the boundary value problem (1.2). Accurate informations about the
behavior at infinity of the profiles are needed for the analysis of the asymptotic expansion.
Accordingly we introduce a definition which expresses a behavior at infinity like |X|−p.

Definition 3.4 Let O∞(|X|−p) be the set of functions f ∈ L2(R2\ω±) such that, for any
multi-indice i ∈ N2, there exists a positive constant C such that

|X|p+|i||∂if(X)| ≤ C, ∀X ∈ R2\ω±.
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A function V is homogeneous of order −k if V (λX) = λ−kV (X) for X ∈ R2 and λ > 0.
The following proposition gathers an existence and uniqueness result from [1] with an
expansion at infinity obtained through Fourier series.

Proposition 3.5 (Interior case) Let ω be a smooth bounded domain of R2 with 0 ∈ ω.
We assume that g ∈ H−1/2(∂ω) satisfies 〈g, 1〉H−1/2×H1/2 = 0. Then the boundary value
problem 

−∆V = 0 in R2\ω,

∂nV = g on ∂ω,

V → 0 at infinity,
(3.7)

admits a unique weak solution V0 in the variational space{
V ; ∇V ∈ L2(R2\ω) and

V

(1 + |X|) log(2 + |X|)
∈ L2(R2\ω)

}
.

Furthermore, its solution can be decomposed as

V0(X) =
n∑

k=1

V0,k(X) +O∞(|X|−n+1), (3.8)

where V0,k ∈ O∞(|X|−k) is an homogeneous harmonic function of order −k.

The corresponding result for a perturbation on the boundary is quoted from [4, 5].

Proposition 3.6 (Boundary perturbations) Let ω̆+ be the perturbed upper half plane
appearing in (2.2). Let f in H1/2(∂ω̆+) be such that f = 0 on the two infinite connected
half lines of ∂ω̆+ (that is to say outside of the perturbation). Then the boundary value
problem 

−∆V = 0 in ω̆+,

V = f on ∂ω̆+,

V → 0 at infinity,
(3.9)

admits a unique weak solution V d
0 in the variationnal space{

V ; ∇V ∈ L2(ω̆+) and
V

1 + |X|
∈ L2(ω̆+)

}
.

Furthermore, this solution can be decomposed as

V d
0 (X) =

n∑
k=1

V0,k(X) +O∞(|X|−n+1), (3.10)

where V0,k ∈ O∞(|X|−k) is an homogeneous harmonic function of order −k.

Remark 3 A homogeneous harmonic function of order −k reads r−kfk(θ) where the radial
function fk is a linear combination of cos kθ and sin kθ.

3.3 Construction of the correctors

In the sequel, we will use profiles to take into account the effect of ω±ε on ω±ε . They have
a small but non vanishing trace on ∂Ωε. In order to define the next corrector, we estimate
their traces on the boundary ∂Ωε.
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Geometrical setting (a). We consider the traces on the other parts of ∂Ωε that is
to say on ∂Ω0 and ∂ω±ε . The expansion of |x − x±ε | for x ∈ ∂Ω0 gives the existence of
coefficients a±l such that

|x− x±ε | = |x|
(

1∓ εα d.x

|x|2
+

ε2α

|x|2

) 1
2

=
∑
l≥0

a±l εαl.

For any x ∈ ∂Ω0, we denote by θ±ε the angle of the polar coordinates centered at x±ε :

cos θ±ε =
x1 ∓ d1ε

α

|x− x±ε |
and sin θ±ε =

x2 ∓ d2ε
α

|x− x±ε |
,

with (d1, d2) the coordinates of d. Therefore, there exist coefficients b±k such that

θ±ε |∂Ω0
=

∑
k≥0

b±k εαk.

Note that the leading terms a±0 and b±0 are nothing else but the polar coordinates corre-
sponding to the origin. For any normalized homogeneous harmonic function of order −k
of the decomposition (3.8), we deduce the expansion

For x ∈ ∂Ω0, Vk

(
x−x±ε

ε

)
=

εk

|x− x±ε |k
fk(θ±ε ) = εk

∑
l≥0

d±0,lε
αl. (3.11)

Next, we examine the trace on ∂ω∓ε . Let x belong to ∂ω∓ε . There exists X ∈ ∂ω∓ such
that x = x∓ε + εX. Then, the distance between points x and x±ε satisfies

|x− x±ε | = | ∓ 2εαd + εX| = 2εα
(
1∓ ε1−αd ·X + ε2(1−α)

4 |X|2
) 1

2 = εα
∑
l≥0

ã±l ε(1−α)l.

Here, the θ±ε admit the expansion

θ±ε |
∂ω∓ε

=
∑
k≥0

b̃±k ε(1−α)k.

The leading terms ã±0 and b̃±0 satisfy ã±0 = 2, d = ∓(cos b̃±0 , sin b̃±0 ). Therefore there exist
coefficients d±l entering into the expansion of the profile:

For x ∈ ∂ω∓ε , Vk

(
x−x±ε

ε

)
=

∑
l≥k

d±l εl(1−α). (3.12)

Geometrical setting (b). We perform the same analysis after splitting the outer
boundary into the perturbed part and the unperturbed one. Namely we distinguish for
z ∈ ∂Ωε \ ∂ω−ε a neighboring part to 0 at distance of order ε and a far part containing the
remainding boundary

Vk(z) = Vk,n(z) + Vk,f (z), with Vk,n(z) =
(
1− ζ

(
z
ε

))
Vk(z) and Vk,f (z) = ζ

(
z
ε

)
Vk(z).

The same arguments as previously give an expansion of Vk,n(z) in powers of ε1−α starting
with εk(1−α) as in (3.12).
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4 Proofs of Theorems 2.1-2.2

4.1 Proof of Theorem 2.1

For the clearness of the presentation, we make a constructive proof to explain the ansatz.
Let us now start with the asymptotic expansion and its first corrector. We introduce the
first remainder r0

ε defined on Ωε by

uε = u0 + r0
ε .

Then r0
ε satisfies 

−∆r0
ε = 0 in Ωε,

r0
ε = 0 on ∂Ω0,

∂nr0
ε = −∂nu0 on ∂ω+

ε ∪ ∂ω−ε .
(4.1)

As mentionned in (1.2), we introduce the profiles V ±
0 . Thanks to Proposition 3.5, they are

the unique solution of 
−∆V ±

0 = 0 in R2\ω±,

∂nV ±
0 = −n · ∇u0(0) on ∂ω±,

V ±
0 → 0 at infinity.

(4.2)

Applying again Proposition 3.5, there exist V ±
0,k ∈ O∞(|X|−k) for k = 1, . . . , N − 1 such

that

V ±
0 (X) =

N−1∑
k=1

V ±
0,k(X) +O∞(|X|−N ), ∀X ∈ R2\ω±. (4.3)

We now introduce the second remainder r1
ε defined for any x ∈ Ωε by:

uε(x) = u0(x) + ε
[
V −

0

(
x−x−ε

ε

)
+ V +

0

(
x−x+

ε
ε

)]
+ r1

ε(x).

Inserting this definition into the boundary value problem (1.4), we check that r1
ε satisfies

−∆r1
ε = 0 in Ωε,

r1
ε(x) = −ε

[
V −

0

(
x−x−ε

ε

)
+ V +

0

(
x−x+

ε
ε

)]
for x ∈ ∂Ω0,

∂nr1
ε(x) = n · ∇u0(0)− n · ∇u0(x)− n · ∇V −

0

(
x−x−ε

ε

)
for x ∈ ∂ω+

ε ,

∂nr1
ε(x) = n · ∇u0(0)− n · ∇u0(x)− n · ∇V +

0

(
x−x+

ε
ε

)
for x ∈ ∂ω−ε .

(4.4)

Let us give more information about the behavior of the trace of r1
ε on the boundaries.

According to (4.3) and (4.4) the following relation holds for any x ∈ ∂Ω0:

r1
ε(x) = −ε

N−1∑
k=1

[
V −

0,k

(
x−x−ε

ε

)
+ V +

0,k

(
x−x+

ε
ε

)]
+ εO∞

(∣∣x
ε

∣∣−N
)

.

Then, using (3.11), there exist fj,k such that we can rewrite

r1
ε(x) =

∑
j≥1,k≥0,

j+αk≤N

εj+αkfj,k(x) + O(εN ), ∀x ∈ ∂Ω0. (4.5)

Let us look at the trace of r1
ε on ∂ω±ε . For any x ∈ ∂ω±ε , there exists X ∈ ∂ω± such that:

x = x±ε + εX = ±εαd + εX.
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Thus
∇r1

ε(x) = ∇u0(0)−∇u0(±εαd + εX)−∇V ∓
0 (±2εα−1d + X). (4.6)

Two contributions give the order of ∇r1
ε on ∂ω±ε : the Taylor expansion of u0 and the

Neumann trace of the profiles V ∓
0 on the inclusion ∂ω±ε .

• Assuming u0 is smooth enough, the Taylor expansion of ∇u0 provides

∇u0(±εαd + εX)−∇u0(0) =
∑

j≥0,k≥0,

0<j+αk≤N

εj+αk (±1)k

(j + k)!
Dj+k+1u0(0)[dk, Xj ] + O(εN ).

For commodity, we denote

g±j,k(X) = − (±1)k

(j + k)!
Dj+k+1u0(0)[dk, Xj ] · n, ∀X ∈ ∂ω±.

Note that Dj+k+1u0(0)[dk, Xj ] · n is harmonic as Taylor monomial function of the
harmonic function u0. Therefore one has∫

∂ω±
g±j,k(X)dσX = 0. (4.7)

• Since α < 1, then εα−1 →∞ as ε → 0 and so the coefficient εα−1d gives the leading
term in ∇V ∓

0 . From Proposition 3.5, there exist h∓j satisfying:

∂nV ∓
0 (±2εα−1d + X) =

∑
2≤j≤ N

1−α

εj(1−α)h∓j (X) + O(εN ), (4.8)

with ∫
∂ω±

h∓j (X)dσX = 0. (4.9)

Combining (4.6) and (4.8), we deduce for x = ±εαd + εX ∈ ∂ω±ε

∂nr1
ε(x) =

∑
j≥0,k≥0,

0<j+αk≤N

εj+αkg±j,k(X) +
∑

2≤j≤ N
1−α

εj(1−α)h∓j (X) + O(εN ). (4.10)

Now we need to lift each boundary conditions appearing in (4.5) and (4.10).

• The functions fj,k introduced in (4.5) generate correctors Fj,k defined by{
−∆Fj,k = 0 in Ω0,

Fj,k = −fj,k on ∂Ω0.
(4.11)

These correctors do not satisfy the Neumann condition on the boundary of the
inclusions ∂ω±ε and so generate errors on these boundaries.

• The functions g±j,k and h∓j generate profiles G±
j,k and H∓

j with same behavior as the
first corrector. These profiles satisfy:

−∆G±
j,k = 0 in R2\ω±,

∂nG±
j,k = −g±j,k on ∂ω±,

G±
j,k → 0 at infinity,

(4.12)
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and 
−∆H∓

j = 0 in R2\ω±,

∂nH∓
j = −h∓j on ∂ω±,

H∓
j → 0 at infinity.

(4.13)

The compatibility conditions (4.7) and (4.9) ensure existence of these profiles.

The third remainder is naturally defined by:

uε(x) = u0(x) + ε
[
V −

0

(
x−x−ε

ε

)
+ V +

0

(
x−x+

ε
ε

)]
+

∑
j≥1,k≥0,

j+αk≤N

εj+αkFj,k(x)

+
∑

j≥0,k≥0,

0<j+αk≤N

ε1+j+αk
[
G−

j,k

(
x−x−ε

ε

)
+ G+

j,k

(
x−x+

ε
ε

)]
+

∑
2≤j≤ N

1−α

ε1+j−αj
[
H+

j

(
x−x−ε

ε

)
+ H−

j

(
x−x+

ε
ε

)]
+ r2

ε(x). (4.14)

We have defined new functions such that ∆r2
ε = 0 in Ωε. There are three contributions to

determine the following remainder of the asymptotic expansion by this way:

• The Dirichlet trace on ∂Ω0 comes from the trace of G±
j,k and H±

j . To construct the
following term for the asymptotic expansion, we have to lift this condition.

• The functions Fj,k do not satisfy the Neumann condition on the boundary of the
inclusions ∂ω±ε and we have to lift them as well.

• Finally we have a corrector due to the interaction: G+
j,k and H+

j satisfy the Neumann
condition on ∂ω+

ε but not on ∂ω−ε and similarly for G−
j,k, H−

j . This is the third
condition to lift.

The remainder r2
ε satisfies

−∆r2
ε = 0 in Ωε,

r2
ε(x) = −

∑
j≥0,k≥0,

0<j+αk≤N

ε1+j+αk
[
G−

j,k

(
x−x−ε

ε

)
+ G+

j,k

(
x−x+

ε
ε

)]
−

∑
2≤j≤ N

1−α

ε1+j−αj
[
H+

j

(
x−x−ε

ε

)
+ H−

j

(
x−x+

ε
ε

)]
+ O(εN ) on ∂Ω0,

∂nr2
ε(x) = −

∑
j≥0,k≥1,

j+αk≤N

εj+αk∂nFj,k(x) +
∑

j≥0,k≥0,

0<j+αk≤N

εj+αk∂nG∓
j,k

(
x−x−ε

ε

)
+

∑
2≤j≤ N

1−α

εj−αjH∓
j

(
x−x−ε

ε

)
+ O(εN ) on ∂ω±ε .

(4.15)
Let us explain the evolution of the powers of ε in the construction of the asymptotic

expansion. We write the possible powers of ε on the form j + αk with (j, k) ∈ Z2. First
we look at r1

ε . Powers of ε appearing in the Dirichlet trace on ∂Ω0 are

K1
1 = {(j, k) ∈ N2|j ≥ 1}.

For the Neumann condition on the inclusions, we define two sets:

K1
2 = {(j, k) ∈ N2|j + k ≥ 1}.
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K1
3 = {(j, k) ∈ N× Z|j ≥ 2 and k = −j}.

Finally, let K1 be defined by:

K1 = K1
1 ∪K1

2 ∪K1
3 = K1

2 ∪K1
3 ,

since K1
1 ⊂ K1

2 . The set K1 can be rewritten as the intersection of three convex sets:

K1 = {j ≥ 0} ∩ {k ≥ −3
2j + 1} ∩ {k ≥ −j}.

Similarly, K2 is the set of powers of ε appearing with the remainder r3
ε . These powers

come from combination of K1
2 and K1

3 . Let us develop all the possible configurations:

• K1
2 with K1

2 : The terms have the form εj+j′+α(k+k′) with (j, k, j′, k′) ∈ N4, j +k ≥ 1,
j′ + k′ ≥ 1. Then

K2
2,2 = {(j, k) ∈ N2|j + k ≥ 2}.

• K1
2 with K1

3 : This combination leads to terms of the form εj+j′+α(k−j′) with j+k ≥ 1,
j′ ≥ 2, then

K2
2,3 = {(j, k) ∈ N× Z|j ≥ 2, j + k ≥ 1}.

• K1
3 with K1

3 : This combination leads to the definition

K2
3,3 = {(j, k) ∈ N× Z|j ≥ 4, k = −j}.

The set K2 = ∪2≤j≤k≤3K
2
j,k is drawn in Figure 4. It can be written as the intersection of

three convex sets:
K2 = {j ≥ 0} ∩ {k ≥ −3

2j + 2} ∩ {k ≥ −j}.

K2
2,2

K2
2,3

K2
3,3

K2

(a) Set K2

K1

K2

K3

K4

K5

(b) Set Kj

Figure 4: The sets of indices

At each step of the construction of the asymptotic expansion, we obtain a new set Kn

of the possible powers of ε. Let us look at the evolution of the set Kn with n ≥ 2. We
can sum up the possibilities in three combinations:
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• Two terms of the form εj+αk;

• Two terms of the form εj−αj ;

• One term of the form εj+αk and one of the form εj−αj .

To deduce the set K3, we start from K2 and we can make two operations: a translation
je1 ⊕ ke2 with j + k ≥ 1 or a translation j(e1 − e2) with j ≥ 2. Then K3 is the convex
defined by

K3 = {j ≥ 0} ∩ {k ≥ −3
2j + 3} ∩ {k ≥ −j}.

By induction, we obtain immediately that the leading terms for the Laplacian and traces
of the remainder of order n are of the form O(εj+αk) with (j, k) ∈ Kn defined by

Kn = {j ≥ 0} ∩ {k ≥ −3
2j + n} ∩ {k ≥ −j}.

The first sets Kn are represented in Figure 4. The vertices of the convex set Kn are (0, n)
and (2n,−2n). The leading term is then O(εmin(αn,2n(1−α))). Let us define the critical
exponant α such that αn = 2n(1− α) that is

αc =
2
3
.

Then, the leading term is O(εαn) if α < αc and O(ε2n(1−α)) else. This expresses the
fact that if the perturbations are rather close to each other (αc < α), the interaction
term (corresponding to the n(1− α) exponant) is dominant, while the classical correctors
induced by the Taylor expansion around 0 remains preeminent when the perturbations are
distant enough (α < αc). This was rather expectable from the physical intuition of the
problem.
In order to justify the size of the remainder in this formal expansion, we apply the usual
a priori estimates thanks to Lemmas 3.2 and 3.3. The obtained bound for ‖rn

ε ‖H1(Ωε)

is of order O(εmin(αn,2n(1−α))−2). We recover the optimal estimate writing rn
ε = rn+`

ε +
O(εmin(αn,2n(1−α))) where ` = max([ 2

α
], [ 1

1−α
]).

We can determine the maximum number of times nmax we have to perform this iterative
procedure to have an asymptotic expansion of order N :

• nmax =
[

N
α

]
if α ≤ αc;

• nmax =
[

N
2(1−α)

]
if α > αc.

4.2 Proof of Theorem 2.2

We will explain the first two steps of the construction of the asymptotic expansion. The
complete construction given in §4.1 for interior inclusions can easily be adapted here. The
main difference comes from the new lift induced by the cut-off in the slow variables.

We split the exterior boundary of Ωε in two parts: Γ+
ε = εΓ+ (see Figure 3) and

Γ0
ε = ∂Ωε \ (∂ω−ε ∪ Γ+

ε ). We consider two smooth cut-off functions ζ and χ defined on R+

such that ζ(r) vanishes for r < r• and ζ(r) = 1 for r > r•, and χ(r) = 1 for r < r∗ and
χ(r) = 0 for r > r∗. The Taylor expansion of u0 at order N reads

u0(x) = χ(|x|)
N∑

k=0

akx
k + RN (x) = χ(|x|)TN (x) + RN (x).
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The function u0 is not necessarily defined in the whole domain Ωε but its Taylor expansion
TN can be extended to Ωε. Hence we define the truncated function belonging to H1(Ωε)

ũ0(x) = χ(|x|)TN (x) + ζ
(∣∣x

ε

∣∣)RN (x).

The difference ũ0−u0 is of order εN (see [5, 14]). The first remainder r0
ε defined on Ωε by

uε = ũ0 + r0
ε ,

satisfies 
−∆r0

ε = ϕ0
ε in Ωε,

r0
ε = 0 on Γ0

ε,

r0
ε = −ũ0 on Γ+

ε ,

∂nr0
ε = −n · ∇ũ0 on ∂ω−ε .

(4.16)

To define ϕ0
ε, we rewrite r0

ε :

r0
ε = (uε − u0)− (ũ0 − u0)

= (uε − u0)−
(
ζ
(∣∣ ·

ε

∣∣)− 1
)
(u0 − χ(| · |)TN ).

Since TN is harmonic and considering the intersection of the support of the cut-off functions
χ and ζ, we get for ε small enough

ϕ0
ε =

1
ε2

∆ζ
(∣∣ ·

ε

∣∣)(u0 − χ(| · |)TN )− 2
ε
∇ζ

(∣∣ ·
ε

∣∣) · ∇(u0 − χ(| · |)TN )

= O(εN−1).

This contribution is small enough to be incorporated in the remainder rN
ε of the target

expansion.
We easily check that u0 and ũ0 equal 0 on Γ0

ε. We introduce the profiles V ±
0 : According

to Proposition 3.5, there exists a unique solution V −
0 of

−∆V −
0 = 0 in R2\ω−,

∂nV −
0 = −n · ∇u0(0) on ∂ω−,

V −
0 → 0 at infinity.

(4.17)

Proposition 3.6 gives the existence and uniqueness of the solution V +
0 of the problem:

−∆V +
0 = 0 in ω̆+,

V +
0 (X) = −∇u0(0) ·X on Γ+,

V +
0 = 0 on ∂ω̆+ \ Γ+,

V +
0 → 0 at infinity.

(4.18)

We are now ready to introduce the second remainder r1
ε :

uε(x) = ũ0 + ε
[
V −

0

(
x−x−ε

ε

)
+ χ(|x|)V +

0

(
x
ε

)]
+ r1

ε(x).

Since χ ≡ 1 on ∂ω−ε ∪ Γ+
ε , we check that r1

ε satisfies

−∆r1
ε = ϕ0

ε + ϕ1
ε in Ωε,

r1
ε(x) = −ε

[
V −

0

(
x−x−ε

ε

)
+ χ(|x|)V +

0

(
x
ε

)]
for x ∈ Γ0

ε,

r1
ε(x) = −ũ0(x)− ε

[
V −

0

(
x−x−ε

ε

)
+ V +

0

(
x
ε

)]
for x ∈ Γ+

ε ,

∂nr1
ε(x) = n · ∇u0(0)− n · ∇ũ0(x)− n · ∇V +

0

(
x
ε

)
for x ∈ ∂ω−ε .

(4.19)
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Here
ϕ1

ε(x) = ε∆(χ(|x|)V +
0 (x)) = ∇χ(|x|) · ∇V +

0

(
x
ε

)
+ ε∆χ(|x|)V +

0

(
x
ε

)
.

There exist fj such that

ϕ1
ε(x) =

∑
2≤j≤N−1

εjfj(x) +O∞

(∣∣x
ε

∣∣−N
)

.

According to Propositions 3.5 and 3.6, we can find homogeneous functions V ±
0,k such that

for any x ∈ Γ0
ε:

r1
ε(x) = −ε

∑
1≤k≤N−1

[
V −

0,k

(
x−x−ε

ε

)
+ χ(|x|)V +

0,k

(
x
ε

)]
+ εO∞

(∣∣x
ε

∣∣−N
)

.

Using (3.11), there exist fj,k such that we can rewrite on Γ0
ε

r1
ε(x) =

∑
j≥1,k≥0,

j+αk≤N

εj+αkfj,k(x) +O(εN ). (4.20)

Let x ∈ Γ+
ε and X ∈ Γ+ be such that x = εX. We define g+

j on ∂ω̆+ by

g+
j (X) = − 1

j!
Dju0(0)[X(j)] if X ∈ Γ+,

and by 0 elsewhere so that

ũ0(εX) + εV +
0 (X) =

∑
2≤j≤N

εkg+
j (X).

There exist h−j coming from the trace of V −
0 such that

r1
ε(x) = −

∑
2≤j≤N

εkg+
j (X)− ε

∑
1≤j≤ N

1−α

εj(1−α)h−j (X) + O(εN ). (4.21)

Let us look at the Neumann condition on ∂ω−ε . As χ ≡ 1 on ∂ω−ε , we have

∇r1
ε(x) = ∇uε(x)−∇ũ0(x)−∇V −

0

(
x−x−ε

ε

)
−∇V +

0

(
x
ε

)
.

Let x ∈ ∂ω−ε , there exists X ∈ ∂ω− such that x = εαd + εX. Since

∇ũ0(x) = ∇TN (x) +∇RN (x) = ∇u0(x) +O(εN ),

a Taylor expansion of u0 gives

∇u0(0)−∇ũ0(x) = ∇u0(0)−∇u0(εαd + εX) +O(εN )

= −
∑

j≥0,k≥0,

0<j+αk≤N

εj+αk

(j + k)!
Dj+k+1u0(0)[d(k), X(j)] + O(εN ).

We denote
g−j,k(X) =

−1
(j + k)!

Dj+k+1u0(0)[dk, Xj ] · n, ∀X ∈ ∂ω−.
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Let us analyze now ∇V +
0 . Since x

ε = εα−1d + X, Proposition 3.6 gives the existence of
coefficients h+

j such that, on ∂ω−ε ,

∂nV +
0 (εα−1d + X) =

∑
2≤j≤ N

1−α

εj(1−α)h+
j (X) + O(εN ).

Consequently, on ∂ω−ε ,

∂nr1
ε(x) =

∑
j≥0,k≥0,

0<j+αk≤N

εj+αkg−j,k(X)−
∑

2≤j≤ N
1−α

εj(1−α)h+
j (X) + O(εN ). (4.22)

To construct the following corrector r2
ε , we define wj

ε as the solution in H1(Ωε) of{
−∆wj

ε = −fj in Ωε,

wj
ε = 0 on ∂Ω0.

We have to fit each boundary conditions given in (4.20) for Γ0
ε, (4.21) for Γ+

ε and (4.22)
for ∂ω−ε . The functions fj,k introduced in (4.20) generates correctors Fj,k defined by{

−∆Fj,k = 0 in Ω0,
Fj,k = −fj,k on ∂Ω0.

(4.23)

The functions g+
j , g−j,k and h∓j generate profiles G+

j , G−
j,k and H∓

j with similar behavior as
the other correctors. These profiles satisfy:

−∆G+
j = 0 in ω̆+,

G+
j = −g+

j on ∂ω̆+,

G+
j → 0 at infinity,


−∆H−

j = 0 in ω̆+,

H−
j = −h−j on ∂ω̆+,

H−
j → 0 at infinity,

and 
−∆G−

j,k = 0 in R2\ω−,

∂nG−
j,k = −g−j,k on ∂ω−,

G−
j,k → 0 at infinity,


−∆H+

j = 0 in R2\ω−,

∂nH+
j = −h+

j on ∂ω−,

H+
j → 0 at infinity.

We check the compatibility conditions ensuring the existence of such profiles. The following
steps are similar to those in the case of interior inclusions and we can make the same
analysis for the indices appearing in the asymptotic expansion.

5 Numerical experiments

The computation of the solution uε of problem (1.4) is not a straightforward problem since
a very fine mesh is required if ε is small. For such values of ε, it is natural to use the
asymptotic expansions presented in Theorems 2.1–2.2. Precisely, we approximate uε by
its first order expansion

u1(x) = u0(x) + ε
[
V −

0

(
x−x−ε

ε

)
+ V +

0

(
x−x+

ε
ε

)]
. (5.1)

This means that u0 and the profiles V ±
0 are to be computed. While u0 is the solution of

a classical boundary value problem (in an ε-independent domain which may be coarsely
meshed), the profiles are solution of a problem posed on an infinite domain. We present
in §5.1 a numerical method to obtain an accurate approximation of the profiles, and,
in §5.2, we show how it is used to compute an approximation of uε.

The numerical results shown hereafter have been performed with the Finite Element
Library Mélina [9].
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5.1 Computation of the profiles

In order to compute the profiles V ±
0 involved in formula (5.1), we introduce the normalized

vectorial profile V = Vω, solution of the following exterior boundary value problem
−∆V = 0 in R2 \ ω,
∂nV = g on ∂ω,

V → 0 at infinity,

with g = −n. We can recover V ± from Vω± via the formula

V ± = ∇u0(0) ·Vω± ,

so that formula (5.1) reads

u1(x) = u0(x) + ε∇u0(0) ·
[
Vω−

(
x−x−ε

ε

)
+ Vω+

(
x−x+

ε
ε

)]
. (5.2)

The profile V will be approximated componentwise: V and g denote the first compo-
nent of V and g, respectively (of course, the same can be done for the second component).
Several approaches are available to compute V : integral equation, infinite elements, trun-
cated domain with integral representation or artificial boundary condition. For the latter,
we propose three absorbing conditions on |x| = R:

V = 0, (5.3)

V + R∂nV = 0, (5.4)

V +
3R

2
∂nV − R2

2
∂2

τ V = 0. (5.5)

These conditions (Dirichlet/Robin/Ventcel) are said of order 0, 1, and 2, respectively (the
Robin condition was already used in [5]). The considered problem is then

−∆V = 0 in B(0, R) \ ω,
∂nV = g on ∂ω,

(5.3) or (5.4) or (5.5) on ∂B(0, R).

We present here an alternative method based on a conformal mapping to convert
the exterior domain into a bounded one. Precisely, we consider the inversion-symmetry
ϕ : z 7→ 1/z. The Laplace equation −∆V = 0 remains unchanged by homogeneity, the
transformed profile W = V ◦ ϕ solves then the Neumann boundary value problem

−∆W = 0 in ϕ(ω),
∂nW = ∂sϕ (g ◦ ϕ) on ∂ϕ(ω),
W (0) = 0.

In the case where ω is the unit disk, the profile is explicitly known:

V (x) =
cos θ

r
=

x1

x2
1 + x2

2

and W (x) = x1.

Figure 6 presents the accuracy of the “inversion method” compared with the “artificial
boundary method” (absorbing boundary condition of various order with cut-off radius
R = 10; results shown for g(x) = cos θ − 2 cos 2θ − 3 cos 3θ for which the exact solution
is V (x) = cos θ/r + cos 2θ/r2 + cos 3θ/r3). The computations have been done on a fixed
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(a) Artificial boundary method (R = 10). (b) Inversion method.

Figure 5: Meshes used for the computation of the profiles
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Figure 6: Comparison inversion method / absorbing boundary condition.

mesh for each method (Q8 geometric approximation, see Figure 5), and the interpolation
degree is increased from Q1 to Q8.

It clearly appears that the artificial boundary method requires much more degrees of
freedom than the inversion method. Let us mention that the cut-off radius R = 10 might
be increased, this limiting factor is the cause of the locking observed in Figure 6 for the
absorbing boundary conditions.

Figures 7 show the profile computed with both methods when ω is an ellipse : each
computation involves P1-elements with 140 degrees of freedom (DOF) (the solution ob-
tained by inversion has been projected onto a fine mesh for comparison). It it clear that
the inversion method provides a better accuracy for the same computation cost.
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(a) Transparent boundary condition method. (b) Inversion approach.

Figure 7: Profile obtained for the same number of DOF.

5.2 Transfer and superposition

The profiles computed above have to be mapped onto the grid where u0 is defined to
build the approximation u1, see (5.1). This has been done via the following automatic
procedure:

1. For any vertex x of that mesh, compute X = ϕ(x−x±ε
ε ),

2. Find the element K of the bounded mesh used for the profile computation and
containing X,

3. Compute the value W (X) by interpolation in K.

For point 2, a preliminary bucket sort, see [3, pp. 174–177], is performed to reduce the
number of elements to be considered when finding K.

To compare uε and its 0-th and first order approximations, we need to compute uε

accurately. Figure 8 shows two meshes used to that end, they have been generated using
Triangle [13]. In Figure 9, we present the differences uε−u0 and uε−u1 on the example of
two ellipses. The value ε = 0.0585 is relatively large for visibility reasons, but nevertheless
the approximation given by the first order approximation u1 is much better than u0. The
principal error in uε−u0 is mainly concentrated around the holes, it is partially corrected
in uε − u1. We emphasize the fact that, for such values of ε and α (α = 0.5), the distance
between the two inclusions is 2εα ' 0.24 which is pretty coarse. In this situation, it would
be preferable to write the following first-order approximation instead of (5.2)

u11(x) = u0(x) + ε
[
∇u0(x−ε ) ·Vω−

(
x−x−ε

ε

)
+∇u0(x+

ε ) ·Vω+

(
x−x+

ε
ε

)]
. (5.6)

It appears clearly in Figure 9 that u11 is a better choice than u1 since the profiles are more
precisely corrected near the inclusions.

In Figure 10, we present the errors (in the H1(Ωε)-norm) obtained for the three approx-
imations u0, u1, and u11 (in the case where the two inclusions are ellipses, and α = 0.2).
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(a) α = 0.5 and ε = 0.01. (b) α = 0.9 and ε = 0.05.

Figure 8: Some meshes used to compute uε.

(a) uε − u0. (b) uε − u1.

(c) uε − u11.

Figure 9: uε − u0 and uε − u1 for ε = 0.0585 and α = 0.5.

The local convergence rates computed as the slopes between two consecutive points in
Figure 10 are gathered in Table 1. We recover the expected rate 1+α = 1.2 for uε−u1, cf.
expansion (2.1), as well as the rate 2 for uε − u11 if ε is not too small, cf. expansion (1.5).

Finally, Figure 11 plots the estimated rates with respect to the value of α. The results
are in good agreement with the theoretical predictions. Note that this graph has been
obtained for circular holes, where the profile is analytically known, to avoid roundoff
errors due to the profile computations.

Thanks. This work has been supported by the ANR (Agence Nationale de la Recherche),
project macadam number JCJC06-139561.
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Figure 10: Energy norms of uε − u0, uε − u1 , and uε − u11. for α = 0.2.

Local convergence rate
uε − u0 uε − u1 uε − u11

1.0348 1.7149 1.9760
1.0357 1.6385 2.0357
1.0333 1.5339 2.0395
1.0300 1.3843 1.8937
1.0265 1.3183 1.8417
1.0231 1.2786 1.8420
1.0198 1.2351 1.6210
1.0175 1.2145 1.4146
1.0152 1.1975 1.1711
1.0129 1.1897 1.0625
1.0113 1.1481 0.6392
1.0091 1.1072 0.5619
1.0086 0.9804 0.3101

Table 1: Local convergence rates for curves in Figure 10.
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