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1 Introduction

H, control is issued from the effort of formalizing in mathematical terms per-
formance and robustness requirements. In the linear context a significant part
of the activities is devoted to reformulate and generalize the classical control
concepts introduced by Black, Bode and Horowitz such as phase and gain mar-
gins and the sensitivity concept. Zames (1981) shows how weighted induced
norms can be used to handle both robustness and sensitivity requirements. Is
it possible to extend this idea to the nonlinear context ? That is the question
studied hereafter.

The nonlinear extension of the H, optimization problem is investigated in the
recent literature in the Lo framework through polynomial expansions (Foias
and Tannenbaum, 1989), dissipativity techniques / nonlinear differential game
arguments (Basar and Bernhard, 1991), linear H,, methods applied to systems
perturbed by nonlinear uncertainties (Becker et al., 1993). A robustness theory
for nonlinear systems with general unstructured uncertainties (graph perturba-
tion, gap metric) was presented in the framework of differentiable/incremental
norms by Georgiou (1993).

In this paper, providing a unified view of results stated by the authors (see
Fromion, 1995; Fromion et al., 1995, 1996; Fromion, 1997; Fromion et al.,
1999), we show that a possible way to extend the H,, approach to the non-
linear context can be the weighted incremental norms. For this purpose, we
investigate some of the aspects considered by Zames (1981). The result is that
the incremental framework allows us to take into account not only the classical
linear requirements, such as robust stability with respect to unstructured un-
certainties, attenuation with respect to output perturbations and sensitivity,
but also specific problems associated with the nonlinear nature of the plant
such as initial condition uncertainties and steady state properties with respect
to specific classes of inputs (constant or periodic).

The paper is organized as follows. The robustness problem is addressed in sec-
tion 2 where robustness against unstructured uncertainties is restated in terms
of an incremental test. In section 3, it is shown how the attenuation problem
can be reduced to the minimization of a weighted incremental norm. In sec-
tion 4, weighted induced norms, namely £, or incremental gains, are used to
handle, in a weak sense, constraints on the behavior of the closed-loop system.
A simple counter-example illustrates the limitation of the £, gain approach.
Moreover it is shown how, under suitable assumptions, incremental bounded-
ness ensures the Lyapunov stability of any motion, guarantees the existence
of specific permanent behaviors and ensures their asymptotic attractiveness.
Section 5 studies the connection of the proposed approach with linear time-
varying H., control. The classical gain scheduling (Shamma, 1988; Rugh, 91)



Fig. 1. The nonlinear feedback system

is also re-interpreted as an approximation of an incremental objective.

Notations and definitions The notations and terminology, here used, are
classical in the input-output context (see Willems, 1969; Desoer and Vidyasagar,
1975). The Ly-norm of f : [tg,00) = R™ is || f|la = 1/ fi ||.f (£)[|?dt. The causal
truncation at T € [ty,00), denoted by Prf gives Prf(t) = f(t) for t < T and 0
otherwise. The extended space, LS is composed with the functions whose causal
truncations belong to L,. For convenience, ||Pru|; is denoted by ||u||27-

In the sequel, we consider systems exhibiting the differential representation:

29 y(t) = hx(t), u(t)) (1)

where x(t) € R", y(t) € R™, and u(t) € RP. f and h, defined from R™ x R?
into R® and RP respectively, are assumed to be C'' and uniformly Lipschitz.
The unique solution z(t) = ¢(t, ty, xo, u) belongs to L§ for all x5y € R* and
for any u € LS. It is assumed that there exists xg, such that f(xg,0) = 0
and h(zge, 0) = 0, i.e. the system initialized at x¢, is unbiased, ¥(0) = 0. The
notion of incremental £,-gain can now be recalled.

Definition 1 ¥ is said to be a weakly finite gain stable system if there exists
v >0, B > 0 such that ||E(u)|l2 < Y||u|lz + 8 for all uw € Ly. X is said to
be finite gain stable when 3 = 0. The gain of ¥ coincides with the minimum
value of v and is denoted by ||3||;.

Definition 2 ¥ has a finite incremental gain if there exists n > 0 such that
12 (ur) — E(ug)lle < n|jur — usl|2 for all uy,us € Ly. The incremental gain of
¥ coincides with the minimum value of n and is denoted by ||X||a. ¥ is said
to be incrementally stable if it is stable, i.e. it maps Ly to Lo, and has a finite
incremental gain.

We consider in the sequel, the nonlinear feedback system depicted in figure 1,
where GG, K, F' are nonlinear causal operators from L§ into L, representing



Fig. 2. A perturbed closed-loop system

respectively the plant, the compensator and the feedback, and where r, e, v and
y, which belong to L5, denote respectively the system input, the error signal,
the plant input, and the system output. The closed-loop system is assumed
to be well-posed and the input-output map between the system input and the
system output is denoted by H,, and is given by GK(I + FGK) .

2 Robust stability against unstructured uncertainties

The description of unstructured uncertainties through the use of suitable
weights is classical in the linear context (Safonov, 1980; Zames, 1981; Doyle
et al., 1982). This is for example the usual way to take into account uncertain-
ties due to actuator dynamics, output sensor errors, high-frequency neglected
dynamics (bending modes) or some limitations of the system such as gain
margin requirements through the use of an input multiplicative error. Such a
description, not depending on the nature of the nominal plant, can be assumed
to hold in the nonlinear context too.

With this in mind, we will consider additive uncertainties, i.e. G=G+ A),
multiplicative uncertainties, i.e. G = G(I +~A), or some other types as in
(Doyle et al., 1982) and we will assume that A belongs to Qa defined by:

Qa = {A = W;AW, [|A]la < 1} (2)
where W, and W3 are two causal and incrementally stable operators.

We can now formulate the robustness problem as the property of the induced
norm of the system augmented with the weighting functions W5 and Wj3. The
assumption set on uncertainty allows us to represent the perturbed system as
depicted in figure 2 where M is the generic nominal closed-loop system. The
following theorem represents a first extension of a known linear result.

Theorem 3 If M is incrementally stable and if the following inequality holds
true:

[WoMWs[la <1, (3)
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Fig. 3. The perturbed closed-loop system

then, the closed-loop system of figure 2 is incrementally stable for any A be-
longing to Q.

Sketch of proof The proof will show that the map between u; and e; (see
figure 2) has a finite incremental gain. Let us consider the interconnection
between Wy and MW3A. The definition of QA and the inequality (3) ensure:

[WeMW3A[a < |[WoMWs|lallAlla <1

which allows us to prove (Willems, 1969, Theorem 4.6) that the closed-loop
system associated with Wy and MW3A is incrementally stable. The map be-
tween u; and e; is incrementally stable thus concluding the proof.

3 Disturbance attenuation problem

The use of feedback control schemes is mainly linked to their ability to reduce
the effect of non measurable perturbations or to shrink model uncertainties:
the desensitivity property (see e.g. Desoer and Wang, 1980; Zames, 1981).
Two major types of desensitivities are classically considered: the infinitesimal
desensitivity, related to small perturbations, and the comparison desensitivity
when no restrictions concerning the size of perturbations are present. As it is
pointed out by Desoer and Wang (1980), on the basis of Taylor type expansion
arguments, it is possible to link one to the other.

In the following it is shown that the desensitivity requirement can be reformu-
lated as the minimization of the incremental norm of a suitable weighted map.
The reader is referred to Desoer and Wang (1980) for a complete presentation
of the desensitivity problem in a nonlinear context. In the sequel, we will just
consider the output disturbance problem (the other cases presented by Desoer
and Wang (1980) can be worked out as well).

As Desoer and Wang (1980), we assume without loss of generality that the
feedback map is the identity, i.e. F' = I, and we associate with the closed-loop
system depicted in figure 3 an “equivalent” open-loop map, Ho,, depicted in
figure 4. If the open-loop controller is given by K, = K(I + GK)™}, then the
open-loop system in figure 4, which maps the inputs (r,d) in £§ x L5 to the
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Fig. 4. The perturbed equivalent open-loop system
output y in L, satisfies for all r € L5 and for d = 0, the following equality:

Ho,,(r,0) 2 H,,(r,0)

where Hy, is the system in figure 3 which maps inputs (r,d) which belong to
LS x LS to the output y which also belongs to LS.

We now compute the effect induced by the output perturbations on the open-
loop system:

6Hoy,(r,d) = GK(I + GK) ' (r)+d - GK(I + GK)™'(r)=d.  (4)

whereas the closed-loop configuration gives:

6H,(r,d)=GK(I + GK) ' (r —d) +d - GK(I + GK)'(r) (5)
=(I+GK) ™ (r) - [ +GK) ' (r —d) (6)

since GK(I +GK)™' =T - (I +GK)™".

The main interest of the feedback control strategy stands in its capability of
reducing the effect of disturbances. In mathematical terms, the feedback has
a desensisitivity effect if the following inequality is satisfied:

16H y (r, d) |20 < [[6H 0y (7, d) || 217

Unfortunately, for realistic systems, this inequality cannot be satisfied for any
inputs and disturbances belonging to L£§. Indeed, like in the linear context
(Zames, 1981), one has the following theorem:

Theorem 4 Consider the closed-loop system in figure 1 with F = I. If the
open-loop operator GK is strictly causal then ||(I + GK)™'|a > 1.

PROOF. The proof works by contradiction. Given S = (I + GK)™ !, the
small incremental gain theorem ensures the existence of (I—S)~1, if ||S]|a < 1.
Moreover, from I = (I + GK)(I + GK)™' = (I + GK)"' + GK(I + GK)™,
one deduces that (I —S) = GK(I + GK)~'. Because of the strict causality of
GK, then GK (I + GK)™" is strictly causal too so that I — S is not invertible
(Willems, 1969), thus obtaining a contradiction.

This theorem implies that there exists r,d € L§ such that ||S(r — d) —
S(r)||ler = |||z, i.e. a disturbance with respect to which the feedback



law does not behave better than the open loop strategy, ||0Hy,(r,d)||27 >
|0 Hoy,(r,d)

2,T-

Following this preliminary remark, the interest of feedback law is necessarily
limited to a specific class of perturbations, say P¢ C L. The use of the
feedback control law could be justified if (and only if) there exist € < 1 such
that

10 Hyr (r, d)[|2,7 < €l|0H oy (7, d)||2,r (7)
for any d € P° C L§ and any r € L.
We now show how this requirement can be formulated in terms of a weighted
incremental criteria. To this purpose, as in the H,, approach (see Zames, 1981),
we assume that the set of possible disturbances where desensitivity must be
achieved can be defined by:

Pe={de E§|||Wp*1(d) — Wpfl(r +d)|| < €||d|| for any r € L5}
where W, and Wp_1 are two causal and incrementally stable operators.
Theorem 5 Consider the nonlinear feedback system depicted in figure 3. If

(I + GK)"'W,|la < 1 then ||6H, (r,d)||2r < €||6Hoy, (r,d)||2x for any d €
P C LS and any r € LS.

PROOF. From the hypothesis, for all wy,ws € LS, one has:
11+ GE)™' Wy(wi) = (I + GE) ™ Wy (ws)||or < Jlwr — walloyr

and, since W), is assumed invertible, we deduce that

2,T-

I +GE)™ (r) = (I + GE) ™ (r = d)||lo;r < [[W,;7 (r) = W, ' (r — d)

p

This implies from the definition of 1, that
10 Hyr (7, d) 2,7 < elld]|,r

for any r € L£§ and d € P® which concludes the proof.

Note that the use of nonlinear weighting functions for specifying attenuation
requirements allows to take into account operating points defined by the values
of r and d (a remark in section 5, after proposition 17, clarifies this aspect).

The ability of the feedback to reject the effect of uncertainties can be stud-
ied in the same way. As a matter of fact, the uncertainties generate signal
perturbations which should be rejected as much as possible. Since the uncer-
tainties modify the input-output properties, the rejection is obtained only if
the perturbed maps possesses suitable properties.



4 Input-output performance

Input-output performance is related to suitable properties of the input-output
maps together with requirements on the outputs corresponding to prefixed
input signals. In this context a classical requirement concerns the steady-
state behaviors associated to constant or periodic references together with
their maintenance under perturbations. Such a property directly follows from
the internal stability when dealing with linear systems: as a matter of fact
the stability of the null trajectory ensures the asymptotic rejection of any
perturbation acting in finite time or vanishing at the infinity. This is no longer
the case in a nonlinear context where external and internal stability on any
output trajectory does not follow from the stability with respect to a particular
one.

4.1 Black formulae

Desoer and Wang (1980) describe the performance as the ability of a closed-
loop system to asymptotically minimize the gain between references and error
signals. This approach is recalled in the sequel. Denoting by R§ C L the set
of inputs of interest, (e.g. sinusoids, steps, ramps,...), one sets:

Definition 6 Asymptotic performance of the system depicted in figure 1 is
satisfied on R if for all r € Ry, there exists Ty > to such that for allT > Ty,
one has: |(I + FGK)™'r|lar < ||I7]27-

Definition 6 ensures that the relation F'H,, ~ I is asymptotically satisfied on
Rj and indicates that H,,, restricted to the domain of interest, is essentially
specified by F' and is quite independent of GG. This is the nonlinear equivalent
of the well-known Black formulae (Desoer and Wang, 1980).

The asymptotic performance can now be specified in terms of a weighted L,
norm as pointed out below. We assume the existence of an invertible causal
and Lo stable operator W; and T, > t, such that, for all » € R and all
T > Tp, one has:

W )l < Ir

2.7 (8)
Theorem 7 When the weighting function satisfies condition (8) and
(I + FGK)'Wrql; <1, (9)

then, the closed-loop system in figure 1 has the asymptotic performance prop-
erty on R§.



PROOF. From (9) it follows that ||(I+FGK) 'W;(w)||2 < ||w]|2 for any w €
L. Because of theorem 2.1 in (Willems, 1969), the gains of (I + FGK) 'W;
on Ly and L§ are equal so that for all T > ¢, one has:

(I + FGK)"'"Wi(w)|lar < [Jwl|ar-

Condition (8) implies that for all r € RS, there exists Ty > t, such that for all
T > Tp, one has:

(I +FGK) 'r

27 < W ()l < Ir

2,7

which concludes the proof.

The minimization of a £, gain is not enough. A first aspect which limits the
validity of this approach is the unbiasedness assumption. A nominal system
can always be assumed to be unbiased setting H(u) = H(u) — H(0) but
this unbiased assumption cannot be maintained when the initial condition is
modified. Indeed, as pointed out by Hill and Moylan (1980), a change in the
initial condition makes the system weakly Ls-gain stable which implies that
(9) can thus be rewritten, for a suitable 5 > 0, as:

I + FGK)~ Wi(w)|l2 < [[w]]2 + 8

thus ensuring that for all » € Rj, there exists 7' > ¢, sufficiently large such
that for all T > ¢,

(T + FGK) 'rllar < [[W;H(r)lloz + 5.

Therefore, the value of 5 limits the performance of the system. This means that
the validity of (9) for the nominal system does not guarantee the robustness
with respect to the initial condition of the asymptotic performance.

This first limitation is overcome when an incremental type criteria is used.
As matter of fact, under the weak assumption that the “perturbed” initial
condition is reachable from the initial one, i.e. there exits an input » which
allows to reach the perturbed initial condition from the nominal one under a
finite time, it is possible to claim (see Fromion et al., 1996, lemma 1) that the
nonlinear operator associated to the perturbed initial condition satisfies the
same weighted criteria and thus it has the asymptotic performance property
on Rj.

4.2 Steady state properties

The existence of a unique constant steady state behavior associated to any
constant input together with the Lyapunov stability of the unperturbed tra-



Fig. 5. The response of system (10) to a step input
jectory represents in many cases a minimal requirement.
In this context it is possible to prove that L, gain type criteria do not allow

to guarantee such properties other than for the null input. To convince the
reader of this last assertion, we provide a simple example. Consider

f(z1(t)) — 70z2(t) + u(t)

)
t) = 7021 (t) — 1425(2) (10)
)
)

where v € £ and

—400z — 640 for x < -2
f(x) = § —902° 4 200z|z| — 1202 for z € [-2,2]
—400x + 640 for + > 2

(10) can be rewritten as the interconnection between a strictly passive linear
system and f(z), a passive memoryless nonlinearity such that < f(z)|z >> 0,
then the given system is Lo-gain stable using the passivity theorem (Desoer
and Vidyasagar, 1975). It is well known that the steady state behavior of this
system for the null control is zero. Nevertheless, it is not difficult to prove
that an oscillatory behavior is obtained if a constant input acts on this system
(figure 5). Also in this case, the limitation of the approach can be overcome
by referring to an incremental criterium. From (Fromion, 1997) incrementally
bounded systems possess a unique steady-state behavior if the output and the
state of the system are linked according to the following definition.

Definition 8 The unperturbed motion of 3, associated with an initial condi-

tion xor € R* and an input u, € LS, i.e. x,.(t) = o(t, to, Tor, ur), is said to be
uniformly observable if there exist 3, a function of class K, and a constant

10



T, > 0 such that

t+T,
/t+ 1D, t, w0 (t), ur), up (7)) = (T, 8, 2, ur ), up (7)) [P > B[ (1) — )
for all x € R* and t > t,.

Theorem 9 (Fromion, 1997) Let ¥ be a dynamical system with a finite incre-
mental gain. If the unperturbed motion, associated with xo. € R and u, € LS,
is uniformly observable, then for any u, € LS such that u, — u, belongs to L,,
one has:

tlir& ||¢(ta tO;xOT; ur) - ¢(t7 tOJxOT‘J aT‘)“ =0.

We note that contrarily to Lo-gain stable systems, incrementally bounded
systems possess suitable properties for a large class of inputs since the previous
result holds true for any input in £§ and thus, as an example, for the constant
inputs.

A second interesting result which is pointed out concerns the state evolution
under specific inputs. To do so the next definition is necessary.

Definition 10 The state space of ¥ s said to be reachable from xy € R”
if, given any x € R* there exist u € L and a finite time T, such that v =
¢(t + Tr; th o, U)

The state space is said to be uniformly and isotropically reachable from xq if
in addition there exist ., a function of class K, and T, > 0 satisfying

/ttTT ||u1(7') — U/Q(T)“QdT < ar(”-rl — ;[;2“)

for all x1,xo € R" andt > to+T, whereuy,uy € Ly and x; = ¢(t,t—T,, xo, u;)
with i € {1,2}.

Theorem 11 (Fromion, 1997) Let ¥ be a stationary dynamical system with a
finite incremental gain. Assume that the unperturbed motion of 3, associated
with xo, € R* and u, € L5, is uniformly observable and its state space is
uniformly isotropically reachable from xo.. Then, if u, is a periodic input, the
unperturbed motion is asymptotically periodic. Moreover, there exists at least
one initial condition such that the motion and the output associated with this
input are periodic functions.

Theorem 11 implies that it is possible to associate an equilibrium point with
each constant input.

We conclude this section by pointing out that the incremental criterium under
some assumptions concerning the state space realization of the closed-loop

11



system, ensures Lyapunov stability of unperturbed motions. This property
provides a better characterization of the robustness with respect to the ini-
tial state or for specifying the effect of past inputs over the future system
behaviors.

Definition 12 An unperturbed motion of system X, associated with xq,. € R
and u, € LS, is said to be uniformly asymptotically stable in the sense of
Lyapunov, if for any € > 0, there exists §(€¢) > 0 such that for all t; > ty and
|z, (t1) — opl| < O(€), one has for all t > t; :

||¢(tatlaxr(t1)aur) - ¢(t7 tlaxﬂpaur)“ <e

and

tlir& ||¢(t7 l1, xr(tl)a uT) - ¢(t7 t1, Tops ur)“ = 0.
If this last property holds true for any initial perturbed state xop, then the
unperturbed motion is said to be uniformly globally asymptotically stable.

Theorem 13 (Fromion, 1997) Let ¥ be a dynamical system with a finite in-
cremental gain. If the unperturbed motion of ¥, associated with xy. € R”
and u, € LS, is uniformly observable and if the state space of ¥ is uniformly
isotropically reachable from xq, then this unperturbed motion is uniformly glob-
ally asymptotically stable.

Theorem 13 claims, under some assumptions on the state space realization
of the system, that the perturbed behavior asymptotically goes (in sense of
Lyapunov) to the unperturbed one.

5 Connections with non-stationary and stationary H,, control

We illustrate in this section the connection between requirements set in terms
of weighted incremental norms and some local ones associated with the lin-
earizations of the operator. For this purpose, we first recall an important result
in the context of incrementally bounded systems, which links the incremen-
tal gain of a nonlinear operator to the norm of its derivatives. We show that
satisfying a weighted incremental type criterium is equivalent to satisfy an in-
finity of non-stationary suboptimal H,, criteria. Then, the type of stationary
and of non-stationary H,, criteria associated with the linear approximation is
discussed.

For the sake of clarity, we first recall known results about the differentiability
of nonlinear operators defined over functional spaces.

Definition 14 Given an operator Y, defined from Ly into Lo, let ug € Lo and
assume the existence for any h € Lo of a continuous linear operator DY g[uo]

12



from Lo into Lo such that

Y(ug + Ah) — X(up)

;) — DX glug(h)

=0
2

lim
M0

then DY g[ug] is called the Gateauz derivative (the linearization) of ¥ at uy.

This definition of the derivative on L is restrictive. Indeed, since the derivative
is by definition a continuous linear operator on L,, it is bounded. Consequently,
this implies that the operator has a derivative only if it is a finite gain stable
operator.

We can avoid this strong restriction by defining the derivative of a causal
nonlinear system on the extended space L£5. In this case, the existence of the
derivative follows from the existence of a finite gain on a finite support. With
reference to the definition given by Willems (1969), we introduce:

Definition 15 DXglug| from LS into LS is said to be the Gateaux derivative
of the causal operator X, defined from LS into LS, at wgy if it is linear and if
for all T € [ty, 00), PrDXg[uyg] is the Gateaux derivative of Pr¥ at Pruy.

When the system is generated by differential equations, definition 15 corre-
sponds to the usual linearization concept. Under the assumption made on f
and h in equation (1), i.e. uniformly Lipschitz and C', y = ¥(u) has a Gateaux
derivative! for all u € LS. Moreover, its linearization along the input u,(t),
denoted by § = DXg[u,|(u), satisfies the differential equations

where x,.(t) is the solution of (1) under input u,(t).

The theorem recalled below is a key result in the context of nonlinear control. It
sets a strong connection between the incremental norm and the local properties
associated with the derivative of a nonlinear system.

Theorem 16 (Willems, 1969)2 Let us assume that a causal operator ¥ de-
fined from L into LS has a Gateaur derivative at each point ug of LS. X has a
finite incremental gain if and only if there exists a finite constant n such that

L Tt is possible to prove that if f and ¢ are not linear functions of their arguments
that the system is not Fréchet differentiable on L5.

2 The proof provided by Willems (1969), even if ¥ is Gateaux differentiable and
not Fréchet differentiable, can be easily extended to our case.

13



Fig. 6. The augmented plant

for any ug € LG and any T > ty, one has
| Pr DX [uo]li < 7.
Moreover ||X(u1) — X(us)||a = sup,, ||PrDXqug]l];-

With this in mind we can now point out the connections between the weighted
incremental approach and H,, control. Let M,,, = W,HW; be the augmented
plant where W; and W, are the input and output weighting functions asso-
ciated with robustness and performance requirements. We assume that the
augmented system is described by a differential equation with C'* and globally
Lipschitz drift and output functions (this ensures the existence of the Gateaux
derivative of the augmented system). From theorem 16, one deduces:

Proposition 17 If the augmented system, M,,, = W,HW;, possesses a Gateauz
derivative for every input in LS then ||M,,||a < 1, if and only if

|DWoe[H(Wi(wo))|DHe[Wi(wo)|DWig[wollli <1 Vuwo. € L5 (12)

Recalling that DM,,[wp] is a linear time-varying operator, proposition 17
shows that solving a weighted incremental problem is equivalent to solving an
infinite number of linear time-varying weighted induced norm problems. It is
worth noting that the constraints (12) are satisfied if (and only if) an infinite
number of linear time-varying weighted H,, constraints are satisfied.

The non-stationary characteristics of the induced norm criterium of proposi-
tion 17 is discussed through a simple example described by figure 6. Given a
small variation 07 (t) of the system input r(¢), the tracking error variation can
then be approximated on a finite time interval

e =S(r+ \or) — S(r) = DSg[r](\dor)

where S = (I + FGK)!. Let us here assume that the performance require-
ments are taken into account by using a linear weighting input operator,
W; = W;. This weighting function, assumed to be causal and invertible, sat-

14
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Fig. 7. Linearization of the augmented plant

isfies the following relation (see section 4):
1PrW; (1) |l2 << || Prr]l2.

If the condition of proposition 17 is satisfied, it can be claimed that
| DSa[Wr(wo)[Wrll: < 1.

The above relation represents an H,, time-varying constraint (see figure 7),
which ensures for any dr € R that there exists a time, Ty > ¢y, such that for
all T' > Ty, one has:

| Proells < [|Prorl,.
Note that

1Pr DS [Wi(wo)](0r)l2 < (1P Wi (o) [l < || Pr o7 ..

In a performance context, proposition 17 can be interpreted in two different
ways:

e as a constraint on the linearizations of the system along the trajectory
defined by W;(wg). Consequently, this guarantees a good behavior of the
nonlinear system along this trajectory despite small perturbations belonging
to RRg.

e as a constraint on the output variations with respect to small input varia-
tions. For example, the output associated with a step input can be inter-
preted as the succession of responses to small step-inputs associated with
each linearization of the nonlinear system along the trajectory generated by
this step. The quality of this output is directly linked to the linearizations
of the weighting functions W7.

In the approach proposed by Shamma (1988), one has to check whether the
gain scheduling system satisfies a criterion of the same type as in equation
(12). Our approach from a different point of view highlihts the interest of the
study of Linear Parameter Varying (LPV) plants in a nonlinear context.

In the rest of this paragraph, we will show a close connection between the incre-
mental approach and the classical gain-scheduling technique. For this purpose,
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we restrict our attention to a specific class of linearizations, namely the time
invariant ones. We then define Z,, the set of equilibrium points associated
with any constant input:

Ze = {(ﬁeaue) € Rn X Rp | ¢(t,t0,xe,ue) =T, Vt Z tO}

where ¢ is the state transition map of X.

Theorem 18 (Fromion et al., 1996) Let ¥ be the system given by (1) with
a finite incremental gain 1. Let u, any constant input and x, its associated
equilibrium point. If x. is reachable from xq then the linearization of X2, given
by the following linear time invariant system:

ng(ue) g

F= %(xe,ue),G = %(ﬁe,ue),H = %(we,ue),J = %(me,ue), has a finite Lo

gain less than or equal to n, i.e. ||DXguelll; < n.

This result sets a direct connection between our nonlinear framework and the
classical gain scheduling techniques, especially with the approaches based on
the extended linearization (Rugh, 91), where some properties are imposed to
the linear time-invariant linearizations of the system associated with constant
inputs. The result of theorem 18 renews the interest of incremental norm ver-
sus Lo since, with reference to the example in section 4.2, we demonstrate
that Lo-gain stability does not necessarily guarantee the stability of the lin-
earizations associated with constant inputs. Furthermore, with respect to the
weighted incremental norm approach and with reference to the augmented
system previously defined, which has norm less than 1, i.e. ||[M,,|la < 1),
theorem 18 ensures that all the linearizations satisfy an H,, criterion. This
criterion is specified at each equilibrium point by the stationary linearization
of the nonlinear weighting functions, i.e.

|DWoe[H (Wi(wo))| D Ha[Wi(we) | DWiglwollli < 1

where DWo[H (W;(wp))], DHg[W;(wo)] and, DW;g[wy] are linear time invari-
ant systems. This last fact has interesting connections with the work presented
by Hyde and Glover (1993).
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6 Conclusion

It has been shown how weighted incremental norms can be used to handle, in
a non linear context, basic requirements such as robust stability, disturbance
attenuation and steady state behaviors. The strong connections between re-
quirements set in terms of weighted incremental norms and local requirements,
given with reference to the linear approximations of the plant, are also pointed
out.

The practical interest of this approach is illustrated in (Fromion et al., 1999)
where the case study of a PI controlled missile is investigated.
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