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Abstract

This paper presents simple conditions ensuring that dy-
namical neural networks are incrementally stable, that
is Lipschitz continuous, on Lp. A first interest of this
result is that it ensures obviously the continuity of the
system as an operator from a signal space to another
signal space. This property may be interpreted in this
context as the ability for dynamical neural networks to
interpolate. In some sense, it is an extension of a well-
known property of static neural networks.
A second interest of this result is linked to the fact that
the behaviors of Lipschitz continuous systems with re-
spect to specific inputs or initial condition problems
can be completely analyzed. Indeed, Lipschitz contin-
uous systems have the steady-state property with re-
spect to any inputs belonging to Le

p with p ∈ [1,∞],
i.e., their asymptotic behavior is uniquely determined
by the asymptotic behavior of the input. Moreover, the
Lipschitz continuity guarantees the existence of globally
asymptotic stable (in sense of Lyapunov) equilibrium
points for all constant inputs.

1 Introduction

Recently, the study of dynamical properties of artifi-
cial neural networks has received a great deal of in-
terest [13, 12, 14, 17, 4]. Most of the work focus on
the “classification capabilities” of this class of systems.
The main idea is to use the domain of attraction of
each equilibrium point to classify specific information.
The nonlinearities of neural networks allow to “shape”
complex domains of attraction which can be useful for
classifying. In this framework, the authors propose
conditions ensuring asymptotic stability of equilibrium
points and estimate the domain of attraction for each
stable equilibrium point. The aim of this paper is to
propose a framework allowing to analyze the “interpo-
lation capabilities” of the dynamical neural networks.
This property was well studied in the case of static neu-
ral networks but was never considered, to the best of
our knowledge, in the case of dynamical neural net-
works.

1Report of the published article : V. Fromion. Lipschitz con-
tinuous neural networks on Lp. In Proc. IEEE Conf. on Decision
and Control, December 2000.

As a matter of fact, we propose in this paper simple
(structural) conditions concerning the weight matrices
which ensure the Lipschitz continuity of the systems on
Lp.
It thus guarantees the continuity of the system as an
operator from a signal space to another signal space,
i.e., a small variation of inputs makes a small varia-
tion of the output. Moreover, Lipschitz continuity can
be clearly interpreted as a “continuous interpolation”
ability of the dynamical neural networks.
As it was proved in recent work, ([8, 9, 10, 6, 7]), Lips-
chitz continuous system owns many interesting proper-
ties. More precisely:

– The system has an equilibrium point for each con-
stant input;

– Each equilibrium point is globally asymptotically
stable;

– If a constant input is “close” to another constant
input then the two equilibrium points are “close”.

Many another properties are provided by Lipschitz con-
tinuity (for details see, e.g., [6, 7]). For example, Lips-
chitz continuous systems have the steady state proper-
ties, i.e., the asymptotic behavior (the output of neural
network) is uniquely determined by the asymptotic be-
havior of the input. This property correspond to the
idea that the information related to the neural network
behavior is contained only in the interconnection and
in the different values of the associated weights but not
in the “state” of the dynamical system.
Most of the dynamical neural networks considered in
the literature has the following structure ([17]):

ẋi = −xi + σ

(
n∑

j=1

aijxj +

n∑
j=1

b1ij uj

)
+

n∑
j=1

b2ij uj (1)

where each xi(t), i = 1, · · · , n, is a real value function
of time which corresponds to the internal state of the
ith artificial neuron and each ui(t), i = 1, · · · ,m, is
also a real value function of time which corresponds to
an external input signal to the neural network. The
coefficients aij ,b1ij and b2ij denote the weights of the
various network connections. The function σ : R → R
is the activation function. Typically, the function σ is
“sigmoidal”, e.g., σ(x) = 1/(1 + e−x).

In the following, we consider that the dynamical neural
networks system are nonlinear causal operators defined



from a signal space into another signal space and de-
scribed by:

Σ(u)

 ẋ(t) = −x(t) + σ(n)(Ax(t) + B1u(t)) + B2u(t)
y(t) = Cx(t)

x(t0) = x0

(2)

where A = {aij} belongs to Rn×n, B1 = {b1ij}, B2 =
{b2ij

} belong to Rn×m, C belongs to Rp×n and σ(n) :
Rn → Rn is a diagonal map.

σ(n) :

 x1

...
xn

 7→

 σ(x1)
...

σ(xn)

 (3)

where σ is a sigmoidal type function, i.e., non decreas-
ing with the properties that both limx→−∞ σ(x) and
limx→∞ σ(x) exist. We moreover assume in the sequel
that σ is C1 and Lipschitz.
Finally, we assume that input-output signal spaces are
two Le

p spaces i.e. u and y belong to Le
p spaces.

The aim of this paper is to provide simple conditions on
the weight matrices which ensure the Lipschitz conti-
nuity (the incremental boundedness) of the dynamical
neural networks on Lp, i.e., there exists a finite con-
stant η such that ‖Σ(u1) − Σ(u2)‖p ≤ η‖u1 − u2‖p for
any u1, u2 ∈ Lp.
The paper is organized as follows. In section 2.1, basic
notions about input-output stability are firstly recall.
The notion of quadratic incremental stability is then
introduced in section 2.2 while section 2.3 presents qual-
itative properties of incrementally stable systems. Sec-
tion 3, which is the main section of this paper, presents
simple conditions ensuring that the dynamical neural
networks are incrementally stable on Lp. Finally, sec-
tion 4 presents a result concerning the adaptation of
weight matrices.

2 Lipschitz continuity: some recalls

2.1 Notations, definitions
The notations and terminology, which are recalled
hereafter, are classical in the input-output context (see
[3, 19]). The Lp spaces for p ∈ [1,∞) are introduced as
the spaces of Rn valued functions defined on [0, +∞),
for which the pth norm is integrable. The Lp norm

is defined as: ‖f‖p =
(∫ +∞

0
‖f(t)‖pdt

) 1
p

where ‖.‖
denotes the Euclidean norm. L∞ is the spaces of
Rn valued functions defined on [0, +∞), for which
ess supt≥0 |f(t)| is finite. The L∞ norm is defined as:
‖f‖∞ = ess supt≥0 |f(t)|. The causal truncation at T
of a function f , defined on [0, +∞), is denoted PT f
and is defined by PT f(t) = f(t) for 0 ≤ t ≤ T and
0 otherwise. The extended space associated with Lp,
which is denoted as Le

p, corresponds to the space of
Rn valued functions defined on [0, +∞), whose causal

truncations belong to Lp. Let A a real matrix, σ̄(A)
denotes its maximal singular value.

Let us consider the following nonlinear system denoted
by y = Σx0(u) and described by this differential equa-
tion:

Σx0

 ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t))

x(t0) = x0

(4)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp. f , resp.
h, are defined from Rn × Rm into Rn (resp. into
Rp) and are assumed C1 and uniformly Lipschitz.
The system is then well-defined, i.e., the solution,
x(t) = φ(t, t0, x0, u), exists, is unique and belongs to
Le

p for all x0 ∈ Rn and u belonging to Le
p.

We can now introduce the notion of (incremental) Lp

gain.

Definition 2.1 Σx0 is said to be a weakly finite (Lp)
gain stable system if there exists γ ≥ 0, β ≥ 0 such that
‖Σx0(u)‖p ≤ γ‖u‖p + β for all u ∈ Lp. Σx0 is said to
be finite (Lp) gain stable when β = 0. The (Lp) gain
of Σx0 , denoted by ‖Σx0‖i,p, is defined as the minimal
value of γ.

Definition 2.2 Σx0 has a finite incremental gain
on Lp if there exists η ≥ 0 such that ‖Σx0(u1) −
Σx0(u2)‖p ≤ η‖u1 − u2‖p for all u1, u2 ∈ Lp. The
incremental gain of Σx0 on Lp, denoted ‖Σx0‖∆,p, is
defined as the minimal value of η. Σx0 is said to be
incrementally stable if it is stable, i.e., it maps Lp to
Lp, and if it has a finite incremental gain on Lp.

The above definitions may appear restrictive from an
applicative point of view, since a limited class of pos-
sible input signals is considered for the system: as an
example, a non-zero constant input does not belong to
Lp for p ∈ [0,∞). This restriction can be nevertheless
bypassed using the link between the input-output sta-
bility properties on Lp and its extended space Le

p. In-
deed, if Σx0 has a finite incremental gain less or equal
to η, then for all T ≥ 0 and for all u1, u2 ∈ Le

p, the
following relation is satisfied:

‖PT (y1 − y2)‖p ≤ η‖PT (u1 − u2)‖p

This inequality clearly indicates that the input-output
relation, which was already satisfied by the input sig-
nals inside Lp, remains valid inside Le

p.
More generally, when studying the properties of the
nonlinear system along a possible motion, the use of
the extended space Le

p enables to consider a much larger
class of possible inputs, e.g., non-zero constant inputs.
In conclusion, when characterizing the properties of the



nonlinear system, the use of the extended space Le
p en-

ables to take into account most of the possible input
signals, which are generally considered in an applica-
tion.

2.2 Quadratic incremental boundedness
Since testing incremental boundedness of a nonlinear
system is a difficult problem [8], in [11], we introduced
a stronger notion, named quadratic incremental bound-
edness, which is easier to handle. This notion is now
recalled:

Theorem 2.1 If there exist a positive and symmetric
matrix P , and finite constants ε and σfu

, σhx
and σhu

satisfying the two following conditions for all t ≥ t0,
x ∈ Rn and u ∈ Rm:

(i) P
∂f
∂x

(x, u) + ∂f
∂x

T

(x, u)P ≤ −εIn

(ii) σ̄
(

∂f
∂u

)
< σfu σ̄

(
∂h
∂x

)
< σhx σ̄

(
∂h
∂u

)
< σhu

then the system (4) is incrementally bounded on Lp for
p ∈ [1,∞] for any initial condition x0 ∈ Rn.

Definition 2.3 A system which satisfies the conditions
of theorem 2.1 is said to be quadratically incrementally
bounded.

2.3 Qualitative properties of quadratically in-
crementally bounded systems
The following section presents the qualitative proper-
ties, which are associated to this class of nonlinear sys-
tems (see [9, 10, 7] for the proofs of the theorems, which
are presented in this section).
The first subsection is devoted to the characterization
of the variation of the system trajectory, with respect
to a variation of the input signal. The second subsec-
tion considers the case of a fixed input signal with a
perturbation of the initial condition.

Input-output behavior of incrementally
bounded systems
We would like to characterize the behavior of the
system with respect to a perturbation on the system
input. We first consider the effects of a vanishing
perturbation.

Theorem 2.2 Let Σ, be a dynamical system which is
quadratically incrementally stable. For any ũr ∈ Le

p

such that ur − ũr belongs to Lp, the following property
is satisfied:

lim
t→∞

‖φ(t, t0, x0, ur)− φ(t, t0, x0, ũr)‖ = 0

Behavior with respect to the initial condition
We study in this section the Lyapunov property for the
unperturbed motions of a quadratically incrementally
bounded system. More precisely, with reference to the
motion which is associated with a specific input be-
longing to Le

p and with a specific initial condition, we
characterize the behavior of the motion, which is asso-
ciated with the same input but which is initialized with
a different initial condition.

Theorem 2.3 If Σ is a quadratically incrementally
bounded system, then all its unperturbed motions are
uniformly globally exponentially stable, i.e., for any in-
put ur ∈ Le

p and for any initial condition x0r ∈ Rn,
there exist two positive constants a and b satisfying for
all t1 ≥ t0 and for all x0p ∈ Rn:

‖φ(t, t̃, xr(t̃), ur)− φ(t, t̃, x0p, ur)‖ ≤ a‖xr(t̃)− x0p‖e−b(t−t̃)

for all t ≥ t̃ and where xr(t) = φ(t, t0, x0r, ur).

As a consequence of the two above theorems, the non-
linear system has a unique steady state motion for a
given input signal. We now consider the effect of a per-
sistent perturbation with a finite amplitude.

Constant and periodic inputs
In the context of quadratically incrementally stable sys-
tems, the steady state response to a constant (resp. pe-
riodic) input signal is a constant (resp. periodic) output
signal.

Theorem 2.4 Let Σ quadratically incrementally
bounded system. Let us assume that there exists
ue ∈ L∞ and xe ∈ Rn such that xe = φ(t, t0, xe, ue)
for any t ≥ t0 then
(i) if the input of the system is a T-periodic input, then
the motion of the system is asymptotically T -periodic.
Moreover, there exists an initial condition for which
the motion is T -periodic.
(ii) if the input of the system is a constant input,
then the motion of the system goes asymptotically to a
constant. Moreover, there exists an equilibrium point
for each possible constant input.

Remarks:
(i) The proofs of all previous results are available in [7].
(ii) The assumption concerning the existence of equilib-
rium point xe, ensures the boundedness of trajectories
associated to inputs which are a finite amplitute almost
everywhere.
(iii) Theorem 2.4 can be extended to the larger class of
almost periodic input signals [6, 7].



3 Condition for incrementally boundedness of
neural networks

3.1 Feed-forward type neural networks

Proposition 3.1 If A is an upper triangular matrix
such that aii ≤ 0 and ai,j = 0 for i > j, then system (2),
i.e, y = Σ(u), is a quadratically incrementally bounded
system.

Proof: We shows in the sequel that the conditions
of theorem 2.1 are satisfied taking a suitable diagonal
and strictly positive definite matrix.
To this purpose, let us write the linearization (the
Gateaux derivative), namely ȳ = DΣG[ur](ū) of Σ at
ur ∈ Le

p
˙̄x(t) = −x̄(t) + M(t)(Ax̄(t) + B1ū(t)) + B2ū(t)

x̄(t0) = 0
ȳ(t) = Cx̄(t)

(5)

where M(t) = ∂σ(n)

∂x
[Axr(t) + B1ur(t)] with

xr(t) = φ(t, t0, x0, ur).

By definition of σ(n), M(t) is a diagonal matrix, i.e.,
M(t) = diag(M1(t), · · · ,Mn(t)). We prove in the se-
quel that there exists a diagonal and strictly positive
definite matrix, namely D = diag(d1, · · · , dn), such the
following quantity:

Π = x̄(t)T D(−I + M(t)A)x̄(t)

is strictly negative.
One has

Π =
∑n

i=1 x̄idi(−1 + Miaii)x̄i + ...

... +
∑n−1

i=1

∑n
k=i+1 x̄idiMiaikx̄k

(6)

The first term of the right side of (6) has the following
upper bound:

n∑
i=1

x̄idi(−1 + Miaii)x̄i ≤ −
n∑

i=1

|x̄i|di|x̄i| ≤ 0

since di > 0.
σ is assumed non decreasing, C1 and Lipschitz contin-
uous on R, then there exits a finite constant, namely
L, such that for any i ∈ [1, n], one has:

0 ≤ Mi ≤ L

We then deduce that the second term of (6) satisfies
the following inequality:

n∑
k=i+1

x̄idiMiaikx̄k ≤ |x̄i|
n∑

k=i+1

Ldi|aik||x̄k|

and thus

Π ≤ (|x̄1|, · · · , |x̄n|)DA(|x̄1|, · · · , |x̄n|)T

where

A =


−1 L|a12| · · · L|a1n|
0 −1 · · · L|a2n|
...

...
...

...
0 0 · · · −1


In fact, −A is a M-Matrix1 which allows to ensure that
there exists a strictly positive definite and diagonal ma-
trix D such that

x̄T (DA+AT D)x̄ < 0

which proves that condition (i) of theorem 2.1 is satis-
fied. Since condition (ii) of theorem 2.1 is also satisfied,
we conclude that y = Σ(u) is a quadratically incremen-
tally bounded system.

3.2 Positive type neural networks

Proposition 3.2 If A + AT is a strictly negative defi-
nite matrix then system (2), i.e, y = Σ(u), is a quadrat-
ically incrementally bounded system.

Proof: We show in the sequel that the conditions
of theorem 2.1 are also satisfied. To this purpose, let
us pick, P = −(A + AT ) which is, by definition of A,
positive definite. Following the definition introduced in
the proof of the previous proposition, we have:

Π = −2x̄T (A + AT )(−I + MA)x̄
= −2x̄T (A + AT )x̄− 2x̄T (A + AT )M(A + AT )x̄

which is strictly negative since M(t) is a positive matrix
and A + AT is a strictly negative definite matrix. We
conclude that y = Σ(u) is a quadratically incrementally
bounded system.

3.3 Row and column diagonally dominant type
neural networks
The conditions of theorem 2.1 are just a sufficient con-
dition for incremental stability. As matter of fact, we
present in the sequel, two others types of dynamical
neural networks, which are incrementally bounded (but
not necessary quadratically incrementally bounded).
Nevertheless, those systems possess all the qualita-
tive properties attached to quadratically incrementally
bounded systems (described in subsection 2.2).

1Let us recall the following lemma (see [1])
Lemma Let W be a real and square matrix with non positive off
diagonal elements. then the following condition are equivalent:

(i) W is a M-Matrix.

(ii) The real parts of the eigenvalues of W is positive.

(iii) There exits a diagonal matrix D = diag(d1, · · · , dn) with
di > 0 such that DW + W T D is positive definite.



Proposition 3.3 If the elements of the matrix A is
such that

aii < 0 and |aii| >
∑
i 6=j

|aij |

then system (2), i.e, y = Σ(u), is an incrementally
bounded system on Lp for any p ∈ [1∞].

Proof: In the sequel, we use a slide modification of
the condition given by theorem 2.1. As matter of fact,
we replace the quadratic type Lyapunov function by:

V (x̄) = max
i
|x̄i|

So, in this case, if |x̄i| ≥ |x̄j | for all j 6= i, the derivative2

of V is given by:

V̇ = sign(x̄i)[−x̄i + Miaiix̄i +
∑
j 6=i

Miaij x̄j ]

The property of A ensures that there exists ε > 0 such
that:

V̇ ≤ sign(x̄i)[−x̄i + x̄i[Mi(t)(−|aii|+
∑

i 6=j |aij |)]
≤ −max

i
|x̄i|

which allows to prove the exponential stability of all
the linearizations of the system. On this basis, using
well-known result, we claim that all the linearizations
of the system are Lp stable. The means value theorem
(in norm) on Lp allows to conclude.

Proposition 3.4 If the elements of the matrix A is
such that

aii < 0 and |aii| >
∑
j 6=i

|aij |

then system (2), i.e, y = Σ(u), is an incrementally
stable system on Lp for any p ∈ [1∞].

Proof: We firstly note that A is a stable matrix
and thus A−1 exists. On this basis, let us consider the
following change of coordinates: z = Ax and let us
rewritten the system as:{

ż(t) = −z(t) + Aσ(n)(z(t) + B1u(t)) + AB2u(t)
y(t) = CA−1z(t)

The drift of the linearization is thus given by:

˙̄z(t) = (−I + AM(t))z̄(t)

As in the previous proof, we introduce a specific (non
quadratic) Lyapunov function:

V (z̄) =
∑

i

|z̄i|

which, as in the previous proof, allows to conclude the
exponential stability of all linearizations of the system.

2We just provide in a sequel a sketch of proof, see [5] to handle
the problem linked to dicountinuous derivatives.

4 A first idea for the adaptation of the matrix
of weights

In this section, we propose a first way allowing to esti-
mate the matrix of weights.
For the sake of simplicity, we just consider the feed-
forward type neural networks and assume that A is an
invertible matrix and that B2 = 0.
We introduce new coordinates, namely z, which are re-
lated to x by this relation z = Ax. On this basis, system
(2) can be rewritten as

ż(t) = −z(t) + Aσ(n)(z(t) + B1u(t)) (7)

Let us introduce this new system:

ż(t) = −z(t) + (A0 +

m∑
i=1

θiFi)σ
(n)(z(t) + B1u(t)) (8)

where θi, i = 1, · · · p, is a parameter and Fi, i = 1, · · · p,
is a constant matrix belonging to Rn×n. We finally
assume that there exists a vector of parameter, namely
θv = (θv1, · · · , θvp)T , such that

A = A0 +
m∑

i=1

θviFi

Let us associated with system (8), the following “esti-
mator” (the mechanism of adjustment is clearly linked
the classical MRAS scheme, see [2])):

˙̂z = −z + A0σ
(n)(ẑ + B1u) +

∑
i
θ̂iFiσ

(n)(z + B1u)
˙̂
θ1 = σ(n)(z + B1u)TFT

1 P (ẑ − z)
...

...
˙̂
θm = σ(n)(z + B1u)TFT

mP (ẑ − z)

where P is a suitable symmetric and strictly positive
matrix.

Proposition 4.1 If A0 is an upper triangular matrix
such that aii < 0 and ai,j = 0 for i > j then there exists
a symmetric and positive definite matrix, P ∈ Rn×n,
such that

lim
t→∞

ẑ(t)− z(t) = 0

Moreover, θ̂ − θv is bounded for any t ≥ t0.

Proof: The dynamic associated to the error vector,
i.e., ez = ẑ− z and eθ = θ̂− θ, is given by the following
differential equation:

ėz = −ez + f(ẑ, z, u) + Σieθi
Fiσ

(n)(z + B1u)
˙eθ1 = σ(n)(z + B1u)TFT

1 Pez

...
...

˙eθm
= σ(n)(z + B1u)TFT

mPez

(9)



where f(ẑ, z, u) = A0σ
(n)(ẑ + B1u)−A0σ

(n)(z + B1u)

Let us define the Lyapunov function:

V = eT
z Pez + eT

θ eθ

and its associated derivative along a particular trajec-
tory of system (4):

V̇ = −eT
z Pez + eT

z Pf(ẑ, z, u)

since the crossing term between ez and eθ is removed.
Following the proof of proposition 3.1, we can prove
that there exists a diagonal matrix, P > 0 such that:

P (−I + A0M(t)) + (−I + A0M(t))T P < 0

with M(t) = ∂σ(n)

∂x
[zr + B1ur]). Under the use of use

of mean value type arguments, the previous inequality
implies that

eT
z P (−ez + A0(σ(n)(ẑ + B1u)− σ(n)(z + B1u)) < 0

This inequality allows to ensure that there exists ε >
0 such that V̇ ≤ −ε‖ez‖2. On this basis, we deduce
that the error are bounded and that ez goes to zero
asymptotically (see [2]).

As matter of fact, under some conditions on the per-
sistent excitation [2], following the result provides in
[15], we can easily prove that the estimated parameters
approach their correct values, i.e.,

lim
t→∞

θ̂(t) = θv
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