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ABSTRACT

  The aim of this paper is to show how some basic no-
tions of robust control can be set in a nonlinear context
making use of the concept of incremental norm. The ap-
proach here proposed provides a natural framework for
extending well-known H∝  linear control concepts and to
take into account robust stability, desensitivity, input-
output and internal stability requirements. Moreover, it
further justifies classical techniques such as gain sched-
uling and extended linearization. Finally an algebraic
type condition ensuring incremental stability of a nonlin-
ear system is given.

1.  INTRODUCTION

  H∝  control optimization is issued from a lot of work
formalizing in mathematical terms linear robustness and
performances requirements. Except more recent results
developed in a state space formalism ([5]), most of the
work takes reference to an input-output approach
([26,2,21]). A significant part of the activities in the lin-
ear context were devoted to reformulate and generalize
the classical control concepts introduced by Black, Bode
and Horowitz such as phase and gain margins and desen-
sitivity ([6,29]). Quite recently in [29], it has been shown
that weighted induced norms are suitable to take into
account both robustness and desensitivity requirements
  A natural question is thus to discuss the nonlinear
problem, revisiting the basic nonlinear control concepts
pointed out for example in [3]. Doing so, one proposes to
extend the H∝  approach to the nonlinear context in terms
of weighted incremental norms. This approach was re-

cently developed in [8] and [10] where it is shown how
the incremental approach enables to handle robustness
and desensitivity problems.
  The present paper discusses such an approach by sum-
marizing results proposed in [7-11] where complete
proofs are given.
  If robustness can be set in terms of weighted L2-induced
norm or incremental norm, performance requirements
suggest the use of incremental norm. We will show how
weighted incremental norms can be used to handle im-
portant requirements of feedback such as desensitivity
and attenuation with respect to exogenous perturbations,
suitable steady state behaviors associated to step inputs
and Lyapunov stability.
  A first point concerns attenuation and desensitivity. A
characterization in terms of linearization [17,3] com-
bined with a classical result from functional analysis re-
called in [25], which links the gain of the linearizations
of a nonlinear operator with its incremental norm, shows
how the problem can be reduced to the minimization of a
weighted incremental norm.
  Another interesting point is the link between incre-
mental and Lyapunov stability. It can be shown that, un-
der minimality of the state space representation of a
given operator, all the trajectories associated to an in-
crementally stable system are Lyapunov stable. This cor-
responds to a robust behavior with respect to initial state
perturbations. Moreover, it can be proved that incre-
mental stability ensures the desired steady state behaviors
i.e. the global asymptotic stability of equilibrium associ-
ated to constant intputs.
  The paper is organized as follows. Section 2 recalls
some usual notations and definitions. Section 3 visits
robustness and performance problems in terms of incre-
mental norm along 6 subsections showing the interest of
such an approach. Firstly, robustness with respect to un-
structured uncertainties is characterized in terms of
weighted induced norm so generalizing a classical linear
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result. A first step towards performance is to restate in-
put - output requirements under feedback in these terms.
Connections between desensitivity and incremental
norms are pointed out. Attention is focussed on the link
between weighed incremental objectives and linear H∝
time varying objectives set on the linearizations of the
nonlinear operator. Necessity of the weights with refer-
ence to desensitivity problems is proved so extending a
classical linear result. The links between input-output
properties and Lyapunov stability are discussed at the
end of Section 3. Finally, we point out the steady state
properties of incrementally stable systems in face of step
inputs. Section 4 gives an algebraic type condition char-
acterizing incremental stability for affine nonlinear sys-
tems.

2.  NOTATIONS AND DEFINITIONS

  The notations and terminology recalled hereafter are
classical in an input-output context ([2]). Denoting by E,
the set of real measurable n vector valued functions of
the real variable t on R +, one defines L x En

2 = ∈{ |  

x 2 < ∞} where x x t x t dtT
2 0

=
∞∫ ( ) ( )   and the associ-

ated extended space L x E P x Ln e n
2 2
, { | ,= ∈ ∈  τ  ∀ ∈ +τ R }

where Pτ is the causal operator which truncates a signal

at time τ. For convenience, one sets  u P u2 2,τ τ=
∆

.

  Definition 2.1 : An operator H from Lm e

2

,  into Lp e

2

, , is
weakly L2-gain stable if there exist finite non-negative
constants γ  and β  such that

H u u( )
2 2≤ +γ β  for all u Lm∈ 2 .

  Its gain coincides with the minimum value of γ . When
β = 0, the system is said to be L2-gain stable and H i2

classically denotes its L2- gain.

  Definition 2.2 : An operator H from Lm e

2

,  into Lp e

2

, , has a
finite incremental gain if there exists a finite non-
negative constant η  such that

H u H u u u( ) ( )1 2 2 1 2 2
− ≤ −η  for all u u Lm

1 2 2, ∈ .
  Its incremental gain coincides with the minimum value
of η  and is denoted H ∆ .

  Definition 2.3 : An operator H from Lm e
2

,  into Lp e
2

, , is
incrementally stable if it is stable, i.e., it maps Lm

2  to Lp
2 ,

with a finite incremental gain.

Remark : A finite gain stable linear operator H is incre-
mentally stable and H Hi2

= ∆ .

  Definition 2.4 : Given a causal operator H , defined
from Lm

2  into Lp
2 , let u Lm

0 2∈  and assume there exists a
bounded linear operator DH u0

 from Lm

2  into Lp

2  such that
H u h H u DH h h hu( ) ( ) ( )0 0 20

+ = + +α
with lim ( )

h
h

2 0 2
0

→
=α

or equivalently such that

lim
( ) ( )

lim ( )
h

u

h

H u h H u DH h

h
h

2

0

20

0 0 2

2
0 2

0
→ →

+ − −
= =α

DH u0
 is called the Fréchet derivative ([16]) or the line-

arization ([25]) of H at u0.

  Definition 2.5 : Consider the feedback system depicted
in fig. 1, where H1  and H2  are causal input-output op-
erators.
  The feedback system is said well-posed if for any pair
of inputs ( , ) , ,u u L Lm e p e

1 2 2 2∈ × , there exist unique e y1 2,
and e y2 1,  belonging to Lm e

2

, and Lp e

2

,  respectively such that
e u y1 1 2= + , e u y2 2 1= + , y H e1 1 1= and y H e2 2 2=  and
such that the following mapping

H u u: ( , )1 2  a ( , , , )y y e e1 2 1 2

is causal (see [26] for a complete discussion about well-
posedness).

+

H

1

2 +

+
u2

e2

y1

y2

e1u1 H
+

figure 1

  Definition 2.6 :  The feedback system depicted in fig. 1
is internally incrementally stable if the following map-
ping

H u u: ( , )1 2  a ( , , , )y y e e1 2 1 2

 is well-posed and incrementally stable.

3.  AN INCREMENTAL APPROACH FOR
NONLINEAR CONTROL

  We illustrate in this section the fact that some nonlinear
robustness or performance problems can be discussed, as
in the linear context, in terms of the induced norm of a
certain augmented system. All the results are extracted
from [8] and [10].
  To simplify the notations, we drop out the dimensions
of the input and output vectors and assume all the op-
erators to be unbiased (i.e. H(0)=0).

G

F

K

Hyr

+ -

u yer

figure 2

  We first consider the nonlinear feedback system of
fig. 2, where G ,K, F are nonlinear causal operators from
Le

2  to Le

2 . The closed loop input-output map, denoted as
Hyr, is given by GK(I+FGK)-1 and is assumed to be well-
posed.

3.1. Robust stability against unstructured uncertain-
ties
  We first consider unstructured uncertainties ~∆  placed at
the input or output of the plant model. In this way, one
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can represent uncertainties in the actuator dynamics, high
frequency neglected dynamics (e.g. bending modes) or
output sensor errors (...) [6,29,4]. We assume that ~∆
belongs to a set Ω∆  defined as

Ω ∆ ∆∆ ∆≡ <{ | }    W W3 2 1
where ∆ : L L2 2→  is a (possibly nonlinear) causal op-
erator and W2 and W3 are causal, incrementally stable
input-output maps from L2  to L2.
  A stability result is proposed for the interconnected
system of fig. 3 (M is the generic nominal closed loop
system).

∆∆∆∆
~

y 1∆
+

u 1 +
W2 W3

My 2

+

+ u 2

figure 3

  Proposition 1 : If M is incrementally stable and if the
following inequality holds

 W MW2 3 1
∆

≤
then the closed loop system of fig. 3 is incrementally sta-
ble for any uncertainty belonging to Ω∆ .

  Proof : The proof is based on a result in [25, Th. 4.6]
which claims that the interconnection of incrementally
stable systems, depicted on fig. 1, is incrementally stable
if  ( )I H H− −

1 2
1  is incrementally stable. In our case, set-

ting H MW1 3= ∆  and H W2 2= , the assumptions ensure
that for all ~∆ Ω∆∈ , one has  

W MW W MW2 3 2 3 1∆ ∆
∆ ∆ ∆≤ <

and thus, invoking incremental small gain arguments, we
get 

( )I W MW− < ∞−

2 3

1∆
∆

  A simple reasoning, based on the definition of internal
stability, enables to prove that ( )I MW W− −

3 2

1∆  is neces-
sary incrementally stable. Then, one applying again
Theorem 4.6 in [24], one concludes 

Remark : A Similar result can be obtained for L2 gain
stability [10].

3.2.  Tracking and asymptotic properties
  Let us recall the definition proposed in [3], which de-
fines performance as the ability for a closed loop  system
to "asymptotically" minimize the gain between the inputs
of interest and the error signals. More precisely, denoting
as R Ld

e e⊂ 2  the set of inputs of interest (i.e., sinusoids,
steps, ramps...), one sets

  Definition 3.1 : Asymptotic performance of the system
depicted in fig. 2 is satisfied on Rd

e  if for all r Rd
e∈  and

for T sufficiently large, one has
( )

, ,I FGK r r
T T+ <<−1

2 2

  This definition ensures that the relation FH Iyr ≅  is as-
ymptotically verified on Rd

e  and indicates that Hyr, re-
stricted to the domain of interest, is essentially specified
by F and is quite independent from G. This is the nonlin-
ear equivalent of the well known Black‘s formulae ([3]).

  Let us now specify asymptotic performance in terms of
a weighted incremental norm. As in the linear H∝  context
[29,18], we assume the existence of an invertible causal
operator such that, for all r Rd

e∈  and for T sufficiently
large, one has

W r rI T T
−1

2 2,
<< ,

  Proposition 2 : The asymptotic performance of the
closed loop system of fig. 2 is guaranteed on Rd

e   if
( )I FGK WI+ ≤−1 1

∆

  Sketch of proof : The proof of Proposition 2 is based
on a result in [25, Th. 3.2] and classical manipulations on
the inequalities between norms of signals 

Remark : In the linear context (see [29]), one assumes
the condition

W r rI T T
− ≅1

2 2, ,   r Rd

e∈

and the existence of ε <<1 such that
( )I FGK WI i

+ ≤−1

2
ε

In fact, our condition is the nonlinear analog but it is
formulated in a normalized sense to be consistent with
Proposition 1. This comment implies, under some minor
modifications, that the weighted incremental norm is a
weighted semi-norm in the terminology of Zames ([29]).

3.3.  Weighted incremental norm and time-varying H∞∞∞∞
control
  On the basis of a classical functional analysis result
linking the incremental gain of a nonlinear operator with
the gain of its derivatives, we deduce the following
proposition.

  Proposition 3 : If the augmented system,
M W HWzw o i= ,  is linearizable for all inputs and if
M zw ∆

≤ 1  then

DW DH DWo HW w W w i w
ii i( ) ( )

0 0 0
2

1≤  ∀ ∈w L0 2

  Sketch of proof : To achieve the proof, we use Lemma
7.1 in [25] and simply recall that the derivative of the
composition of nonlinear operators works out like the
composition of functions 

  The interest of Proposition 3 stands in the fact that
solving a weighted incremental problem is equivalent to
solve an infinite number of linear time-varying weighted
H∞ problems.
  We illustrate this fact by a simple example. Let us con-
sider the input system r(t) modified by a small variation
δr(t), so that the tracking error variation can be approxi-
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mated as follows :

δ δ δe H r r H r DH rr= + − ≅
∆

( ) ( )
where  H I FGK= + −( ) 1 .
  Now, if we assume that weighting functions are linear
and just take into account performance objectives i.e.
W Wi I=  and W Io =  then, in this particular case, Proposi-
tion 3 can be rewritten as

DH Wu I i2
1≤

which represents a H∝  constraint ensuring that for all
δr Rd

e∈ , one has
δ δe r<<

because
DH r W r ru Iδ δ δ≤ <<−1

  In the performance context, the result of Proposition 3
can be interpreted in two different following ways in the
sense that it guarantees
   •  A constraint on the linearization of the system along
the trajectory defined by WI (wo). Actually, a good be-
havior of the nonlinear system along this trajectory is
guaranteed with respect to small perturbations belonging
to Rd

e .
   •  A constraint on the output variations with respect to
small input variations. For example, the output associ-
ated to a step input can be interpreted as the succession
of responses to small step-inputs associated to each line-
arization of the nonlinear system along the trajectory
generated by this step. The quality of this output is di-
rectly linked to the linearizations of the weighting func-
tions WI.

Remarks :
 (i) - If we relax the linearity assumption on WI, the local
performance is consequently specified around w0 by

DWI w0
.

  (ii) In [24], the properties of gain scheduled control for
nonlinear plants are characterized through the properties
associated to their linearizations. The incremental ap-
proach justifies such an approach.

  Proposition 3 has a more interesting consequence for
non linear control. Let us remember that it is possible to
use the linearizations to characterize the desensitization
or attenuation properties of a nonlinear plant [17, 3].
Combining Th. III.1 [3] and Proposition 3, it can be
claimed that the problem of desensitization by feedback
can be transformed into a problem of minimization of a
weighted incremental norm [8,10].
3.4.  Necessity of weighted incremental norm for de-
sensitivity problem
  One can extend the result obtained in [29], where the
necessity of the weights is proved in a linear context.
More precisely, we show that the minimization of an in-
cremental norm without weights does not allows to sat-
isfy desensitivity objectives.

  Proposition 4 : If the open loop operator FGK is
strictly causal then ( )I FGK+ ≥−1 1

∆
.

  Proof : we prove this fact by contradiction.Let
S I FGK= + −( ) 1. The small  incremental gain Theorem
ensures the existence of ( )I S− −1  if S ∆ < 1 . So that

I S S I FGK FGK I FGK= = + + +− − −1 1 1( ) ( )
Because of the strict causality of FGK,
FGK I FGK( )+ −1  is strictly causal. Consequently the
operator

FGK I FGK I S( ) ( )+ = −−1

is not invertible ([25]), so obtaining the announced con-
tradiction 

3.5.  Lyapunov and incremental stability
  In this section we discuss the link between Lyapunov
and incremental stability, which clarifies the notion of
incremental stability.
  For, given the input-output operator Hx0

, let the associ-
ated state-space representation

&( ) ( ( )) ( ( )) ( ), ( )

( ) ( )

x t f x t g x t u t x x

y t h x

= + =

=

0 0
 (3.1)

where u t R m( ) ∈ , y t R P( ) ∈ , x t R n( ) ∈ . f ,g and h are
C1, with bounded first order derivatives. In addition, we
assume that x = 0  is an equilibrium point, i.e., f (0) 0=
and without loss of generality we assume h(0) 0= .

a.  Lyapunov stability of   unperturbed motions
 We recall that the perturbed input-output behavior
of an incrementally stable system converges to the un-
perturbed one when an assumption is made on its state
space representation [11].
 Before this, let us recall some definitions about Lyapu-
nov stability.
  Let x tr ( )  the non perturbed motion of the differential
equation (3.1) initialized in x0r, under the input u tr ( )  (i.e.
x t t x u tr r r( ) ( , , ( ))= ϕ 0 ).

  Definition 3.1 [30] : The unperturbed motion, is said
uniformly asymptotically stable in the sense of Lyapunov
if for all ε > 0 , there exists δ(ε) > 0 such that for all
t ≥ 0  and x x r0 0− ≤ δ , one has

ϕ ε( , , ( )) ( )t x u t x tr r0 − ≤
and

lim ( , , ( )) ( )
t

r rt x u t x t
→∞

− =ϕ 0 0

If these two properties hold for all x Rn

0 ∈ , the
unperturbed motion is said globally uniformly asymptotic
stable.

  To establish the result, let us associate to the input
u t Lr

m e( ) ,∈ 2 , the following system :

y G u y u H u u yG x r r x r r= = + −
0 0
[ , ]( ) ( )

∆

where y H ur x rr
=

0
( ) .

  Referring to [26,13] for the notion of uniform observ-
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ability and reachability, one can state the following
proposition.

  Proposition 5 : If Hx r0
 has finite incremental gain and

if for a given input u t Lr

m e( ) ,∈ 2 , G u yx r rr0
[ , ] has an uni-

formly observable equilibrium point and an uniformly
reachable state space from the equilibrium point then,
the  unperturbed motion, x tr ( ) , and the output, y tr ( ) ,
associated to u tr ( ) are globally uniformly asymptotically
stable.

  Sketch of proof :  The proof works out showing that if
Hx r0

 is incrementally stable then the operator G u yx r rr0
[ , ]

is L2 gain stable. Using classical results concerning the
link between L2-gain and Lyapunov stability, the proof
can be achieved (see [26]) 

This result is interesting in the context of asymptotic per-
formance since its ensures the robustness of asymptotic
performance against an initial condition perturbation.

b.  Steady state and finite incremental gain
  In this section, we recall that the incremental
boundedness of the input-output operator ensures the
asymptotic stability of the equilibrium points associated
to constant controls [9].
  Let Ze denotes the set of these equilibrium points :
Z x u R R t x u x t Re e e

n m

e e e= ∈ × = ∀ ∈ +{( , ) | ( , , ) }ϕ
  The following operator is associated to the equilibrium
pair (xe, ue) of Hx0

 :

G u y u H u u yx e e x e e0 0
[ , ]( ) ( )= + −

∆

where y H ue x ee
= ( ) , so that G u yx e ee

[ , ]( )0 0= .

  Corollary : If Hx0
 has finite incremental gain and if for

any pair (xe, ue) ∈  Ze, G u yx e e0
[ , ]  has an uniformly ob-

servable equilibrium point and an uniformly reachable
state space from the equilibrium point then this equilib-
rium point is globally asymptotically stable.

Remarks :
  (i) - The result of Corollary holds for a general operator
without any restriction concerning the state space gen-
erator. This is developed in [8].
  (ii) - Corollary proves that the feedback achieved ser-
voaction. In particular, if we assume that the nonlinear
compensator contains an "integral control" on the track-
ing error (i.e. &( ) ( ( ))e t K u y tm= −0 then, for any constant
input reference u0 ,under assumptions of Corollary, the
tracking error asymptotically converges to zero (i.e.,
lim ( )
t my t u
→∞

→ 0  ).

3.6.  Scheduled gain and incrementally stable system
  Let us now point out how incremental stability  induces
suitable properties with respect to pseudo linearization or
gain scheduling [19,20].   
  Let us denote by y DG u= 0  the linearization of (3.1)
around ( , )x u Ze e e∈ , with the state representation

& , ( )

,

x Fx Gu x

y Hx

= + =

=

0 0
(3.2)

where u R x Rm n∈ ∈,  and y R p∈ ,

F
f

x
x

g

x
x ue e e= +

∂

∂

∂

∂
( ) ( ) , G g xe= ( ) and H

h

x
xe=

∂

∂
( ) .

  Proposition 6 [9] : If the nonlinear operator Hx0
 has a

finite incremental gain less or equal to η and if any state
in Ze  is reachable from x0 , then for any fixed pair
(xe, ue) ∈  Ze, the associated linearization, DG 0 , has L2 -

gain γ η≤ , i.e. DG 0 ∞
≤ η .

  If, in addition, (F,G) is controllable and (H,F) is ob-
servable, then there exists a symmetric and strictly posi-
tive definite matrix, P Rn n∈ ×  such that

PF F P PGG P H HT T T+ + + =−~η 2 0  ∀ >~η η .

Remarks : 
  (i) - Proposition 6 proves that system (3.1) is locally
exponentially stable in a neighborhood of xe .
  (ii) - Proposition 6 can be linked to extended lineariza-
tion or gain scheduling techniques [19,20].
 

4.  AN ALGEBRAIC CONDITION FOR
INCREMENTAL STABILITY

  The object of this section is to give an algebraic type
condition for incremental stability making use of the dis-
sipativity properties of an extended system.

    Proposition 7 : Let η  be a fixed non negative con-
stant. The nonlinear system (3.1) is incrementally stable
and has incremental gain less or equal to η  if there ex-
ists a  real function, V: R Rn n× → R+, continuously dif-
ferentiable in these arguments (i.e.C1) and such that for
all x x Rn

1 2, ∈ , one has

( ) (i V 0,0) 0=

( ) ( , )ii V x x1 2 0≥

(iii) 
∂

∂

∂

∂

V x x

x
g x

V x x

x
g x

( , )
( )

( , )
( )1 2

1

1
1 2

2

2 0+ =

   ( )
( , )

( )
( , )

( )
( , )

iv
V x x

x
f x

V x x

x
f x

V x x

x

∂

∂

∂

∂
η

∂

∂
1 2

1
1

1 2

2
2

1
4

2 1 2

1

+ + − g x g x
V x x

x
h x h x h x h xT

T
T( ) ( )

( , )
( ( ) ( )) ( ( ) ( ))1 1

1 2

1
1 2 1 2 0

∂

∂
+ − − ≤

  Sketch of proof : Associating with the system (3.1) the
augmented system defined as
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& ( ) ( ) , ( )

& ( ) ( ) , ( )

( )

( )

x f x g x u x x

x f x g x u x x

y h x

y h x

1 1 1 1 1 10

2 2 2 2 2 10

1 1

2 2

0

0

= + =

= + =

=

=













(4.1)

we denote x x xT T T= ( , )1 2  and we  consider  the new vari-
ables

p u u= −1 2

z y y= −1 2

System (4.1) is incrementally stable if and only if for all
u u Lm

1 2 2, ∈ , one has
z p2 2

≤ η (4.2)
when x (0) 0= .
  Using classical arguments about dissipativity ([27]), we
claim that (4.2) is satisfied if the system is dissipative
with respect to the supply rate function

w t p t z t( ) ( ) ( )= −η 2 2 2
(4.3)

  For, we recall Theorem 1 in [27] which claims that
system (4.1) is dissipative with respect to w(t) if and only
if the following integral is finite for all x R n∈ 2

 

V x w t dta
x
T

T

( ) sup ( )=
→
>

∫
0

0
(4.4)

where the sup. is taken on u u Lm

1 2 2, ∈ , and z t( ) corre-
sponds to the output of system (4.1), initialized in x  un-
der inputs u t1 ( )  and u2(t).
  Thus, on the basis, of references [27], we obtain the
announced condition 

Remark : Necessity can be obtained. This is developed
in [15] arguing as in [1] in terms of viscosity solutions to
Hamilton-Jacobi type equations.
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