MOS 4.3 - Physical problems in unbounded domains Activity 2. Numerical resolution of the exterior problem with Freefem++

We consider $\mathbb{D}=\left\{x \in \mathbb{R}^{2} ;|x|=1\right\}, \Omega=\mathbb{R}^{2} \backslash \overline{\mathbb{D}}$, and the problem

$$
\left\{\begin{array}{l}
-\Delta u=0, \text { in } \Omega \tag{1}\\
u=g, \text { on } \partial \mathbb{D} \\
u \text { bounded }
\end{array}\right.
$$

In the following, r and θ denote the polar coordinates centered at the origin. We will assume a particular form for the Dirichlet datum g :

$$
g(\mathbf{x})=a_{0}+\cos (\theta)+2 \sin (2 \theta)-\cos (3 \theta) .
$$

The exact solution of Problem (1) reads

$$
u(\mathbf{x})=a_{0}+\frac{\cos (\theta)}{r}+2 \frac{\sin (2 \theta)}{r^{2}}-\frac{\cos (3 \theta)}{r^{3}} .
$$

The goal of this activity is to test the approximate boundary conditions (A.B.C.) on an artificial boundary $\Gamma_{R}=\left\{x \in \mathbb{R}^{2} ;|x|=R\right\}$.

- Neumann A.B.C.

$$
\frac{\partial u}{\partial n}=0 \text { on } \Gamma_{R} .
$$

- Ventcel A.B.C.

$$
\frac{\partial u}{\partial n}-R \frac{\partial^{2} u}{\partial \tau^{2}}=0 \text { on } \Gamma_{R} .
$$

1. Download the software Freefem++ on the webpage
http ://www.freefem.org/
2. Download the sample file SampleInteriorLaplaceDirichlet.pde on the webpage http ://greg.vial.free.fr/Dwl/

Open it in a text editor and run it with Freefem++.
3. Adapt the sample file to solve the problem with the different A.B.C.

Make tests with different values of $R=5,10,15$.

