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Abstract

This paper is devoted to the study of the behavior of Lip-
schitz continuous systems. We unify and improve through
the reformulation of the Lipschitz continuity of a system
in terms of the dissipativity of an associated fictitious sys-
tem, our previous results concerning the Lyapunov sta-
bility of unperturbed motions associated with any inputs.
Moreover, we show that the Lipschitz continuous systems
have the steady-state property with respect to any inputs
belonging to Le

p with p ∈ [1,∞[ ( i.e., their asymptotic be-
havior is uniquely determined by the asymptotic behavior
of the input). Finally, we characterize the behavior of
stationary Lipschitz systems for periodic and almost peri-
odic inputs. We end the paper by a example showing that
these results allow us to explain the well-known properties
attached to the behavior of a controlled missile.

1 Introduction

The general theorems, like the small gain theorem or the
passive theorem, allow us to prove input-output stabil-
ity of interconnected systems, and are, in many practi-
cal cases, usefull for proving the input-output stability of
systems having nonlinearities ([12],[17][13], [3]). Unfor-
tunately, the characterization of the stability in terms of
input-output properties may not be sufficient with respect
to the classical requirements attached to many applica-
tions e.g. airplane, missile,..., ship. The most significant
example in this context is probably the response of the
system with respect to step inputs: an application of the
small gain (or passive) theorem in this context does not
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guarantee the existence of a constant steady-state for con-
stant inputs1. This problem is particularly relevant in the
context of linear systems perturbed by small non linear
perturbations where, implicitly, we wish to recover some
properties attached to stable linear systems such their be-
haviors with respect to specific inputs and/or with respect
to modifications of the initial condition of the system.
This remark points out the gap existing between the lin-
ear systems and the nonlinear systems which have a finite
gain.
We have already pointed out these problems and propose
to use the incremental norm (Lipschitz constant) in this
context instead of the usual norm ( see [4],[7] [8] and [9]).
Indeed, in [8], we have shown that Lipschitz continuity
of the system ensures asymptotic stability of the equilib-
ria which is associated with any constant control. This
first result is extended in [9], where we prove, consider-
ing nonlinear dynamical systems generated by differential
equations, that the Lipschitz continuity of the system en-
sures the asymptotic stability of its unperturbed motions
i.e., under perturbations of the initial state and for any
prefixed input not necessarily constant, the state evolu-
tion asymptotically converges to the same motion.
All these results show that the use of the incremental norm
(Lipschitz constant) and the use of incremental small gain
or incremental passif theorem seems in some applications a
better way to recover in the nonlinear context some prop-
erties of input-output stable linear systems.
In this paper, under the use of dissipativity concepts (see
[15]), we firstly generalize and unify our previous results
and obtain new results allowing to characterize the behav-
ior of incrementally bounded systems in a more accurate
way. Indeed, we prove that all Lipschitz systems, under
an assumption concerning the observability of their state-
space realization, have the steady-state property i.e., the
asymptotic behavior of the system is uniquely determined
by the asymptotic behavior of the input. Moreover, con-

1A simple example is given by ẋ = −f(x) where f(x) is a C1

function defined from R into R, such that < f(x)|x >> ε‖x‖ for
all x ∈ R and such that there exists an interval where ∂f

∂x
> 0 for

x ∈ [a, b].
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sidering time invariant nonlinear systems, we characterize
their behavior with respect to periodic and almost peri-
odic inputs: the motion associated to an almost periodic
input (periodic) is asymptotically almost periodic (peri-
odic) function. This result allows, for example, to prove
that each constant value of the input has an associated
equilibrium point as in the linear context.
All this results are obtained on the basis of the links ex-
isting between the incremental boundedness of a system
and the dissipativity of an associated fictitious system.
Finally, it seems important for us to explain in this con-
text, the role of each assumption leading to the proof of
these differents results. To this purpose, we have sepa-
rated, on the one hand, the properties due to the incre-
mental boundedness of the system and on the other hand,
the role of the different assumptions concerning the state-
space realization of the system on the announced results.
Due to the space limitation, only the proof concerning the
steady-state property of Lipschitz systems is given. The
complete proofs of the present results are given in [5].
This paper is organized as follows. In section 2, we intro-
duce the notations and recall some definitions. Section 3
is devoted to restating incremental boundedness in terms
of the dissipativity of a fictitious system and to establish
the properties associated with the available storage func-
tion of this fictitious system. The results concerning the
Lyapunov stability of the unperturbed motion are set in
Section 4. Section 5 contains the main result of this pa-
per concerning the steady-state property of incrementally
stable systems. In Section 6, we characterize the behavior
of incrementally bounded systems for periodic and almost
periodic inputs. Finally, in Section 7, a simple example,
extracted from [6], concerning the incremental stability of
a controlled missile, is presented.

2 Notations and definitions

The notations and terminology, which are recalled here-
after, are classical in the input-output context (see [13]).
In the following, we use the Lp spaces i.e the space of Rn

valued functions defined on R, for which the pth power of
the norm is integrable when 1 ≤ p < ∞, with the norm de-

fined by ‖f‖p = p

√∫
‖f(t)‖pdt. The causal truncation at

T of a function f , defined on R, is denoted PT f and is de-
fined by PT f(t) = f(t) for t ≤ T and 0 otherwise. The an-
ticausal truncation of f at T is defined as QT f = f−PT f .
The extended space associed to Lp is denoted by Le

p and
corresponds to space of Rn valued functions defined on R
whose causal truncations belong to Lp.
A dynamical system, Σ, is defined as a causal operator
from Le

p into Le
p. Σ is stationary if for all u1, u2 ∈ Le

p

related by u1(t) = u2(t + T ) the ouputs y1 = Σ(u1) and
y2 = Σ(u2) are similary related i.e. y1(t) = y2(t + T ).
Σ is said to be a finite gain stable system if there exists
γ > 0 such that ‖y‖p ≤ γ‖u‖p for all u ∈ Lp. Σ has
a finite incremental gain if there exists η > 0 such that

‖y1 − y2‖p ≤ η‖u1 − u2‖p for all u1, u2 ∈ Lp. Σ is said to
be incrementally stable if it is stable, i.e., it maps Lp to
Lp, and has a finite incremental gain.
The state space representation of y = Σ(u), is defined
through the introduction of an abstract set, X, called the
state-space and the definition of a state transition func-
tion, φ, defined from2 R+

2 ×X×Le
p into X and a read-out

function, r, defined from X × Rm to Rq. The state and
the output of Σ at time t are respectively equal to x(t) =
φ(t, t0, x0, u) and y(t) = r(t, φ(t, t0, x0, u), u(t)), where,
by consistency of the state, the initial state is such that
x0 = φ(t0, t0, x0, u). Noting that the state-space represen-
tation of dynamical systems always exists (Theorem 1 in
[14]). X is assumed to be a normed and complete space.
With reference to the state-space representation of Σ, we
introduce this notation Σ = (Rm,Le

p,Rq,Le
p, X, r, φ).

In the sequel, xr(t) denotes an unperturbed motion of
Σ associated with the input, ur ∈ Le

p, and with a specific
initial condition, x0r ∈ X i.e. xr(t) = φ(t, t0, x0r, ur).
We finally introduce some definitions characterizing the
links between the input and the output of the system and
its state. Same kind of definition already appears in previ-
ous works (see especially [14] and also [11]). Let us define

∆y(ti,x1,x2,u)(t) = r(t, φ(t, ti, x1, u), u(t))
−r(t, φ(t, t0, x2, u), u(t))

Definition 2.1 A state of Σ, xo, is said to be observable
if for all x ∈ X and all (ti, t) ∈ R+

2 , there exists an input
uo ∈ Le

p such that if ∆y(ti,xo,x,uo) = 0 a.e. then x = xo.
Σ is said to be irreductible if all states belonging to X
are observable. The state-space of Σ is said to be uni-
formly irreductible if it is irreductible and there exist βi,
a function of class K∞, and a constant Ti > 0 such that
‖Pt+TiQt∆y(t,x1,x2,u)‖p

p ≥ βi(‖x1−x2‖) for all x1, x2 ∈ X,
t ≥ t0 and some uo ∈ Le

p.

Definition 2.2 The unperturbed motion, xr(t), is said
to be uniformly observable if there exist β, a func-
tion of class K, and a constant To > 0 such that
‖Pt+T0Qt∆y(t,xr(t),x,ur)‖p

p ≥ β(‖xr(t)− x‖) for all x ∈ X
and t ≥ t0.

Definition 2.3 The state space of Σ is said to be reach-
able from x0 if given any x ∈ X and t ∈ R, there exist
u ∈ Lp and Tr ≥ 0 such that x = φ(t, t− Tr, x0, u)
The state space is said to be uniformly and isotropically
reachable from x0 if there exist αr, a function of class K,
and Tr > 0 such ‖PtQt−Tr (u1 − u2)‖p

p < αr(‖x1 − x2‖)
for all x1, x2 ∈ X and t ≥ t0 where u1, u2 ∈ Lp and
xi = φ(t, t− Tr, x0, ui) with i ∈ {1, 2}.

3 Dissipativity approach for incre-
mental systems

In the following, we introduce a fictitious system which
allows to restate incremental boundedness of the initial

2R+
2

∆
= {(t1, t0) ∈ R2|t1 ≥ t0}



system in terms of the dissipativity of this fictitious sys-
tem with respect a specific supply rate function. Before
setting specific results concerning the incremental bound-
edness of Σ, we recall some definitions and notations which
have been introduced by Willems in [15].
Let us associated to a system, y = Σ(u), defined from Le

p

into Le
p, a real value function, w(t) = w(u(t), y(t)), defined

on Le
p ×Le

p which is called the supply rate. This function
is assumed to be integrable on a finite support.

Definition 3.1 [15] The available storage, Sa, of a dy-
namical system Σ with supply rate w(t) is the function
from X ×R into Re defined by

Sa(x, t0) = sup
x→

−
∫ T

t0

w(τ)dτ (1)

where the notation sup
x→

denotes the supremum over all mo-

tions starting in state x at time t0 and where the supre-
mum is take over all u ∈ Le

p.

Let us associated with the dynamical system, Σ =
(Rm,Le

p,Rq,Le
p, X, r, φ), a fictitious dynamical system,

Σf = (Rm×Rm,Le
p×Le

p,Rq,Le
p, X×X, rf , φf ), defines by

yf = Σf (u1, u2) = Σ(u1) − Σ(u2) and its associated sup-
ply rate function defines by wf (t) = ηp‖u1(t)− u2(t)‖p −
‖yf (t)‖p.

Lemma 3.1 The dynamical system, Σ, has a incremental
gain less or equal η if and only if Sa(x0, x0, t0) = 0 where
Sa is the available storage function of Σf , defined from
X ×X ×R into Re, with supply rate wf (t).

We give in the sequel two quite elementary Lemmas which
are in fact the basis of all results linking input-output
stability and Lyapunov stability.

Lemma 3.2 Let Σ a system with a finite incremental
gain less or equal η. For any input u1, u2 ∈ Le

p and any
time t2 ≥ t1 ≥ t0, one has

(i) Sa(x1(t1), x2(t1), t1) ≤
∫ t1

t0

ηp‖u1(τ)− u2(τ)‖pdτ

(ii) Sa(x1(t1), x1(t1), t1) = 0

(iii) Sa(x1(t1), x2(t1), t1)+

+
∫ t2

t1

wf (τ)dτ ≥ Sa(x1(t2), x2(t2), t2)

where xi(t) = φ(t, t0, x0, ui) with i ∈ {1, 2}.

Lemma 3.3 Under the assumption of Lemma 3.2 and for
any x1, x2 ∈ X,u ∈ Le

p and any time t2 ≥ t1 ≥ t0 one has

Sa(x1, x2, t1) ≥
∫ t2

t1

‖y1(τ)− y2(τ)‖pdτ

where yi(t) = r(t, φ(t, t1, xi, u), u(t)) with i ∈ {1, 2}.

4 Internal stability

We can prove the following theorem:

Theorem 4.1 Let Σ = (Rm,Le
p,Rq,Le

p, X, r, φ) a dy-
namical system with a finite incremental gain.

(i) If X is uniformly irreductible and uniformly isotrop-
ically reachable from x0 then all unperturbed motions
are uniformly stable.

(ii) If X is reachable from x0 and the unperturbed motion
is uniformly observable then the unperturbed motion
is uniformly globally attractive.

(iii) If X is uniformly isotropically reachable from x0 and
the unperturbed motion is uniformly observable then
the unperturbed motion is uniformly globally assymp-
totically stable.

This result can be prove under the definition of a func-
tion, V , from R×X into R and related to Sa in this way:

V (t, x) = Sa(xr(t), xr(t) + x, t) (2)

where xr(t) is the unperturbed motion and x(t) the differ-
ence between the unperturbed motion and the perturbed
one. Now, on the basis of Lemmas 3.2 and 3.3 and defini-
tions concerning the property of the state-space realization
of Σ, V has the following properties:

Lemma 4.2 Let Σ = (Rm,Le
p,Rq,Le

p, X, r, φ) a dynami-
cal system with a finite incremental gain and V the func-
tion defines by (2).
(i)If X is uniformly irreductible then

V (t, x) ≥ βi(‖x‖) for all x ∈ X

(ii) If X is uniformly isotropically reachable from x0 then

V (t, x) ≤ ηpαr(‖x‖) for all x ∈ X

(iii) If the unperturbed motion is uniformly observable
then for any t1 ≥ t0 and T ≥ To one has:

V (t1 + T, x(t1 + T ))− V (t1, x(t1)) ≤ −β(‖x(t1)‖)

where x(t) = φ(t, t0, x0, u1)−φ(t, t0, x0, u2), u1(t) = ur(t)
for all t ≥ t0 and u2 ∈ Le

p and u2(t) = ur(t) for all t ≥ t1.

Remarks:
(i) It is important to note that V is not a Lyapunov

function for the system, since it is not necessary a con-
tinuous function of x. Despiste this point, the Lyapunov
stability can be proved using the upper bound provided
by point (ii) of Lemma 4.2.

(ii) It is clear that other results can be inferred, when
modifying some of the assumptions. The assumption con-
cerning the reachability of the state space can be removed
if V is assumed to be a continuous function of x for fixed
t (see [10] [1]). It seems difficult in our context to re-
move the assumption concerning a uniformly irreductible



X, Indeed, even when assuming V (t, .) continuous and X
irreductible, (so as to guarantee that V (t, x) ≥ 0 for all
x 6= 0), this does not ensure that V is positive definite.
Finally, using the notion introduced in [11], it is possible
to consider the asymptotic stability with respect to a tube
around the unperturbed motion.

5 Steady-state property of incre-
mentally stable systems

We set the main theorem of this article.

Theorem 5.1 Let Σ = (Rm,Le
p,Rq,Le

p, X, r, φ) a dy-
namical system with a finite incremental gain. If the un-
perturbed motion associated with ur is uniformly observ-
able then for any ũr ∈ Le

p such ur − ũr belongs to Lp, one
has

lim
t→∞

‖φ(t, t0, x0, ur)− φ(t, t0, x0, ũr)‖ = 0

Proof: Let us define a function V , from R × X into
R by V (t, x) = Sa(xr(t), xr(t) + x, t) where xr(t) =
φ(t, t0, x0, ur) and x(t) = φ(t, t0, x0, ur) − φ(t, t0, x0, ũr).
On this basis, the theorem is proved if lim

t→∞
‖x(t)‖ = 0.

To this purpose, using (iii) of Lemma 3.2, one has

V (t1 + T, x(t1 + T ))− V (t1, x(t1)) ≤∫ t1+T

t1

(−‖yf (τ)‖p + ηp‖ur(τ)− ũr(τ)‖p)dτ

with yf (t) = r(t, φ(t, t1, x̃t, ũr), ũr(t)) − r(t, φ(t, t1, xt,
ur), ur(t)) where xt = xr(t1) and x̃t = xr(t1) + x(t1).
Let us rewrite yf as the difference of two terms yf1 and
yf2 respectively define by3

yf1 = r(t, φ(t, t1, x̃t, ũr), ũr)− r(t, φ(t, t1, x̃t, ur), ur)

yf2 = r(t, φ(t, t1, xt, ur), ur)− r(t, φ(t, t1, x̃t, ur), ur).
yf1 clearly corresponds to the output of the fictitious sys-
tem, Σf , which has been submitted to the input u1 =
u2 = ũr from t = t0 to t = t1 and which is now submitted
to the inputs ur and ũr. Thus, on the basis of (ii) and
(iii) of Lemma 3.2, and the fact that Sa ≥ 0 (by uniform
observability), one has∫ t1+T

t1

‖yf1(τ)‖pdτ ≤
∫ t1+T

t1

ηp‖ur(τ)− ũr(τ)‖pdτ

The second term, i.e. yf2 , corresponds to the output of
the fictitious system which is submitted to the same input
(under the initial condition xf (t1) = (xt, x̃t)T ). Then
using the uniform observability, one has∫ t1+T

t1

‖yf2(τ)‖pdτ ≥ β(‖xt − x̃t‖)

for all T ≥ To where To is the time constant associated
to the uniform observability property. Through a simple
manipulation on the norm,4we deduce the following in-

3The notations are slightly modified for a lake of space
4‖x‖ = ‖x−y +y‖ ≤ ‖x−y‖+‖y‖ and thus ‖x‖−‖y‖ ≤ ‖x−y‖

equality
V (t1 + T, x(t1 + T ))− V (t1, x(t1))

≤ −β(‖x(t1)‖) + 2
∫ t1+T

t1

ηp‖ur(τ)− ũr(τ)‖pdτ

(3)
Let us now assume that x(t) does not go to zero, then for
all Tε1 ≥ t0, there exists ε > 0 and a sequence of times ti
such that ‖x(ti)‖ > ε where the sequence of time is such
that t0 ≥ Tε1 and lim

i→∞
ti = ∞.

Let us define then λ = 1
2 inf‖x‖=ε β(‖x‖). The difference

between the two inputs belongs to Lp, and this guarantees
the existence of a time Tε2 , such that∫∞

t
ηp‖ur(τ) − ũr(τ)‖pdτ < λ for t ≥ Tε2 . Then, for

t ≥ max(Tε1 , Tε2) and by inequality (3), the sequence de-
fined by Ki = V (ti, x(ti)) is strictly decreasing. V is how-
ever lower bounded and it has finite values along all the
possible motions of Σf (see point (i) of Lemma 3.2). The
contradiction is consequently proven. 2

An immediate consequence of Theorem 5.1 is the following
corollary:

Corollary 5.2 Under the assumptions of Theorem 5.1
and the reachability from x0 of the state-space of Σ, one
has for any x0r, x0p ∈ X

lim
t→∞

‖φ(t, t0, x0p, ur)− φ(t, t0, x0r, ũr)‖ = 0

6 Periodic and almost periodic in-
puts

In this section, we restrict our attention to the case of
stationary dynamical systems and we characterize the be-
havior of this specific class of systems for different types
of input.
In the sequel, a system possesses an equilibrium point,
namely xe, if there exists an input, namely ue, belonging
to Le

p with a finite amplitude almost everywhere and such
that for all t ≥ t0 one has xe = φ(t, t0, xe, ue).

Definition 6.1 [2] A continuous function, f , defined
from R into R is said to be almost periodic if for any ε >
0, there exists a positive number l(ε) such that any interval
of length l(ε) contains a τ for which ‖f(t + τ)− f(t)‖ ≤ ε
for all t ∈ R.

Definition 6.2 A motion, x(t), defined from [t0,∞) into
X is said to be weakly 5 asymptotically almost periodic
if for any ε > 0, there exists a positive number l(ε) and
Tε > 0 such that any interval of length l(ε) contains a τ
for which ‖x(t + τ)− x(t)‖ ≤ ε for all t > Tε.

5We introduce that because the motion is not necessary a con-
tinuous function of time at the opposite of definition given in [16].



Theorem 6.1 Let Σ, a stationary dynamical system,
with a finite incremental gain. Its state-space is assumed
uniformly istropically reachable and the motion associated
with ur is assumed uniformly observable then

(i) If ur is an uniformly continuous function of time then
there exist, for any ε > 0, two finite constants σu > 0
and Tε such that for any |σ| ≤ σu and all t ≥ Tε, one
has

‖xr(t)− xr(t− σ)‖ < ε

Moreover, there exists at least an initial condition for
which the motion is an uniformly continuous function
of time for all t ≥ t0.

(ii) If ur is a periodic input and the system possesses
an equilibrium point then the unperturbed motion is
asymptotically periodic. Moreover, there exists at
least an initial condition such that the output asso-
ciated with this input is a perodic function almost ev-
erywhere i.e. ‖QtPt+T (y(t+T ) − yt)‖p = 0 for all t
where yt is the output associated with ur and y(t+T )

is defined by y(t+T )(t) = yt(t + T ).

(iii) If ur is an almost periodic input and the system pos-
sesses an equilibrium point then the unperturbed mo-
tion is weakly asymptotically almost periodic. More-
over, there exists at least an initial condition such
that the motion associated with this input is an al-
most periodic function.

Remarks:
(i) In the context of constant inputs, the point (ii) of

Theorem 6.1 implies that it is possible to associate with
each constant input an equilibrium point which is globally
asymptotically stable by Theorem 4.1.

(ii) In [12], this result is proved for incremental sys-
tems which are the interconnectionxion between memory-
less nonlinearities and a linear time invariant system with
a finite gain. In this context all the assumptions concern-
ing the realization of the nonlinear system can be removed.

7 A simple example

The previous results are used in [6] so as to analyze the
behavior of a PI controlled missile. Missiles are indeed
a perfect example of nonlinear systems, whose behav-
ior is closely related to the behavior of a linear system
(e.g. steady-state with respect to any constant inputs,
the steady-state unique property and periodic motions for
periodic inputs, . . . ).
Consider the closed-loop system, obtained by applying a
PI controller to a missile pitch channel. We give in this
section a basic result, which explains in an analytic way
why this closed-loop system is incrementally stable. To
this purpose, we just consider the principal nonlinearity,
namely the aerodynamic moment. This first step has been
successfully extended in [6] to a more realistic model of

missile controlled by a classical PI6 under the computa-
tion of the H∞ norm of a specific transfer matrix. The
nonlinear dynamics of the pitch or the yaw channels of a
missile can be described by the following equations:

q̇ = Mq

Iy
q + M(α)

Iy
+ Mη

Iy
η

α̇ = q + Z(α)
mV

where q is the pitch rate and α the angle of attack.
Let us consider the following controller defined by:

u(t) = k3(−
Γco(t)

V
− q(t))

Under this simple feedback, the closed-loop system is de-
scribed by (introducing suitable notations):

q̇ = aq + R(α) + B1Γco

α̇ = q + P (α)

and its linearisation for a specific constant value of α = α0

is given by

˙̄q = aq̄ + R′(α0)ᾱ + B1δΓco

˙̄α = q̄ + P ′(α0)ᾱ

Let us study the nonlinear closed-loop system with respect
to the nonlinearity, which is associated to the aerodynamic
moment R(α). To this purpose, we consider the transfer
function between a fictitious input, u, acting on ˙̄q and ᾱ
which is given by:

ᾱ

u
= G(s) =

1

s2 + (a + P ′(α0))s−R′(α0) + a ∗ P ′(α0)

Assume there exist a specific value α0 of α and a gain k3,
such that the damping of this transfer function is greater
than 0.9. The H∞ norm of G(s) is then given by

‖G(s)‖∞ ≈ | −R′(α0) + a ∗ P ′(α0)|
−1

On this basis, recalling that the incremental gain of R(α)
is linked to the value of its derivatives under this relation
‖R‖∆ ≤ maxx σ̄

∂R(x)
∂x

and invoking the small incremental
gain Theorem [17, 3], we deduce that the nonlinear system
is incrementally stable if the derivative of R(α) verifies this
constraint:

|R′(α)−R′(α0)| < | −R′(α0) + a ∗ P ′(α0)| (4)

Finally, it is interesting to note that the condition given
by (4) is a necessary condition for the stability of the sys-
tem. Indeed, let us consider the interconnection of G(s)
with a linear feedback, i.e, u = −kᾱ and calculate the
denominator of this closed-loop system:

Pbf = s2 + (a + P ′(α0))s−R′(α0) + a ∗ P ′(α0) + k

6The two nonlinearities associated to the aerodynamic effects are
taken into account and the actuator dynamics are modelized by a
second order transfer function.



Typically the coefficients of the unperturbed denominator
satisfy these inequalities:

a + P ′(α0)) > 0 −R′(α0) + a ∗ P ′(α0) > 0

We can then deduce that the interconnection is
marginally stable for k = R′(α0)−a∗P ′(α0) and unstable
for k < R′(α0)− a ∗ P ′(α0). It is clear that condition (4)
is a necessary and sufficient condition for the incremental
stability of the missile.
This simple fact explain probably why the classically used
heuristic method (which consists in deducing the stability
of the nonlinear system from the stability of its linearisa-
tions) works well in this context.
This study can be extended to a realistic model of the
closed-loop system associated to a controlled missile [6].

8 Conclusion

In this paper, through the use of simple arguments con-
cerning the dissipativity property of a fictitious system,
we have characterized the behavior of Lipschitz continu-
ous systems toward specific inputs and modifications of
the initial condition. The main result of this paper is
the proof of the steady-state property of this kind of sys-
tem. On this basis, we have characterized the behavior of
stationary Lipschitz continuous systems for periodic and
almost periodic inputs. All these results show, once of
more, that the input-output approach allows us to by-
pass, in some cases, the associated difficulties in search of
Lyapunov function for the nonlinear systems.
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