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MULTISCALE EXPANSION AND NUMERICAL APPROXIMATION FOR
SURFACE DEFECTS ∗

V. Bonnaillie-Noël1, D. Brancherie2, M. Dambrine3, F. Hérau4, S. Tordeux5

and G. Vial6

Abstract. This paper is a survey of articles [5, 6, 8, 9, 12, 16, 17]. We are interested in the influence
of small geometrical perturbations on the solution of elliptic problems. The cases of a single inclusion
or several well-separated inclusions have been deeply studied. We recall here techniques to construct
an asymptotic expansion. Then we consider moderately close inclusions, i.e. the distance between the
inclusions tends to zero more slowly than their characteristic size. We provide a complete asymptotic
description of the solution of the Laplace equation. We also present numerical simulations based on
the multiscale superposition method derived from the first order expansion (cf [9]).
We give an application of theses techniques in linear elasticity to predict the behavior till rupture of
materials with microdefects (cf [6]). We explain how some mathematical questions about the loss of
coercivity arise from the computation of the profiles appearing in the expansion (cf [8]).

Résumé. Nous faisons ici une synthèse des articles [5, 6, 8, 9, 12, 16, 17]. On s’intéresse à l’influence
de petites perturbations géométriques sur la solution de problèmes elliptiques. Les cas d’une inclusion
isolée ou de plusieurs bien séparées ont été largement étudiés. Nous considérons plus précisément le
cas où la distance entre deux inclusions tend vers zéro mais reste grande par rapport à leur taille
caractéristique. Nous donnons un développement asymptotique multi-échelle complet de la solution de
l’équation de Laplace dans la situation de deux inclusions. Nous présentons également quelques simu-
lations numériques basées sur une méthode de superposition multi-échelle provenant du développement
au premier ordre (cf [9]).
Nous étendons ces techniques aux équations de l’élasticité linéaire afin de prédire le comportement à
rupture de certains matériaux présentant des micro-défauts (cf [6]). Nous verrons également comment
le calcul numérique des profils intervenant dans le développement asymptotique soulève des questions
mathématiques liées à la perte de coercivité des problèmes approchés (cf [8]).
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Introduction

In many physical situations, one has to consider objects whose geometry involves different scales. Typically,
to the macroscopic description should be added a microscopic level of details: this is the case for granulates
inside concrete, or bumps on a shell. The questions we are interested in deal in particular with mechanical
properties of such materials. The mathematical modelling of these situations consists usually of a system of
partial differential equations posed in a (2D or 3D) domain standing for the real geometry. While the theoretical
aspects are usually unaffected by microscopic inhomogeneities, the numerics need special care. Indeed, taking
into account two different scales in a finite element code requires an adapted mesh refinement in the vicinity
of the defects. Resulting computations can become prohibitively costly. Hence, usually, only the macroscopic
description is preserved. The influence of local inhomogeneities on the global behavior of the material is
then ignored. We aim at designing a numerical method involving the two geometric scales, with a reasonable
computational cost.
Our approach is based on a precise asymptotic analysis of the state equation with respect to the characteristic
size ε of the microdefects. The limit solution as ε tends to 0 corresponds to the solution in the unperturbed
domain, which can be reasonably approximated with a coarse mesh. In the framework of our project, the
perturbation resulting from the microdefects essentially concentrates near the latters. In a model case, it has
been shown that the first corrector consists of a profile, i.e. a function defined on an infinite dimensionless
domain, arising in the rapid variable x/ε, that is the scale of the perturbation. This structure suggests a
numerical method based on a superposition of the unperturbed solution and the profile. The main difficulties
concern the practical computation of the profiles, and the numerical analysis of the algorithmic efficiency. We
propose several methods for this computation.
We derive and justify asymptotic expansions in various situations, especially to explain the influence of small
inclusions close to each other. These results generalize to linear elasticity in the framework of damage structures
to predict the behavior till rupture of materials with two microdefects close to each other. The multiscale
superposition method is used in the preliminary step of crack detection, a continuum-discrete damage model is
involved for its propagation.
The question of domains with small inclusions or inhomogeneities has been widely studied, especially in the
case of electromagnetics and inverse problem, see for example [1, 2, 4, 10,14,19,23,24].

Organization of the paper

In Section 1, we deal with theoretical results about the asymptotic expansion for the Laplace equation in
a domain with small perturbations. Then we apply these results to the Navier equation in the context of
fracture mechanics in Section 2. In Section 3, we use the asymptotic expansion to compute the solution of
these problems: it suffices to compute the solution of the non-perturbed problem and some profiles (solutions
of some exterior problem) to construct a suitable approximation of the solution of the perturbed problem. We
perform some simulations for the Laplace equation and for the linear elasticity problem. We also discuss about
the numerical approximation of the profiles by introducing artificial boundary conditions.

1. Asymptotic expansion for the Laplace equation

1.1. The well-known case of one inclusion

The case of a single inclusion ω being either in Ω0 or on ∂Ω0 (or isolated inclusions), has been deeply studied,
see [16–18,21]. Let us recall some results in this framework and give formally the construction of the expansion.
We consider a fixed domain Ω0 in R2 containing 0, and another domain ω, centered at the origin 0. For any ε
small enough, we define the perturbed domain Ωε, see Figure 1, as

Ωε = Ω0 \ ωε, with ωε = εω.

The problem we are interested in reads
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ωε

Ωε

Figure 1. One small interior inclusion. −∆uε = f in Ωε,
uε = 0 on ∂Ω0,

∂nuε = 0 on ∂ωε,
(1.1)

for some f ∈ L2(Ω0) whose support does not contain the origin 0.
Let u0 denote the solution of the Dirichlet-Laplacian on Ω0, that is the unperturbed problem:{

−∆u0 = f in Ω0,
u0 = 0 on ∂Ω0.

(1.2)

We can estimate r0
ε := uε−u0 and so prove that u0 is the first order term of the expansion of uε. Let us explain

formally how we determine the following terms. To determine the second one, we notice that r0
ε satisfies: −∆r0

ε = 0 in Ωε,
r0
ε = 0 on ∂Ω0,

∂nr
0
ε = −∂nu0 on ∂ωε,

where n denotes the unit normal vector pointing into ω. To catch the following term of the expansion, we lift
the Neumann conditions on ∂ωε. At first order, we approximate ∂nu0 on ∂ωε by its Taylor expansion at 0 and
only lift the condition ∂nr

0
ε = −∇u0(0) · n on ∂ωε. The techniques used here rely on the notion of profile, a

normalized solution of the Laplace equation in the exterior domain obtained by blow-up of the perturbation.
Let us recall here a classical result about the existence and behavior of the profile (see [3]):

Proposition 1.1. Let ω be a smooth bounded domain of R2 with 0 ∈ ω. We assume that g ∈ H−1/2(∂ω)
satisfies 〈g, 1〉H−1/2×H1/2 = 0. Then the boundary value problem −∆V = 0 in R2\ω,

∂nV = g on ∂ω,
V → 0 at infinity,

(1.3)

admits a unique weak solution V0 in the variational space{
V ; ∇V ∈ L2(R2\ω) and

V

(1 + |X|) log(2 + |X|) ∈ L2(R2\ω)
}
.

Furthermore, this solution can be decomposed as

V0(X) =
n∑
k=1

V0,k(X) +O∞(|X|−n+1), (1.4)

where V0,k is an homogeneous harmonic function of order −k and V0,k ∈ O∞(|X|−k), that is to say V0,k ∈
L(R2\ω) and for any multi-indice i ∈ N2, there exists a positive constant Ci,k such that

|X|k+|i||∂iV0,k(X)| ≤ Ci,k, ∀X ∈ R2\ω.
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The profile V0 defined by (1.3) with g = −∇u0(0) · n is used in a fast variable to describe the local behavior
of the solution in the perturbed domain. Convergence of the asymptotic expansion is obtained thanks to the
decay of the profile at infinity. Thus the expansion of uε takes the form

uε(x) = u0(x) + εV0(xε ) + r1
ε(x), with ‖r1

ε‖H1(Ωε) = O(ε2). (1.5)

To explicit the term in ε2, we look at the system satisfied by r1
ε : −∆r1

ε = 0 in Ωε,
r1
ε = −εV0( ·ε ) on ∂Ω0,

∂nr
1
ε = ψ0

ε on ∂ωε,

where ψ0
ε comes from the Taylor expansion of ∂nu0 around 0. Two terms have to be lifted: one in slow variable

to fulfil the Dirichlet condition on ∂Ω0, one in fast variable to satisfy the Neumann condition on the inclusion.
For the first one, the model problem writes:{

−∆w1 = 0 in Ω0,
w1 = ϕ1 on ∂Ω0,

with ϕ1 deduced from the behavior of V0. For the term in fast variable, we are in the framework of Proposition 1.1
where g comes from the Taylor expansion of u0 and the trace of w1. By so on, we have a complete expansion
of uε.

Theorem 1.2. For any N ∈ N, the solution uε of (1.1) reads

uε(x) = u0(x) +
N∑
i=0

εi+1Vi(xε ) +
N∑
i=1

εi+1wi(x) +OH1(Ωε)(ε
N+2).

In this expansion,
• the profiles Vi, in fast variables, compensate the trace on the inclusion of the i-th term in the Taylor

expansion of u0 and the trace of wj for j ≤ i,
• the profiles wi, in slow variable, compensate the trace of Vj for j < i on ∂Ω0.

Remark 1.3. When the inclusion lies on the boundary, the analysis can be more complicated. We refer
to [16, 17] for more details.

1.2. Two inclusions case

We now consider the case of two distinct inclusions inside the domain Ω0. Let ω−, and ω+ be two bounded
domains of R2, each containing the origin 0. For ε > 0, small enough, we define the perturbed domain Ωε as

Ωε = Ω0\
(
ω−ε ∪ ω+

ε

)
, with ω±ε = x±ε + εω±, (1.6)

where x±ε = ±ηεd for a given unitary vector d, and a real number ηε. Shortly, Ωε consists of Ω0 from which
two ε-inclusions at distance 2ηε have been removed, cf. Figure 2.

We aim at building an asymptotic expansion of the solution uε of the Laplace problem in Ωε −∆uε = f in Ωε,
uε = 0 on ∂Ω0,

∂nuε = 0 on ∂ω±ε .
(1.7)

Again the support of the datum f does not reach the origin 0.
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Figure 2. Two inclusions of size ε, at distance 2ηε.

The results concerning the case of one inclusion can be easily extended to the case of two (or finitely many)
inclusions within two situations:

• Inclusions at distance O(1). It corresponds to ηε = η independent of ε. In this case, the centers x± are
independent of ε. The decaying profiles V ±0 are harmonic in R2\ω± and satisfy the boundary conditions

∂nV
±
0 = −∇u0(x±) · n on ∂ω±.

At first order, the holes do not interact with each other, their contributions are merely superposed

uε(x) = u0(x) + ε
[
V +

0 (x−x
+

ε ) + V −0 (x−x
−

ε )
]

+ r1
ε(x), with ‖r1

ε‖H1(Ωε) = O(ε2). (1.8)

• Inclusions at distance O(ε). It corresponds to ηε = c ε with a constant c ∈ R+. Here the two inclusions
constitute a unique pattern at the scale ε. This case is actually handled as a single inclusion ω = ω+∪ω−,
selfsimilar with respect to the origin 0. The expansion reads

uε(x) = u0(x) + εW0(xε ) + r1
ε(x), with ‖r1

ε‖H1(Ωε) = O(ε2), (1.9)

where the profile W0 is associated with the whole pattern ω.
These two situations show radically different behaviors: no interaction and full interaction. We focus now (see
also [9] for more details) on the intermediate cases, where the inclusions are moderately close, as illustrated in
Figure 2: the distance between the two inclusions equals εα with α ∈ (0, 1). The limit case α = 0 corresponds to
inclusions at distance O(1) while the other limit α = 1 corresponds to inclusions at distance O(ε) . We proceed
exactly as for the case of one inclusion. We consider r0

ε := uε − u0 which satisfies: −∆r0
ε = 0 in Ωε,
r0
ε = 0 on ∂Ω0,

∂nr
0
ε = −∂nu0 on ∂ω+

ε ∪ ∂ω−ε .
(1.10)

We introduce the profiles V ±0 defined by (1.3) with ω = ω± and write:

uε(x) = u0(x) + ε
[
V −0

(
x−x−ε
ε

)
+ V +

0

(
x−x+

ε

ε

)]
+ r1

ε(x).

We check that r1
ε satisfies

−∆r1
ε = 0 in Ωε,

r1
ε(x) = −ε

[
V −0

(
x−x−ε
ε

)
+ V +

0

(
x−x+

ε

ε

)]
for x ∈ ∂Ω0,

∂nr
1
ε(x) = n · ∇u0(0)− n · ∇u0(x)− n · ∇V −0

(
x−x−ε
ε

)
for x ∈ ∂ω+

ε ,

∂nr
1
ε(x) = n · ∇u0(0)− n · ∇u0(x)− n · ∇V +

0

(
x−x+

ε

ε

)
for x ∈ ∂ω−ε .

(1.11)
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To determine the order of the remainder, we need more information about the behavior of the trace of r1
ε on

the boundaries. Using Proposition 1.1, we know the behavior of V ±0 . Consequently,
• when x ∈ ∂Ω0, |x− x±ε | has an expansion into powers of εα and then there exist fj,k such that we can

rewrite
r1
ε(x) =

∑
j≥1,k≥0,

j+αk≤N

εj+αkfj,k(x) + O(εN ), ∀x ∈ ∂Ω0. (1.12)

• when x = ±εαd + εX ∈ ∂ω±ε , |x− x±ε | admits an expansion into powers of ε1−α and then we deduce

∂nr
1
ε(x) =

∑
j≥0,k≥0,

0<j+αk≤N

εj+αkg±j,k(X) +
∑

2≤j≤ N
1−α

εj(1−α)h∓j (X) + O(εN ), (1.13)

where the functions g±j,k come from the Taylor expansion of u0 and h∓j from the trace of the profiles
V ∓0 . These functions satisfy the compatibility conditions∫

∂ω±
g±j,k(X)dσX = 0 and

∫
∂ω±

h∓j (X)dσX = 0. (1.14)

At this step, we have to lift each boundary condition appearing in (1.12) and (1.13). The functions fj,k
introduced in (1.12) generate correctors Fj,k defined by{

−∆Fj,k = 0 in Ω0,
Fj,k = −fj,k on ∂Ω0.

(1.15)

These correctors do not satisfy the Neumann condition on the boundary of the inclusions ∂ω±ε and so generate
errors on these boundaries. The functions g±j,k and h∓j generate profiles G±j,k and H∓j with same behavior as the
first corrector. These profiles satisfy:

−∆G±j,k = 0 in R2\ω±,
∂nG

±
j,k = −g±j,k on ∂ω±,

G±j,k → 0 at infinity,


−∆H∓j = 0 in R2\ω±,
∂nH

∓
j = −h∓j on ∂ω±,

H∓j → 0 at infinity.

(1.16)

Then we can give the following term of the expansion of uε, iterate the procedure and prove the theorem:

Theorem 1.4. The solution uε of problem (1.7) admits the expansion at order N

uε(x) = u0(x) + ε
[
V −0
(x−x−ε

ε

)
+ V +

0

(x−x+
ε

ε

)]
+

∑
(p,q)∈KN

εp+αq
(
vp+αq(x) + ε

[
V −p+αq

(x−x−ε
ε

)
+ V +

p+αq

(x−x+
ε

ε

)])
+ rNε (x), with ‖rNε ‖H1(Ωε) = O(εN ),

and
KN =

{
(p, q) ∈ Z2 | p ≥ 0, q ≥ − 3

2p+ 1, q ≥ −p and p+ αq ≤ N
}
.

The terms vp+αq, V ±p+αq are built inductively as explained before.

Remark 1.5. Considering only the first profiles V ±0 , we have the expansion

uε(x) = u0(x) + ε
[
V −0
(x−x−ε

ε

)
+ V +

0

(x−x+
ε

ε

)]
+ r1

ε(x), with ‖r1
ε‖H1(Ωε) = O(εmin(1+α,3−2α)). (1.17)
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We may understand expansion (1.17) in the following way: the main contribution of the two inclusions is
merely the superposition of their individual effects. The remainder r1

ε contains information about higher-order
influence. It is interesting to describe further the structure of this remainder:

• for α < 2/3, the inclusions are relatively far away from each other. The leading term in r1
ε is O(ε1+α)

and arises from the Taylor expansion of u0 at the origin 0;
• for 2/3 < α < 1, the inclusions are closer. The remainder r1

ε is O(ε3−2α) and mainly consists in the
interaction between the profiles V −0 and V +

0 ;
• for α = 2/3, the two contributions are equally balanced.

Remark 1.6. In the previous discussion, we restricted to twodimensional domains and homogeneous Neumann
boundary conditions on ∂ω±ε , although generalizations to other conditions are possible. In particular, our results
easily extend to Neumann boundary conditions in dimension d ≥ 2 and Dirichlet conditions in dimension d ≥ 3.
The Dirichlet case in dimension 2 raises non trivial difficulties due to the increasing logarithmic potential.
Besides, one of the inclusions may be localized at the boundary Γ of Ω0 (or even simply be removed, the remaining
inclusion moving towards the external boundary). The origin does not belong to the domains themselves anymore,
but only to their closure (see [9]).

2. Extension to linear elasticity

In this section, we state the asymptotic result for the linear elasticity equations. The procedure used for
the Laplacian still holds for the Navier equations. Such an analysis is useful in the framework of mechanical
engineering for elastic structures with small inhomogeneities, when considering their behavior till rupture. Our
aim is to design a numerical strategy dealing with a coarse discretization of the unperturbed domain and able
to perform the analysis of the structural response from the elastic phase to complete failure. To that purpose,
we consider two macroscopic models dedicated to each of the two phases of the behavior:

• the asymptotic analysis is used to evaluate the influence of the presence of micro-defects on the solution,
• the strong discontinuity approach allows taking into account, at the structural scale, the development

of localization zones or cohesive cracks, see [13].

In this paper, we only present results concerning the first phase for the evaluation of stress concentration due
to the presence of geometrical defects. We refer to [6, 11,12] for a more complete presentation.

We evaluate the influence of geometrical perturbations by a multiscale asymptotic analysis of the equations
of linear elasticity. The inclusions are assumed to be located on the boundary.

Let Ω0 be a domain of R2 such that the regular point 0 belongs to the boundary and we assume that the
boundary coincides with the abscissa axis in a small neighbourhood of 0. The case of a single perturbation
was presented in [12]. We present the case of two relatively close inclusions here (see [6] for more details). We
consider a domain Ωε pierced with two perturbations of size ε near 0:

Ωε = Ω0 \ ω1
ε ∪ ω2

ε , with ωjε = xjε + εωj , x1
ε = εαd and x2

ε = −εαd, α ∈ (0, 1).

We assume that ωj contains 0 and d is the tangent vector of the boundary on 0. We denote by Hj
∞ the

unbounded domains obtained by a blow-up around each perturbation:

Hj
∞ = R× R+ \ ωj .

The problem we focus on is written on the perturbed domain as: −µ∆uε − (λ+ µ)∇ div uε = 0 in Ωε,
uε = ud on Γd,

σ(uε) · n = g on Γn,
(2.1)
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where Γd and Γn denote the Dirichlet and Neumann boundary of the domain respectively, Γn includes the
boundary of the perturbation and g is supposed to be zero in a neighborhood of the perturbation. In the former
equation, uε denotes the displacement and σ stands for the stress tensor:

σij(u) = λ(∂1u1 + ∂2u2)δij + µ(∂iuj + ∂jui).

The solution of (2.1) is given at first order by

uε(x) = u0(x)− ε
2∑
j=1

[
αj1v

j
1

(
x− xjε
ε

)
+ αj2v

j
2

(
x− xjε
ε

)]
+O

(
εmin(1+α,3−2α)

)
, (2.2)

with u0 the solution on the unperturbed domain, α1 = σ11(u0)(0) and α2 = σ12(u0)(0). The profiles vj1 and
vj2 are obtained as solution of an homogeneous Navier equation stated on the unbounded domain Hj

∞ with
Neumann boundary conditions on the boundary of the normalized perturbation:

−µ∆vj` − (λ+ µ)∇ div vj` = 0 in Hj
∞,

σ(vj`) · nj = Gj
` on ∂Hj

∞,

vj` → 0 at infinity,
(2.3)

with Gj
1 = (nj1, 0), Gj

2 = (0,nj1) and nj1 the first component of the outer normal to ∂Hj
∞.

3. Numerical computations

3.1. Superposition method

The computation of the solution uε of problem (1.7) (or in a same way of (2.1)) is not straightforward since
a very fine mesh is required if ε is small. For such values of ε, it is natural to use the asymptotic expansion.
Precisely, we approximate uε by its first order expansion

u1(x) = u0(x) + ε
[
V −0
(x−x−ε

ε

)
+ V +

0

(x−x+
ε

ε

)]
. (3.1)

This means that u0 and the profiles V ±0 have to be computed. While u0 is the solution of a classical boundary
value problem (in an ε-independent domain which may be coarsely meshed), the profiles are solution of a
problem posed on an infinite domain. The computation of the profiles in a reference geometry has been done
(once and for all if the shape of the defects is prescribed) by a finite element computation in a bounded domain
with an approximate boundary condition on an artificial boundary (see next section).

In the context of fracture mechanics, we aim at predicting the behavior of damage structures till rupture
under the presence of geometrical defects in the material. The asymptotic expansion (2.2) is used to compute
the displacement field without meshing to the scale of the small holes or inhomogeneities. The superposition
formula (2.2) is not necessarily suited for implementation in an existing finite element code. Indeed, we have
preferred a kinematic enrichment of the approximation space through partition of unity, see [15,22].

The displacement field discretisation is then of the form:

uh(x) = uh0 (x)− ε
2∑
j=1

2∑
`=1

∑
i∈Jj

N i(x)
[
αj
i`,1ṽj`,1

(x−xjε
ε

)
+ αj

i`,2ṽj`,2
(x−xjε

ε

)]
, (3.2)

where Jj denotes the indices of the nodes located in the enrichment zone related to perturbation j. N i are the
standard shape functions associated to node i and αj

i`,k is a two-component vector consisting of the degrees of
freedom related to the enrichment function ṽj`,k, obtained as approximations of the profiles vj` .

A master-slave strategy has been used to keep stability of the problem to be solved (see [6] for further details).
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3.2. Computation of the profiles

The problems defining the profiles is set on in an unbounded domain. We use articifial boundary conditions
to obtain an accurate approximation of the profiles. The numerical results shown hereafter have been performed
with the Finite Element Library Mélina, see [20].

Laplace equation.

Let us first consider the computation of profiles satisfying (1.3) in the case of the Laplacian. In order to
compute the profiles V ±0 involved in formula (3.1), we introduce the normalized vectorial profile V = Vω,
solution of the following exterior boundary value problem −∆V = 0 in R2 \ ω,

∂nV = g on ∂ω,
V → 0 at infinity,

with g = −n. We can recover V ±0 from Vω± via the formula V ±0 = ∇u0(0) ·Vω± , so that formula (3.1) reads

u1(x) = u0(x) + ε∇u0(0) ·
[
Vω−

(x−x−ε
ε

)
+ Vω+

(x−x+
ε

ε

)]
. (3.3)

The profile V will be approximated componentwise: V and g denote the first component of V and g,
respectively (of course, the same can be done for the second component). Several approaches are available
to compute V : integral equation, infinite elements, truncated domain with integral representation or artificial
boundary condition. To determine an artificial boundary condition, we seek a linear combination of V and its
normal and tangent derivatives for which the expansion into powers of R at infinity starts with R−p for various
value of the order p. For p = 0, 1, 2, we obtain Dirichlet, Robin, and Ventcel conditions respectively:

V = 0, (3.4)

V +R∂nV = 0, (3.5)

V +
3R
2
∂nV −

R2

2
∆τV = 0. (3.6)

The considered problem is then  −∆V = 0 in B(0, R) \ ω,
∂nV = g on ∂ω,

(3.4) or (3.5) or (3.6) on ∂B(0, R).
(3.7)

Figure 3 gives the convergence for these three conditions as R goes to infinity in the model case of ring with
internal radius 1 and external radius R. The domain is meshed into 64 square elements of degree Q8, a non-
isoparametric interpolation Q10 is performed. We compare the solution of (3.7) to a reference computation and
observe the slopes 1, 2, 3 as expected. We notice that the Ventcel condition (3.6) is not satisfactory when R
becomes large, due to the unaccurate approximation of the tangential derivative (this could be improved with
a finer mesh).

Navier equations.

We now deal with the computation of the profiles defined by (2.3) associated with the Navier equation. As in
the case of the Laplace operator, we use a artificial boundary condition to compute accurately the profiles. The
easiest artificial condition is the Dirichlet one. Cancelling the leading singular parts at infinity of the solution
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Figure 3. Convergence of the approximate problems (3.7) with a fixed number of DOF.

leads to a more accurate boundary condition (see [5, 7])

σ(u)n +
1
R

E

1 + ν

 1
1− ν 0

0 1

u +
1
R

E(1− ν)
2(1 + ν)(1− 2ν)

[
0 0
0 1

]
∆τu = 0, (3.8)

set on the circle of radius R. The physical parameters E and ν are such that the quantity in front of the
Laplace-Beltrami operator is nonnegative: Young’s modulus E is nonnegative and Poisson’s coefficient ν takes
values in the interval (−1, 0.5). We have the following relations between the coefficients:

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

The problem (3.8) is degenerate and we have to prove the existence of solution. In [8], we study the case of the
Laplace operator as a model problem. We focus on the Ventcel boundary value problem for Laplace operator
such as {

−∆u = 0 in Ω,
∂nu+ αu+ β∆τu = ϕ on ∂Ω, (3.9)

under the unusual condition β > 0. We reformulate the boundary value problem into a nonlocal equation on
the boundary ∂Ω. For this, we introduce the Dirichlet-to-Neumann map Λ associated to the Laplace operator
on Ω: this operator is defined from H1/2(∂Ω) onto H−1/2(∂Ω) by Λ(ψ) = ∂nU where U is the solution of the
boundary value problem {

−∆U = 0 in Ω,
U = ψ on ∂Ω.

The introduction of the Dirichlet-to-Neumann map allows us to rewrite (3.9) as the surface equation

β∆τw + Λw + αw = ϕ on ∂Ω. (3.10)

Pseudodifferential and spectral techniques lead to existence and uniqueness results apart from exceptional cases.
Then, we consider perforated geometries and give conditions to remove the genericity restriction.
We expect these arguments to generalize for condition (3.8).
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3.3. Numerics

Laplace equation

Let us present numerical simulations for the Laplacian problem (1.7). To compare uε and its 0-th and first
order approximations, we need to compute uε accurately. Figure 4 shows the differences uε−u0 and uε−u1 on
the example of two ellipses. The value ε = 0.0585 is relatively large for visibility reasons, but nevertheless the
approximation given by the first order approximation u1 is much better than u0. The principal error in uε−u0

is mainly concentrated around the holes, it is partially corrected in uε − u1. In Figure 5, we present the errors

(a) uε − u0. (b) uε − u1.

Figure 4. uε − u0 and uε − u1 for ε = 0.0585 and α = 0.5.

(in the H1(Ωε)-norm) obtained for the two approximations u0 and u1 in the case where the two inclusions are
ellipses, and α = 0.2. When we compute the local convergence rates as the slopes between two consecutive
points in Figure 5, we recover the expected rate 1 + α = 1.2 for uε − u1, cf. expansion (1.17).
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Figure 5. Energy norms of uε − u0 and uε − u1 for α = 0.2.
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Navier equation

We present now the results obtained considering a domain submitted to a tensile load (Figure 6(a)). The
domain is pierced by two perturbations: the first one is centered at point O1 = (105, 0) and is of radius 2 mm
and the second of radius 1.5 mm is centered at point O2 = (135, 0).

In order to validate the enrichment strategy adopted for the description of the influence of small defects, we
compare the results obtained in terms of displacement and stress fields for, a so called, reference computation
carried out on a fine discretization of the real geometry (Figure 6(b)) by standard Finite Element approach,
and an enriched computation performed on a coarse discretization (Figure 6(c)) of the unperturbed domain.

Figure 7 gives the obtained results in terms of the displacement field in the direction of the traction for
both discretization and interpolations. The relative error between those two computations is lower than 0.25%
allowing to conclude that the proposed strategy gives satisfactory results.
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(b) Fine discretization of the domain (reference computation)
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(c) Coarse mesh for computation of uh
ε

Figure 6. Problem definition: geometry, loading, material properties and discretizations
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