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Abstract. The primary aim of this paper is to investigate the practical
interest of the incremental norm approach for analyzing (realistic) nonlin-
ear dynamical systems. In this framework indeed, incremental stability,
a stronger notion than Ls-gain stability, ensures suitable qualitative and
quantitative properties. On the one hand, the qualitative properties es-
sentially correspond to (steady-state) input/output properties, which are
not necessarily obtained when ensuring only Ls-gain stability. On the
other hand, it is possible to analyze quantitative robustness performance
properties using

the notion of (nonlinear) incremental performance, the latter being de-
fined in the continuity of the (linear) H,, performance (i.e. through the
use of a weighting function). As testing incremental properties is a difficult
problem, stronger, but computationally more attractive, notions are intro-
duced, namely quadratic incremental stability and ! performance. Testing
these properties reduces indeed to solving convex optimization problems
over Linear Matrix Inequalities (LMIs).

As an illustration, we consider a classical missile problem, which was al-
ready treated using several (linear and nonlinear) approaches. We focus
here on the analysis of the nonlinear behavior of this PI controlled missile:
using the notions of quadratic incremental stability and performance, the
closed loop nonlinear missile is proved to meet desirable control specifica-
tions.
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1 Introduction

1.1 Presentation of the general problem

Even if classical engineering design methods often take into account design
specifications indirectly or in an heuristic way, suitable control laws can be
nevertheless obtained using these techniques. This is especially true in the non-
linear context. As an alternative to the validation of these controllers using
intensive time domain simulations, it would be interesting to develop an anal-
ysis method, which enables to guarantee that the design specifications are met
by the controller.

Concerning these design specifications, which are to be satisfied by the non-
linear closed loop system, we first note that this desirable qualitative properties
is often defined in industrial problems in the continuity of the linear context.
As a first requirement, we try to guarantee steaty state behavior of the system,
such a constant (resp. periodic) output should be asymptotically obtained as
the response to a constant (resp. periodic) input.

As a second requirement, it is often necessary to take into account the vari-
able and unpredictable nature of the reference input signals, which act on the
system. Using the fact that the state vector of a system entirely summarizes
the past of this system at a given instant, it suffices to analyze the behavior
of the system for a given set of initial states, so as to understand the effect of
the past values of the reference input on the future behavior of the closed loop
system.

As a matter of fact, in the linear context, the asymptotic stability of the
system automatically ensures these two requirements. This is no longer true in
the nonlinear context (a simple counterexample is presented in section 5 which
illustrates this classical fact).

Furthermore, some quantitative properties are desirable, which guarantee
for example that the closed loop system exhibits nice properties when consid-
ering a particular type of input signal. In the linear context, this can be done
through the use of linear H, criteria. The main goal in this context is to de-
fine weighting functions which reflect typical specifications such as keeping the
tracking error signal small with respect to the reference input signal [59].

Moreover, all above requirements have to be robustly satisfied despite the
discrepancy between the physical system and its associated model(s). A possi-
ble way to take into account these uncertainties is also provided, in the linear
context, by the use of the Hy, norm.

In a nonlinear context, a solution to the above problems is provided by the
incremental norm framework. As a matter of fact, incrementally stable systems
were proved to exhibit many desirable qualitative [22, 23, 19, 18] and quantita-
tive [21, 25] nonlinear properties.

Remember that a nonlinear system is said to be incrementally bounded (i.e.
Liptchitz continuous) on Ls if there exists a positive finite constant n such that
|H (u1) — H(u2)||2 < nl|lur — uzl|2 for all u; and ug in Ls.

Since these properties, which correspond to typical control specifications,
are not necessarily obtained when only guaranteeing the Li-gain stability of



the closed loop system (a counterexample will be presented in incremental norm
framework appears especially interesting in an engineering context.

The specific aim of this paper is to show the practical interest of the incre-
mental norm approach, by applying this framework to a realistic missile problem.
This is done in two steps.

e A realistic PI controlled missile is first proved to be incrementally stable.
Note that the missile model and specifications were extracted from [38]
and that this particular control problem was intensively treated using
several (linear and nonlinear) approaches (see e.g. [35, 52, 2] and included
references). Note that the properties of the nonlinear closed loop missile
system are often not explored (e.g. in [35, 52]).

e This incremental stability property enables to analyze many qualitative
and quantitative properties of the nonlinear missile control system. Typ-
ical design specifications are especially proved to be met by the nonlinear
closed loop missile.

Anticipating the following subsections, which briefly present the properties of
incrementally stable systems, we would like to already emphasize two of these
properties. Firstly, a constant (resp. periodic) output is proved to be asymp-
totically obtained as the response to a constant (resp. periodic) input. As a
second point, this nonlinear closed loop system is proved to exhibit a suitable
incremental nonlinear performance property: using a weighting function as in
H, control, it is possible to guarantee a certain behavior of the output as the
response to a given set of reference input signals.

1.2 About the incremental approach to nonlinear system anal-
ysis

The incremental norm framework is useful for analyzing the properties of nonlin-
ear closed loop systems from both qualitative and quantitative points of view.
Even if we focus in this paper on some of these properties, other interesting
properties could be nevertheless considered, and especially attractive sensitiv-
ity properties (see [25] for details).

In a qualitative way, incrementally stable systems possess suitable steady-
state properties, and the effect of a non zero initial condition is guaranteed to
decay asymptotically to zero. As a first point, a unique steady-state motion
corresponds to a given input signal, independently of the initial condition and
despite a vanishing perturbation on the input signal (when analyzing the re-
sponse of the nonlinear closed loop system to a reference input signal, remember
that introducing an unknown initial condition can be interesting, since it allows
to consider the past unknown values of the reference input signal - see the first
subsection). As a second point, the steady state response to a constant (resp.
periodic) input signal is also constant (resp. periodic).

In a quantitative way, it is possible to analyze the robustness and perfor-
mance properties of a nonlinear closed loop system. The weighted incremental
norm approach was indeed originally introduced as a means to extend classical



H, control concepts into a nonlinear context [17, 21, 25]: in a linear context,
the original idea of [59] was to recast the initial design problem into a well
defined optimization problem, involving the minimization of a weighted Hyo
norm. In the same way, in the incremental norm approach, the idea is to define
the robustness and performance properties of a (nonlinear) system by adding a
suitable weighting function, which reflects the desired properties for the closed
loop.

As a matter of fact, the original motivation for developing the incremental
norm framework can be more precisely found in two different classical prob-
lems, namely the extension of linear H,, control to the nonlinear case (see
above) and the analysis and design of gain-scheduled control systems. Gain
scheduled control is indeed a widespread engineering method, which was only
recently addressed from a theoretical point of view (see e.g. [49, 39, 51, 50, 29]).
[20] especially emphasizes that the incremental norm framework is suitable for
analyzing gain scheduled controlled systems.

In most classical gain-scheduling design techniques', the underlying idea is
to derive in an heuristic way global properties for the closed loop (nonlinear)
system from local ones. As a great advantage of the incremental approach, it
is possible to link in a rigorous way local and global properties of nonlinear
systems.

Note finally that some basic properties of incrementally stable systems will
be

recalled in the following sections. The reader is referred to [17, 21, 25] for a
more complete presentation.

1.3 Practical analysis of incremental properties

Generally speaking, testing the incremental properties of a nonlinear operator
is a difficult problem, which typically involves solving Hamilton-Jacobi type
equations [21]. In the present paper, the main idea is rather to achieve a com-
promise between the conservatism and the complexity of the tests, which are
associated to (incremental) stability criteria (the interest of such an idea was
already emphasized by Safonov in [41, 40]).

To this purpose, we focus in this paper on the notions of quadratic incre-
mental stability and performance (a similar approach was adopted, for instance,
for the Lo gain estimation in [10]). In this new context, sufficient conditions
for the incremental boundedness of a nonlinear system can be obtained, which
now involve solving a Linear Matrix Inequality (LMI) problem. The underlying
idea is to use a specific type of solution to the original Hamilton Jacobi type
equation. Remember that LMIs correspond to convex constraints, for which
efficient numerical algorithms have been proposed [4].

As a matter of fact, the analysis of the PI controlled missile will be per-
formed in this paper using a large range of “LMI-based” criteria, from the

!The idea is to consider various linear time invariant (LTI) plant models, which correspond
to the time invariant linearizations of the plant model at various trim points. An LTT controller
is then synthesized for each of these LTI models and the nonlinear gain-scheduled controller
is finally obtained as an interpolation of the LTI controllers between the trim points.



simplest one (namely, the circle criterion [57]) to the most sophisticated ones
(derived from the multiplier approach, which is applied, either to the analysis of
LTT uncertain systems [31] or to the analysis of input-output properties [54, 6]).

1.4 The missile problem

As a matter of fact, when designing a missile control system, the problem is
threefold.

e The missile aerodynamic model is highly nonlinear.

e This aerodynamic model, which is derived from flight-mechanics equations
and then identified using

experimental data, is moreover uncertain. It is consequently necessary to
take into account uncertainties in both linear and nonlinear parts of the
model.

e The performance requirement is usually (very) strong. We would like
indeed to ensure, firstly the fastest tracking and regulation dynamics,
secondly a correct transient behavior and thirdly satisfactory robustness
in the face of uncertain dynamics (actuators, bending modes, delays) and
large (linear and nonlinear) aerodynamic uncertainties [13].

This control design problem typically remains unsolved from a theoretical point
of view. As a matter of fact, the nonlinear nature of the problem is rarely
considered even in analysis problems.

Nevertheless, a properly synthesized PI controller, whose design essentially
uses the frozen-time linearizations of the missile model, often works well in
practice. In the same way, it is possible to analyze the robustness properties
of an LTI (Linear Time invariant) missile model in the presence of LTI model
uncertainties [56, 13, 16]: the results appear here again rather satisfactory from
a practical point of view. To some extent, the contribution of the present paper
is also to provide a theoretical framework and associated practical computational
tools, in order to prove the (usually observed) good quality of well-known LTI
designs, such as PI control.

1.5 Content of this paper

The paper is organized as follows. The missile model and design objectives are
presented in sections 2.1 and 2.2. The PI controller is presented in section 2.3,
using a classical engineering method (see e.g. [27, 3]) 2.

Basic notions about input/output stability are recalled in section 3, such as
the use of (extended) Lo spaces and the notion of (incremental) Lo gain. The
notion of quadratic incremental stability is defined in section 4.1, while section

’In an obvious way, the purpose of this paper is not to propose the best PI controller,
which could be synthesized for this particular problem. Our aim is rather to synthesize a PI
controller in a classical way, so as to be able to then study its non linear properties in our
framework.



4.2 proposes (computationally feasible) sufficient conditions for quadratic in-
cremental stability. Qualitative properties of incrementally stable systems are
presented in section 5. The closed loop missile is proved to be quadratically
incrementally stable in section 6, using either the circle criterion or an LMI
condition. Section 7 further investigates the quantitative robustness and per-
formance properties of a generic nonlinear closed loop in the context of the
incremental norm approach. We then focus in section 8 on a practical way
to investigate the robust incremental performance properties, and apply this
technique in section 9, in order to prove the incremental performance property
of the missile, despite nonlinearities and neglected dynamics at the missile in-
put (noting here again that the performance is defined through the use of a
weighting function). Concluding remarks end the paper.

2 Missile model and design objectives

The missile model is described in the first subsection. The second one contains
the design objectives, while the third one is devoted to the design of the PI
controller.

2.1 Missile model

Figure 1: Definition of the missile variables.

We extract from [38] the pitch axis model of a missile, which flies at Mach
3 and at an altitude of 20,000 ft. Because of its realistic nature, the associated
control problem was intensively considered: see e.g. [35, 52, 2].

The idea is to use the tail deflection § so as to track an acceleration maneu-
ver. The missile is modeled as a rigid body (see figure 1), with control input ¢
and measured outputs 1 (acceleration output) and ¢ (rate output). The state



of the missile involves the angle of attack a and the pitch rate ¢:

& = cos(a)KaMCp(a,6, M) +q
q‘ = KqMQCm(aa(s?M)

whereas the normal acceleration output 7 is given by:
n = %MZCn(aa o, M)
The stability derivatives C;, and C,, are nonlinear functions of « and §:

Cola, 6, M) = ana® +bylala+c,(2— M/3)a+d,s
Con(a, 6, M) = apa® +bylala + cp (=74 8M/3)a + dpy6.

For this specific missile model, the two nice polynomial functions above are
thus given. Note nevertheless that these coefficients are generally only poorly
known in practice, or even that these functions are not determinated. It is
interesting to emphasize that our approach could be nevertheless applied even
in these cases.

See Table 1 for the description of various missile variables and Appendix A

« angle of attack (radians)

g | pitch rotational rate in the plane (Gz, Gz) (rad/s)
M Mach number

) actual tail deflection angle (radians)

de commanded tail deflection angle (radians)
e commanded acceleration in g’s
n actual acceleration in g’s

Table 1: Missile variables.

for the associated numerical data.
The actuator is modeled as a second order linear transfer function:

5 = —w?§ — 2§awa5 + w24,

where ¢ is the actual tail deflection and . the commanded tail deflection.

An open loop analysis of this missile model is first performed for a given
Mach M and for a given tail deflection §, namely M =3 and § = 0. A highly
nonlinear behavior is exhibited (see [47] for details). In fact, one can note:

1. the existence of 2 stable and 1 unstable (physically possible) equilibrium
points («, q), respectively (4.69x1072,3.24x1072), (—4.69x 1072, —3.24x
10~2) and (0,0);
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Figure 2: Trajectories associated to the two equilibrium points

2. a complicated stability domain in the space of the state vector, see figure
2: the dotted lines correspond to trajectories converging to the first stable
equilibrium point (—4.69 x 1072, —3.24 x 1072), and the full lines to the
trajectories converging to the second stable equilibrium point (4.69 X
1072, 3.24 x 1072);

3. astrong discrepancy between the behavior of the nonlinear system and the
behavior of its time invariant linearizations. Depending on the considered
equilibrium point, these linearizations are indeed stable or unstable.

2.2 Design objectives

When applying a step input signal to the reference input 7.(t), we would like to
obtain a time constant which is less than 0.35s, a maximal overshoot no greater
than 10% or 20% and a steady state error which is less than 5%. This perfor-
mance must be obtained despite the coarse modeling of the stability derivatives
over the operating range —20° < «/(t) < 420°.

The controller must moreover track a sinusoidal command with low or mid-
dle frequency, i.e. a frequency less than 2 rad/s, in n.(¢) with a sufficient
accuracy (less than 10 % of tracking error). This last requirement indeed cor-
responds to a classical maneuver specification.

2.3 PI controller design

A PI controller is designed on the time invariant linearization of the nonlinear
system at oy = 0.15 radians (about 8.6 degrees), by applying a classical engi-
neering method (see e.g. [27]). The controller has the following structure (see
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Figure 3: PI controller structure.

figure 3): . .
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u(s)
with
ko =112, ki =0.0867, ko =2.5 and k3 =0.5.

For a reference signal 7., kg is obtained by pointing out that, at the equilibrium
point (ge, 1), the input of the integrator in the PI controller must tend towards
0. As a consequence, we have:

kl (k[]nc - 776) + g = 0.

On the other hand, from the missile equations (1):

e =~ ngMne-
AS a consequence, ’I’]e = ’I’]C lf
K,
bo = g—%— 41 =1.12.
0= IR MEy

Nonlinear simulations emphasize the good results obtained with this simple
PI controller (see figure 4). Note that despite the highly nonlinear behavior of
the open loop missile, a satisfactory closed-loop system is achieved with only
one set of controller parameters, i.e. it is not necessary to use a gain scheduled
PI controller. As a matter of fact, it can be observed that when the “worst-
case” linearization is correctly controlled, then the nonlinear system appears
also correctly controlled, using the same PI controller.

Up to now, performance was estimated using intensive simulations (such as
the ones above) or by analyzing time invariant linearizations of the closed loop
[56, 13, 16]. The purpose of this paper is to propose performance and robust-
ness criteria (and associated computationally efficient tests), which enable to
guarantee the performance of a PI controlled nonlinear missile.
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Figure 4: Acceleration output as the response to a sequence of step commands
(left) and to a sinusoidal command (right).

3 Input/output stability: some recalls

3.1 Notations and definitions

The notations and terminology, which are recalled hereafter, are classical in the
input-output context (see [6, 54]). The Ly spaces are introduced as the spaces
of R™ valued functions defined on [0, +00), for which the quadratic norm is
integrable. < .,. > denotes the scalar product, defined on Ly: < f,g >=

o f®)Tg(t)dt. The Ly norm is defined as: ||f|l2 = \/[;"° || ()||2dt where
||.|| denotes the Euclidean norm. The causal truncation at T of a function f, de-
fined on [0, +00), is denoted Prf and is defined by Prf(t) = f(t) for0 <t <T
and 0 otherwise. The extended space associated with Lo, which is denoted as

§, corresponds to the space of R™ valued functions defined on [0, +00), whose
causal truncations belong to L,.

We consider a nonlinear system which is described by the following differen-
tial equation:

a(t) = [f(tz(t),u(t))
Yo y(t) = h(t,z(t), u(t)) (2)
z(0) = =z

where z(t) € R", y(t) € R™, and u(t) € RP. f and h, which are defined from
R x R™ x RP into R™ and RP respectively,

are assumed to be C' and to satisfy f(¢,0,0) = 0 and h(t,0,0) = 0.
The system is moreover assumed to be well-defined, i.e. the solution, z(t) =
#(t,0,x0,u), exists, is unique and belongs to L for all zo € R™ and for any
u € L§ (where ¢ is the flow of equation (2) and is defined from

RT x RT x R"™ x L§ into R™).

We can now introduce the notion of (incremental) Lo gain and (incremental)
passivity.

10



Definition 3.1 ¥, is said to be a weakly finite (L) gain stable system if there
exist v > 0 and > 0 such that || Xz, (u)||2 < yllull2 + B for all u € L. Xy is
said to be finite (La) gain stable when 8 = 0. The (L2) gain of ¥,, denoted by
|X20llis s defined as the minimal value of .

Definition 3.2 ¥, has a finite incremental gain if there exists n > 0 such
that ||2z,(u1) — Xz (u2)ll2 < nljur — usll2 for all ui,us € Lo. The incremental
gain of ¥4, denoted ||X,]|a, is defined as the minimal value of . Xy, is said
to be incrementally stable if it is stable, i.e. it maps Lo to Lo, and if it has a
finite incremental gain.

Definition 3.3 X, is incrementally passive if the scalar product < Xy, (u1) —
Yao(u2)lur —ug >> 0 for all uy,us € Lo. If there exists n > 0 such that
< Vg (u1) — Bag (ua)|ur — uz >> nllur — usl|3 for all ui,us € Lo, then Ty is
strictly incrementally passive.

Remark: An L9 gain stable (respectively a passive), linear time invariant
system is also incrementally stable (respectively incrementally passive).

3.2 Discussion

The above definitions may appear restrictive from an applicative point of view,
since a limited class of possible input signals is considered for the system: as
an example, a non-zero constant input does not belong to Lo. This restriction
can be nevertheless bypassed using the link between the input-output stability
properties on Lo and its extended space L£5. This link was investigated in details
by Willems (see the book [54]). The extended space concept was introduced in
the stability analysis framework by Sandberg (i.e. [45]).

Indeed, if ¥;, has a finite incremental gain less or equal to 7, then for all
T > 0 and for all uy,us € L5, the following relation is satisfied:

1Pr(y1 — y2)ll2 < nl|Pr(ur — uz)l2

where y; = 3, u;. This inequality clearly indicates that the input-output rela-
tion, which was already satisfied by the input signals inside L5, remains valid
inside L.

More generally, when studying the properties of the nonlinear system along
a possible motion, the use of the extended space L£§ enables to consider a much
larger class of possible inputs (e.g. non-zero constant inputs). As an illustra-
tion, introducing:

Lo([0,T]) = {f:[0, T] = R" | esssupyepo,ry [[f(#)]] < oo}

Lo([0,T) = {f:00, T] = R™| fy lf ())]7dt < oo}

11



the inclusion L£([0,T]) C L2([0,T]) is true for each value of T. As a conse-
quence, the extended space, which is associated with Lo for a specific value of
T, contains all the signals which have (almost everywhere) a finite amplitude
on [0,T7].

In conclusion, when characterizing the properties of the nonlinear system,
the use of the extended space L§ enables to take into account most of the
possible input signals, which are generally considered in an application.

4 Quadratic incremental stability

Since testing incremental stability of a nonlinear system is a difficult problem,
we introduce a stronger notion, named quadratic incremental stability, which
is easier to handle. This notion is defined in the first subsection, while an
associated test is introduced in the second one. This (LMI-based) test is com-
putationally efficient.

4.1 Definition and property

In this section, we focus on the input to state properties of the system: a suffi-
cient condition of incremental stability is proposed in the following theorem for
the case where y = z (i.e. h(t,z,u) = z in equation (2)). This theorem is an
extension of a result, which was previously published in [24]. It is straightfor-
ward to extend it to the case of input to output properties (i.e. the case where
h(t,x,u) # x). Discussing these properties would be nevertheless beyond the
scope of this paper.

Theorem 4.1 If there exist a symmetric, positive definite matriz P and two
positive constants € and oy, such that the two following conditions:

(@) PYL(t,0u) + afT(txu)P<—eI

@ (@) @)

are satisfied for allt € R, x € R™ and u € RP, then system (2) is incrementally
stable for any initial condition g € R™.

With reference to the quadratic stability concept, we introduce then the follow-
ing definition.

Definition 4.1 A system which satisfies the conditions of theorem 4.1 is said
to be quadratically incrementally stable.

First note that quadratic incremental stability is a stronger concept than
incremental stability. A quadratically incrementally stable system is incremen-
tally stable and, in addition, it satisfies conditions (i) and (i7) of Theorem
4.1. But quadratic incremental stability can be easier to test than incremental
stability, through conditions (7) and (i) of Theorem 4.1.

12
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Figure 5: Incremental stability using a passivity condition

Note finally that the above theorem could be considered as reminiscent of
the incremental stability theorem of [58], in the context of the connection of two
(incremental) passive operators. The system & = f(x) can be indeed modeled
as the connection of integrators with the (memoryless) nonlinearity f(.) (see
figure 5). We remark then that the incremental stability property of this system
is not modified by the introduction of any (invertible) matrices P and P~!. If
P is positive definite, the operator P~! [ becomes then (incrementally) passive.
Matrix P can be referred as a multiplier [58, 54]. Condition (4) is finally obtained
by applying the (incremental) passivity theorem [58, 6], which is given below.

Theorem 4.2 [6] Consider the well posed feedback system u; = e; + Hoeo and
uy = eg — Hyey, where Hy and Hy map LS into L5. Let H10 = 0 and H20 = 0.
If Hy has finite incremental gain and is strictly incrementally passive and if Ho
is incrementally passive, then the feedback system is incrementally stable.

A similar theorem can be obtained when considering incremental gains of
the sub-systems H; and Hs.

Theorem 4.3 [6/ Consider the well posed feedback system u; = ey + Haea and
uy = eg — Hyey, where Hy and Hy map LS into L£§. Assume that Hy (resp. Hs)
is incrementally stable with the incremental gain ny (resp. n2). If mne < 1,
then the feedback system is incrementally stable.

4.2 Sufficient conditions and their computation

Checking condition (i) of theorem 4.1 may reveal uneasy in practice, so that
we propose in this subsection an associated sufficient condition.

e To this aim, we first assume that the set of all matrices, which are obtained
for every value of x and wu:
of
-

8—(t,,’I},U)

13



is embedded in the set of matrices F(6(¢)) defined as (polytopic model - see
4)): r
FO(t) =Y _0;(t)4;, Yi—10i(t)=1 and 6;(t) >0
i=1

where each 6;(t) is a function of z and u. On the one hand, this embedding can
lead to conservative results since the set of matrices F'(6(t)) can be bigger than

the set of matrices g%(t,x,u). But on the other hand, numerically attractive
conditions, ensuring condition (7), are obtained using the polytopic model.

Condition (i) of theorem 4.1 can then be interpreted in the following way.
The problem is now to find a quadratic Lyapunov function V = §z” Péz, which
proves the stability of the time-varying system:

oz = F(0(t))dx (3)

and thus the stability of all the time varying linearizations of the nonlinear
system (2).

In this context, condition (7) of theorem 4.1 holds if there exists a positive
definite matrix P satisfying (see e.g. [40, 4]):

ATP+PA; <0 i=1,...,r (4)
Condition (i) of theorem 4.1 can then be interpreted as testing whether the

maximal singular value of the matrix g%(t, x,u) is uniformly bounded.
e A more general LFT (Linear Fractional Transformation) model can be used
for F(0(t)), namely (see e.g. [4, 10, 48]):
F(0(t) = A+ BpA(0(t) (I — Dgp A(6(2))) Cy
where A, B, C; and Dy, are real matrices and where:

A(0(t)) = diag (61(t)In,,-- -, 0r(t)In,) -

Each 6;(t) is a function of z and w, which is known to lie inside an interval
[aj, b;]: without loss of generality, we assume in the sequel that b; = 0.

Condition (i) of theorem 4.1 holds now if there exist a definite positive
matrix P and r positive definite matrices S;, with dimension n; X n;, satisfying
(see e.g. [48]):

ATP +PA PB,+CJAS “0 5)

BZ’P + C,AS Dg;,AS +ASDy,, — S
with A = diag (a11n,,...,a,1,,) and S = diag (Si,...,S5;).
Remarks:

(¢) Conditions (4) and (5) correspond to a feasibility problem over Linear Ma-
trix Inequalities [4], which can be efficiently solved using e.g. the technique of

14



[53].

(i4) More accurate models and less conservative conditions could be obtained
(see e.g. [47] and included references).

(#33) If r =1 and n; = 1, condition (5) is satisfied if and only if the (graphical)

circle criterion holds [55].

5 Qualitative properties of quadratically incremen-
tally stable systems

We will prove in the following section that the missile control system is quadrat-
ically incrementally stable. The present section presents the qualitative prop-
erties, which are associated to this class of nonlinear systems (see [22, 23, 19]
for the proofs of the theorems, which are presented in this section).

The first subsection considers the case of a fixed input signal with a pertur-
bation of the initial condition. The second subsection is devoted to the charac-
terization of the system trajectory variation, with respect to a variation of the
input signal. As a consequence of these results, there exists a unique steady-
state motion, which corresponds to a given input signal, independently of the
initial condition and despite a vanishing perturbation on the input signal. More
specifically, in the final subsection, we present a suitable steady-state property
for quadratically incrementally stable systems, namely the steady state response
to a constant (resp. periodic) input signal is a constant (resp. periodic) output
signal.

We first motivate our interest for the incremental norm approach with the
following example.

5.1 Motivating example

We consider the following nonlinear system:

. 0 —70 1
T = r + P
[70 —14] lO]

¢ = [ 1 0]z+w
p = —flqg)
z = p

with f(q) = 90¢® —200q|q| +120q. L gain stability between input w and output
z can be proved by a straightforward application of the passivity theorem of
[57, 6]3: the system is indeed the negative connection of a passive linear time
invariant system with a positive nonlinearity. However, when applying a step
input w of magnitude 31, the output z does not converge to a constant value
(see figure 6, left). This fact does not mean that if the system is only Lo gain

3It is also possible to prove that this system is not incrementally stable. This proof is
omitted for the sake of brevity.
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stable, then its performance is poor; it just means that the Ly gain stability
property is not sufficient to ensure a good response to a constant input.

If f is now chosen as f(p) = 90p® + 120p, the incremental stability of the
system is now proved by applying the incremental passivity theorem of [57, 6].
A numerical simulation confirms that the output z converges to a constant value
when applying the same step input w as previously (see figure 6, right).

) 02 04 06 08 1 12 14 16 18 2 ) 005 01 015 02 025 03 035 04 045

Figure 6: Time response to a step of an £y gain stable system (left) and of an
incrementally stable system (right)

5.2 Behavior with respect to the initial condition

We focus, in this section, on the Lyapunov property for the unperturbed motions
of a quadratically incrementally stable system. Let us recall that an unperturbed
motion is a specific motion of X, associated with an input, u, € £§, and with
an initial condition, zo, € X, i.e., 2,(t) = ¢(¢,0, zor, u,). In the sequel, and with
reference to any specific unperturbed motion associated with Y, we characterize
the perturbation of the motion, which is associated with the same input but
which is initialized with a different initial condition.

Theorem 5.1 If ¥, is a quadratically incrementally stable system, then all
its unperturbed motions are uniformly globally exponentially stable, i.e. there
exist two positive constants a and b such that for any input u, € LS and any
initial condition xo. € R™, one has

p(t,t1, zr (t1), ur) — Gt 21, Top, ur)|| < allzr(t1) — $0p||e_b(t_tl)

for all t1 >0 and t > t1, any xop € R" where x,(t) = ¢(t,0, zor, uyr).

5.3 Input-output behavior of incrementally bounded systems

In this section, the behavior of the system is characterized with respect to a
perturbation on the system input. We first consider the effect on the state
behavior of a vanishing perturbation.

Theorem 5.2 Let ¥, be a dynamical system which is quadratically incremen-
tally stable and let us consider a specific unperturbed motion associated with an
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mput ur € LS and an initial condition zo € R™. Then for any u, € LS such
that u, — @, belongs to Lo, the following property is satisfied:

ltlim llp(t, 0,20, ur) — ¢(t,0, 0, % )|| =0
— 00

As a matter of fact, this theorem implies that the asymptotic behavior of
the system depends on the asymptotic behavior of the input. As a consequence,
the system has a fading memory property since the effects of the past vanish.
We now consider the effect of a persistent perturbation with a finite amplitude.

Theorem 5.3 Let ¥, be a dynamical system which is quadratically incremen-
tally stable. Let us consider a specific unperturbed motion associated with an
imput ur € LS and an initial condition xo, € R™. Then, for any finite constant
K, and for any input u,(t) satisfying ||u, (t) — U, (¢)|| < Ky, there exists a finite
constant K, such that

||¢(t? 07 xOT‘a ’U,7-) - ¢(ta 01 xOpa 67‘) || S K:E
for all t > 0 and for all zo, € R™. Moreover, limg, 0 Ky = 0 if zo, = x0p.

In other words, a perturbation with a bounded magnitude generates a pertur-
bation of the motion, which has also a bounded magnitude.

As a consequence of the two above theorems, the nonlinear system has a
unique steady state motion for a given input signal.

5.4 Constant and periodic inputs

In the context of quadratically incrementally stable systems, the steady state
response to a constant (resp. periodic) input signal is a constant (resp. periodic)
output signal.

Theorem 5.4 Let ¥;, be a stationary and quadratically incrementally stable
system. If the input of the system, namely u,, is a T-periodic input, then the
motion of the system s asymptotically T-periodic. Moreover, there exists at
least an initial condition for which the motion is T-periodic.

Corollary 5.5 Let X, be a stationary and quadratically incrementally stable
system. The motion which is associated to a constant input tends asymptotically
to a constant. Moreover, there exists an equilibrium point for each possible
constant input.

Remarks:

(2) The proofs of all previous results are available in [19]. Some indications
concerning these proofs are given in appendix B.

(#7) Theorem 5.4 can be extended to the larger class of almost periodic input
signals [18, 19].

(#41) The theorems of this section holds if the considered nonlinear system is
incrementally stable, instead of quadratically incrementally stable (with some
assumptions about the system realization - see [19]).
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6 The PI controlled missile is quadratically incre-
mentally stable

Two different methods are used in this section to prove the incremental stability
of the PI controlled missile. The first method is a straightforward application
of the circle criterion to the LFT model of the time varying linearization of
the missile, whereas the second method relies on an LMI formulation combined
with a polytopic modeling. The first approach is rendered possible by the spe-
cial structure of the considered problem. For more general problems, only the
second method can be applied. In both approaches, the family of linearizations
is modeled in a rather brute way, so as to take into account the uncertainties
in the nonlinear aerodynamic model.

6.1 LFT model and the circle criterion

The first point is to note that the linearizations of the nonlinear closed loop
missile model along any trajectory can be written as the connection of a linear
time invariant system h(s) with a time-varying gain k(t) *. A direct calculation
gives these time varying linearizations as :

0x(t) = (A + bk(t)c)=(t)
where k(t) = (3anao(t)? + 2b,|ap(t)|) for the missile linearization at ag(t) and

Alb |
c|d
KoMen(2 -4 1 K.Md, 0 0 KoM
K M?c,, (—7+ 824L) 0 K,M?d,, 0 0 2K, M?
0 0 0 1 0 0
0 ksw? —w? 26w, w2 0
—kiko B=M?en (2= 5) ke —kikeB=M7d, 0 0 | —kiko B=M?
I 1 0 0 0 0 0 |

For the a priori chosen interval of variation of a(t) (namely 4+ 20 degrees), the

corresponding interval of k(t) is [—15, 0]: k(t) is consequently assumed to be-
long to the sector {—15, 0}, and the closed loop system can be rewritten as the
connection of a linear time invariant system, defined by the transfer function
h(s) = d + c(sI — A)~'b with the time varying gain k(t).

“To obtain in a simple way such an interconnection, we use the fact that cos(a) =~ 1,
am = 2a, and b,, = 2b, in the missile model data. These approximations do not affect
the results and simplify the calculations. They particularly allow the use of simple standard
criteria to prove the incremental stability property.

®A nonlinearity f is in the sector {a, b}, with a < b,if

Vg, (f(q) —aq)(f(q) —bq)) <0
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When applying the results of section 4 (Remark (7i7)), the closed loop non-
linear missile is quadratically incrementally stable if the conditions of the circle
criterion hold. As the real part of the Nyquist diagram of h(jw), which is rep-
resented on figure 7, is greater than —% ~ —0.066 [57], the circle criterion
guarantees the quadratic stability of the (time varying) linearizations of the
missile.

Condition (¢) of theorem 4.1 consequently holds [55]. Furthermore, as 2—5
is a constant matrix in our case, condition (i7) of theorem 4.1 is also satisfied.
It can thus be claimed that the PI controller ensures the quadratic incremental
stability of the (nonlinear) closed loop missile.

Figure 7: Nyquist diagram of h(jw)

6.2 An LMI approach

In the case of a more complex example, checking condition (7) of theorem 4.1
would need a more sophisticated approach, based on LMI optimization. To this
purpose, a polytopic model can be obtained in the case of our missile example.
Let: 5
Ftau) = A+kbpe

where the time varying gain k(t), the state space matrix A and vectors b and ¢
are defined in the above subsection. The nonlinear closed loop missile is then
quadratically incrementally stable if there exists a positive definite matrix P
satisfying:

ATP+PA<0 and (A- 15bc)T' P+ P(A — 15bc) < 0.

Remember indeed that k(¢) belongs to the sector {—15, 0}. Using then the
LMI optimization code SP of [53] and the Matlab interface for this code,
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LMITOOL [28], a matrix P satisfying the above equation can be obtained as:

6.5479  0.0974 —0.0927 —0.0009 —0.6899 ]
0.0974  0.2843 —-0.3851 —0.0033  0.6318
P= -0.0927 —-0.3851 0.7955  0.0056 —0.7863

—0.0009 —-0.0033  0.0056  0.0001 —0.0069
| —0.6899  0.6318 —0.7863 —0.0069  2.3722

7 An incremental approach for nonlinear control

It is illustrated in this section that some robustness and performance problems
of multi-input multi-output closed loop nonlinear systems can be formulated,
in the same way as in the linear context [59, 8], as well posed optimization
problems. These aspects were already presented in [17, 21, 15, 25]. Such an
approach is based on the induced norm of a certain augmented system. All
results are extracted from [17, 25].

Figure 8: Nonlinear feedback system

The nonlinear feedback system of figure 8 is considered, where F', G and
K are nonlinear causal operators from £§ to £5. G can be interpreted as the
plant model and F' and K as a two-degree-of-freedom controller. The closed
loop input-output map H,, = GK(I + FGK) ! is assumed to be well-posed.

We consider, in this section, the following problems:

Nominal incremental performance: how performance can be captured in
the incremental framework, when there is no uncertainty in the plant
model,

Robust incremental stability: how to guarantee the stability of the closed
loop system despite uncertainties,

Robust incremental performance: how to ensure incremental performance
despite uncertainties.

The last subsection is dedicated to (LMI based) criteria for the practical
check of these properties.
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7.1 Tracking and asymptotic properties

The qualitative notion of performance is quite difficult to handle in the non-
linear input-output context. We first recall the approach of [7], in which the
performance is defined as the ability for the system to minimize “asymptot-
ically” the gain between the inputs of interest r and the error signals e (see
figure 9). More precisely, denoting as RS the set of input signals of interest, the
following definition is introduced.

Figure 9: Tracking performance analysis

Definition 7.1 The asymptotic performance of the closed loop system of figure
9 is satisfied on R if there exists Ty > 0 such that :

||PT(I+FGK)71’/’||2 < ||PT’I“H2 Vr € Rfl
for T > Ty.

This definition ensures that the relation Hy, ~ I is asymptotically satisfied
on RS (see figure 8). As in the H,, context [59], we will consider hereafter that
there exists an invertible operator W satisfying the following inequality:

1PrW () ]l2 < [|1Prr)l2

when 7 belongs to R and where T is taken sufficiently large. Such an operator
W characterizes the set of input signals Rj. We have then the following result.

Theorem 7.1 The asymptotic performance of the closed system of figure 8 is
guaranteed on R if
I(I + FGE)™'Wi|la <1

Our initial aim was to put the asymptotic performance requirement under

the form of a weighted criterion: in this context, a weighted Lo type criterion
appears a priori especially suitable (rather than the weighted incremental type
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criterion of Theorem 7.1). A weighted L type criterion has indeed the following
form: the asymptotic performance is guaranteed on R if

I(I+FGK)™"'Wy|; <1

There is however a problem when the initial condition problem is taken
into account. Indeed, when the initial condition of an unbiased operator (i.e.
H(0) = 0) changes, the nonlinear operator generally becomes a biased operator
(i.e. H(0) # 0) 6. It is easily proved in this case that the initial criterion,
namely ||(I + FGK) 'Wi(w)||2 < ||w||2 boils down to:

I+ FGE) " 'Wi(w)ll2 < [lwll2 + 8

where [ is a strictly positive constant. As a consequence, the performance of
the system is now given by:

(T + FGK)™ (r)l < W' (r) ]l + 8

Therefore, the value of § limits the performance of the system, and this means
that an Lo type criterion does not guarantee the robustness of the asymptotic
performance property with respect to the initial condition problem: as illus-
trated in section 5, the use of an incremental type criterion allows to bypass
this problem.

7.2 Robustness against unstructured uncertainties

We consider the case of unstructured uncertainties ﬁ, which are inserted at
the input or output of the plant model G. This model perturbation A may
represent uncertainties on the actuator (for an example, see figure 10) or sensor
dynamics, and more generally neglected dynamics.

We assume that A belongs to a set defined as:

Q5 = {A = W3AW: | ||Alla < 1}

where A is a (possibly nonlinear) causal operator from £§ to £§ and Wy and
W3 are known, causal, incrementally stable input-output maps from £§ to LS.

A stability result is proposed for the interconnected system of figure 11
(M is a generic nominal closed loop system - see for instance figure 10). In this
case, the (internal incremental) stability property corresponds to the incremen-
tal stability property of the (well posed) operator defined by the inputs u; and
ug and the outputs y; and ys.

Theorem 7.2 [17, 25] If M is incrementally stable and if the following in-
equality holds:

[WeMWs|la <1
then the closed loop system of figure 11 is incrementally stable for any uncer-
tainty A belonging to Q5.

Swith some assumptions concerning the reachability of the new initial condition from the
previous one.
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Figure 11: Robustness analysis of the nonlinear feedback system

7.3 Performance with uncertainties

We first define the notion of robust performance.

Definition 7.2 The performance of the closed system of figure 12 is incremen-
tally robust if it holds for every A € Qx, that is:

VA€ Qz, T+FG(I-A)"K)"'Wi|a<1

In the same way as in the linear case [17], Theorems 7.1 and 7.2 can be
combined to capture both performance and uncertainties in a single statement.

8 How to (practically) check the conditions presented
in section 7 7

A class of interconnected systems is introduced in this section. The closed
loop PI controlled missile will be indeed rewritten under this form in section
9. Note that the stability analysis of a related class of interconnected systems
was recently considered in [33]. In this section, we adapt classical [58, 54, 6]
as well as more recent results, which were developed for the stability analysis
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F

Figure 12: Robust incremental performance

of uncertain Linear Time Invariant systems, in order to obtain directly ap-
plicable conditions, ensuring the robust incremental stability and performance
properties described in the previous section.

8.1 Interconnected systems

,,,,,,,,

Figure 13: Interconnected system

In order to obtain computable conditions, we focus on the case when the
closed loop system can be rewritten as the connection of a stable linear time
invariant (LTT) system M (whose Laplace transform is M (s)) with a possibly
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nonlinear and time varying operator A:

p = Ag)

=) ’

where e is the output of the system and w its input. p and ¢ are internal
signals. The LTT system M models the part of the system without uncertainties,
whereas the global system (6) is perturbed by nonlinearities and (dynamical)
uncertainties in A. M can be split into four sub-blocks, with respect to the
signals dimensions, in the following way:

M(S): MQP(S) qu(s)
sz(s) M (3) .

To this system, is associated the feedback connection Mgy,-A defined by:

p=A(q) and q= My(p).

We assume that the closed loop is well-posed”. The operator A, which thus
models the uncertain and nonlinear part of the system, has the following struc-
ture:

A 2 diag (Ar,...,Asy. .. A,). (7)

Each sub-block of A belongs to a certain class of uncertain and nonlinear sys-
tems.

e A; may be an (unstructured) model uncertainty: it is thus a multi-input
multi-output operator, which is only known, either to have an incremental
norm less than 1, or to be incrementally passive; depending on the consid-
ered problem, A; can be nonlinear time variant or linear time invariant;

e A; may be otherwise a single input, single output static nonlinearity, i.e.
A; = f;, where f; is a nonlinearity which is known to be incrementally
passive, or to have an incremental gain less than one.

In the sequel, we thus consider the case where the A operator is incrementally
passive or has an incremental gain less than one. Several additional classes
could be nevertheless considered, such as uncertain time invariant gains (i.e.
LTI parametric uncertainties) or uncertain time delays (see e.g. [46]).

Note finally that an interconnected system, with incrementally passive sub-
systems, can be transformed into an interconnected system, with sub systems
whose incremental gains are less one, via the so-called loop shifting transforma-
tion (see e.g. [6]).

"This assumption is mild. It can be proved that the conditions obtained in the sequel
guarantee the well-posedness (see the book [54]).
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8.2 Interconnected system analysis

The system (6) is said to be incrementally stable if the associated feedback
connection Mg,-A is internally incrementally stable, that is, the operator from
(w1, wy) to (g, p) defined in figure 14 is incrementally stable.

w1 +
A

O

T 4+ w2

Map 770

p

Figure 14: Internal stability

One way to prove the incremental stability of this interconnection is to
directly apply theorem 4.2 or theorem 4.3. Nevertheless, such an approach can
lead to a conservative criterion. As it was already pointed out in subsection 4.1,
one way to reduce this conservatism is to introduce multipliers and/or scalings.
Multipliers are usually considered when the sub-systems are (incrementally)
passive (see e.g. [54, 6, 1, 30]), whereas scalings are introduced in the context
of the (incremental) small gain theorem (see e.g. [9]). The basic idea is to
transform the closed loop Mg,-A into a new closed loop qu—ﬁ, which has
the same stability properties, i.e. Mgy,-A is stable if and only if qu—ﬁ is
also stable. Furthermore, if A is incrementally passive (respectively with an
incremental gain less than one), then A must also be chosen incrementally
passive (respectively with an incremental gain less than one).

Families of multipliers or scalings are now proposed for each A; sub-block
class. Assume

first that A; is a multi-input multi-output nonlinear time variant model
uncertainty or

a static nonlinearity. If its incremental norm is less than 1, then the incre-
mental norm of the operator defined by p = %A()\q) is also less than 1, for any
real A # 0. X is thus a scaling. On the other hand, if A; is passive, then the
operator mA is also passive for any real m > 0. m is thus a multiplier. In
addition, if A; is linear time invariant, then A\ and m can be taken as frequency
dependent, with no pole or zero on the imaginary axis [5, 31]. When consider-
ing the overall operator A of equation (7), and when assuming that A has an
incremental gain less than unity, the corresponding scaling set D(A) has then
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the following structure:
D £ diag (di1,...,d;I,...,dT)

where the scalars d; = )\% possibly depend on the frequency, if A; is linear time
invariant.

Theorem 8.1 System (6) is incrementally stable, for any A whose incremental
norm is less than 1, if there exists a scaling D € D(A) satisfying:

for all w, Myp(jw)* D(jw)Mgp(jw) — D(jw) < 0. (8)

Proof: The proof is derived from the previous discussion and from the appli-
cation of theorem 4.3.

When A is incrementally passive, let us now introduce the set of multipliers
M (A) with the following structure:

A .
My = diag (mqI,...,m;I,...,m.I)
where m; is possibly frequency dependent if A; is linear time invariant.

Theorem 8.2 System (6) is incrementally stable, for any A which is incre-
mentally passive, if there exists a multiplier My € Mpu(A) satisfying:

for all w, Mmul(jw)qu(jw) + (Mmul(jw)qu(jw))* <0. (9)

Proof: The proof is derived here again from the previous discussion and from
the application of theorem 4.2. See also the interpretation in section 4.1 of
theorem 4.1.

Both theorems (8.1) and (8.2) can be applied to prove the robust incremental
stability property, which was defined in section 7.

We now focus on the incremental performance evaluation. We propose con-
ditions for ensuring that the interconnected system (6) has an incremental gain
less than one. If A is incrementally passive, then system (6) is first transformed
into a new interconnected system, whose incremental passivity ensures that the
system (6) has an incremental gain less than one. Such a transformation is
detailed in [6, page 216].

Let us introduce the set DP"/(A) of scalings of the form:

prerf 2 diag (D, arer! I)
where D € D(A) and dP"/ is a positive scalar.

Theorem 8.3 System (6) has an incremental gain less than 1, for any A whose
incremental norm is less than 1, if there exists a scaling DPe"f € DPerf(A)
satisfying:

for all w,  M(jw)*DP"! (jw)M (jw) — DP"/ (jw) < 0. (10)
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Assume now that A is incrementally passive and that the incremental pas-
sivity of the interconnected system (6) is to be proved. Let us introduce the

set of multipliers MP"{ (A) of the form: Mnglf 2 diag (M1, Mper pI) where

mul
My € Mppu(A) and my,e, ¢ is a positive real scalar.

Theorem 8.4 System (6) is incrementally passive, for any A which is incre-
mentally passive, if there exists a multiplier MS{’Z/ € Mperf(A) satisfying:

mul

for all w,  MP] (jo)M (jw) + (M2 (jw)M(jw)) " <0. (1)

The proof of both theorems 8.3 and 8.4 is beyond the scope of this paper

(noting that these proofs can be obtained in a straightforward way using the S-

procedure - see [34]). Note simply that these theorems can be applied to prove

the robust incremental performance property defined in section 7, as illustrated
in the next section on the problem of analyzing the PI controlled missile.

9 Quantitative analysis of the PI controlled missile

9.1 Nominal (incremental) performance analysis.

We prove the incremental performance of the missile control system. This
performance is defined through the use of a linear weighting function W, which
classically defines a template between the reference input r and the tracking

error e:
s+ 25

s+0.25°

The purpose of this weighting is to ensure the tracking of reference signals r at
low frequencies (see figure 15).

Wl(s) =0.1

T

=
.
+

)

PI

Figure 15: Nominal incremental performance analysis.

The first step is to rewrite the closed loop system as an interconnected
system M - A, of the form (6). See figure 15 for the definition of the transfer
M , while A = f. The system is thus rewritten as the connection of an LTI
system M (s) with the nonlinearity f(a) = a;,a3+by,|a|. For the a priori chosen
interval of variation of «(¢) (namely £ 20 degrees), f is in the incremental sector
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{~15, 0}8. G is the following LTI system on the figure?:

gy = KoMc,(2-%) 1 e KoM  K,Md, 1
| KgMZ%c,(-7+8%) 0 2K,M? K,M?d,, b
¢ [ 1 0 0 0
. Y41
n | = | pmMle(2-M/3) 0 |zc+ | LuM® L=Md, l 5 ] :
q I 0 1 0 0

As explained in the previous section, the obtained system M-A is transformed
by loop shifting into a system M-A, where A is passive and the performance
property corresponds to an incremental passivity property. The second step is
the application of Theorem 8.2, which allows to prove the incremental sta-
bility of the closed loop for any nonlinearity f in the (incremental) sector
{-15, 0}. Remember that function f (which summarizes the nonlinear aerody-
namic model) is poorly known : this fact is explicitly taken into account by con-
sidering the whole set of nonlinearities inside the incremental sector {—15, 0}.

The incremental performance of the nonlinear system is then proved if con-
dition (11) is satisfied. Note that this condition is a frequency dependent Lin-
ear Matrix Inequality constraint. Searching for Mgf;lf (jw) satisfying condition
(11) is thus an infinite dimensional optimization problem. Nevertheless, by
the Kalman-Yakubovitch-Popov lemma [36], the frequency-dependent condi-
tion (11) can be rewritten as an LMI constraint with an additional “multiplier”
P. The corresponding optimization problem becomes thus finite dimensional
and appears computationally more tractable. As a matter of fact, this LMI
condition is equivalent to a scaled real bounded lemma condition [4].

Let (Apr, By, Car, Das) be the state-space representation of the LTT sys-
tem M (s). The considered problem boils down to the following optimization
problem. The interconnected system is incrementally performant if there exist
a positive definite matrix P and two positive scalars § and A satisfying:

T
T| P

AM\BM] .
0

P
0
0

o > | O

0], 5 0 0
0 l M M A 0| <0 (12)
B 0 8

Using the Matlab LMI Control Toolbox [26], we find that condition (12) is

A nonlinearity f is in the incremental sector {a, b}, with a < b,if

Yar #q2,  (f(qr) = flg2) —algr — @) (f(q1) — f(q2) —b(q1 —q2)) <0

YWe use here again the fact that cos(a) & 1, am = 2a, and b, =~ 2b,.
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satisfied for A = 0.372, § = 0.22 and P:

9.2 Robust (incremental) stability analysis.

Neglected dynamics A are added to the closed loop system so as to take into
account model uncertainties at the actuator input (e.g. unmodeled actuator
dynamics or time-delays - see figure 16). A is a linear time invariant system,
which is defined by:

1Al < 0.5. (13)

The above relation is a generalization of the (linear) modulus margin of 0.5,
which is itself a generalization of the classical 6 dB gain margin. This gain
margin requirement is standard (and stringent) in the context of missile control.

A
q2 b1 q1

’—‘ PI Actuator —

Figure 16: Robust incremental stability analysis.

As in the previous subsection, the system can be rewritten as the connection
of an LTI system M (s) with both the model uncertainty A and the nonlinearity
f(a) = ama® + by la| (see figure 16). A thus becomes A = diag(f, A).

We would like to check the incremental stability property of the nonlinear
closed loop, for all model uncertainties A satisfying equation (13) and for all
nonlinearities inside the incremental sector {—15, 0}. A sufficient condition
was proposed in theorem 8.2. In fact, we consider a little more complicated
problem. We would like indeed to compute an upper bound v,z of the inverse
input margin v, which is defined as the smallest v such that the system is in-
crementally stable, for any A satisfying ||Alle < % and for any nonlinearity
in {—15, 0}.

This problem appears to be a generalization [58, 37, 32] to the nonlinear
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context of a skewed p problem [11, 12], noting that skewed p analysis was orig-
inally introduced in the linear context (see for instance [42, 43] for other non-
linear formulations of u problems). For the sake of brievity, we simply indicate
that, from condition (8), our problem boils down to the following optimization
problem (see [47] for more details):

2

viy(w) = minimize v(w)?

over the variables s1(jw) = s1(jw)* >0, A >0

subject to

for all w, M (jw)*diag(\,0.25s; (jw))M (jw) — diag(\, v(w)%s1 (jw)) < 0
(14)
with ves; = max,, Vest(w). Condition veg(w) < 1 is to be satisfied for every w.
s1(jw) is the (frequency dependent) multiplier, which is associated to the linear
uncertainty (namely the neglected dynamics), whereas A is the (real constant)
scaling, which is associated to the nonlinearity f.
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Figure 17: Generalized v analysis.

As pointed out in [14], the previous LMI conditions are homogeneous. As a
consequence, in the constraint (14), A can be set to 1 without loss of general-
ity. It then becomes possible to solve the above optimization problem using a
conventional frequency gridding approach, since the values of s;(jw) at various
frequencies are independent.

The problem is consequently solved in an approximate way, that is at each
point of a frequency gridding (in the same way as in y analysis problems). A
generalized eigenvalue problem is solved at each frequency using the solver of
the Matlab LMI Control Toolbox [26].

Figure 17 presents the values of v(w) as a function of frequency w (at the
zero frequency, one obtains v(0) = 0.33). The maximal value of v(w) is ob-
tained as v = 0.92. Since this value is less than 1, it can be claimed that the
robust incremental stability is guaranteed despite the unmodeled dynamics at
the plant input.
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9.3 Robust (incremental) performance analysis.

We now prove the robust incremental performance of the missile control system,
with respect to the uncertainty considered in the previous subsection. We first
define in the sequel a new linear weighting function Wy, which characterizes the
worst case performance level (i.e. the performance level, which is still considered
as satisfactory in the worst case - the weighting function Wy of the previous
subsections corresponded to a nominal performance requirement, which could
thus be chosen more stringent) :

s+ 25
Wils) = 0.1 =5
f
_________________________________ p2_  pv| |41
Actuator G —

Figure 18: Robust incremental performance analysis.

Robust incremental performance is proved by checking condition (11) of
theorem 8.4. In the same way as in the previous subsections, we transform the
problem to fit it in the passivity framework. As previously, the problem boils
down to the following optimization problem: find two positive scalars mq and
ms, a transfer function ms(jw) = me(jw)*, satisfying for all w:

diag(m, m2(jw), m3) M (jw) + M (jw)*diag(mq, m2(jw), m3) < 0. (15)

where M is obtained from M (see figure 18) in the same way as previously,
using a loop shifting.

As in the previous case (robust incremental stability), the to be tested con-
dition corresponds to an infinite dimensional optimization problem. In contrast
with the previous case and for the sake of completeness, we use a different ap-
proach. This direct (state space) approach is in the spirit of the one proposed
in [44, 31, 30]. These references propose indeed a method for computing the ro-
bustness margin without frequency gridding, in the context of an LTT closed loop
subject to LTI structured model perturbations: in the method of [44, 31, 30],
which basically uses the passivity theorem with multipliers, these multipliers
have to be restricted in practice to belonging to finite dimensional subspaces (for
computational requirements). Using the Matlab LMI Control Toolbox [26], we
prove the robust incremental performance. Condition (15) is satisfied for m; =

1.508, ma(juw) = 0‘9069(jw+\/§)(jwfﬂ))((jw)2+52.4jw+18911)((jw)2752.4jw+18911)

Gwt ) (Gw—1)(jw+45)(jw—45)(jw+300)(jw—300) and
msg = 0.0024.
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10 Conclusion and perspectives

In this paper, we have justified through a realistic example the use of the in-
cremental norm approach for the control of nonlinear dynamical systems.

To this aim, we have first proved that a realistic PI controlled missile is
quadratically incrementally stable. The PI controller was synthesized in a con-
ventional way. As a consequence of this result, the nonlinear missile control
system was proved to exhibit many interesting qualitative and quantitative
properties:

e A suitable stability property with respect to the initial condition.

e A steady state property when applying specific classes of input signals:
the steady state response to a constant (resp. periodic) input signal is
a constant (resp. periodic) output signal. Using the incremental norm
framework, it was possible to prove this property, which was otherwise
experimentally observed in nonlinear simulations and which corresponds
to a design requirement.

e An incremental robustness and performance property: our framework
allowed us to quantify the (nonlinear) incremental performance property.
This one was simultaneously defined as the minimization of the tracking
error and as the classical (linear) requirement of a 6 dB gain margin at
the missile input. This last requirement was obtained in this paper in a
nonlinear context.

Note that other control laws could have been used in our example. A PI con-
troller was chosen, because of its wide use in the engineering community.

As a matter of fact, the contribution of this paper is also to present meth-
ods, which allow to understand the good results, which can be obtained when
applying to a nonlinear plant a linear controller designed on the basis of LTI
considerations (at least in the specific context of a missile control system).

Another contribution of this paper is to illustrate the interest of various
LMI-based criteria for the analysis of realistic nonlinear systems. As a mat-
ter of fact, because of this successful application of the weighted incremental
norm approach to a realistic missile example, it would be interesting now to
investigate in the same way the application of this framework to other classes
of nonlinear plants.
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Appendix

A Numerical data of the missile model

an | 1.0286 107*  deg™? Py | 973.31b/ft?
bn | —0.94457 1072 deg 2 S 0.44 ft?
Cn —0.1696 deg~! m 13.98 slugs
dn —0.034 deg™! V | 1036.4 ft/s
am | 2.1524107%  deg™? d 0.75 ft
b, | —1.9546 1072  deg—? I, | 182.5 slug.ft?
Cm 0.051 deg™! K, | 0.7PoS/m/V
dpm, —0.206 deg~! K, | 0.7PoSd/I,
W 150 K, 0.7PoS/m
&a 0.7 g 32.2

Table 2: Missile parameters.

B Additional comments - sketches of proof

We further explain the content of sections 4 and 5. We first consider the in-
cremental stability property. To this purpose, with reference to section 3, the
nonlinear system:

Yuo ¢ x(t) = [f(t,z(t),u(t)) with x(0) = =z (16)
is associated with the fictitious dynamical system described by equations:

{fl'il(t) = f(t,a:l(t),ul(t)) with 5171(0) = To1

: ) (17)
zo(t) = f(t,z2(t),u2(t)) with z2(0) = =zp2

System (16) is incrementally stable if and only if there exists a scalar v such
that, for system (17), ||Az|l2 < ¥?||Au|| with Az = 71 — 22 and Au = u; — uy
[17]. All results in the sequel are based on the following lemma.

Lemma B.1 Assume that conditions (i) and (i1) of theorem 4.1 hold for P.
Let us introduce the function S, which is defined from R™ x R™ into R by:

S(x1,x2) = ] Pxy + x5 Pxo — 221 Py

x
where [ ! ] is the state vector of system (17).
2
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There exist then two positive constants €1 and B satisfying:

dS(:El, :EQ)

72 < | Al + Bl Aul (18)

The results of this paper can be derived from the properties of .S and of its
derivative along the motions of the fictitious system.

Proof of the Lemma.
The derivative of S with respect to time is given along the possible motions of
system (17) by:

dS((L‘l,.’L‘Q) 85(%1,%2)

28 (1,
% = S ft,z1,ur) + 95(z1,79)

Juy (L2, u).

Let us introduce Az = z1 — x9, Afy = f(t,z1,u1) — f(t,z2,u1) and Af, =
f(t, zo,ur)— f(t, 22, uz). After some straightforward manipulations, the deriva-
tive of S can be rewritten as:

w 9AzT PAF, + 2027 PAS,

On the one hand, noting that:

" 8f(t z,u1) dz = Lof

Af,. =
fa . 01 9

——(t, (x1 — T2) A + T2, u1) Az dA,

one obtains:

af

1
AzTPAf, = / AzTP
0 oz

(t, (z1 — z2) X + z2,up) Az dX

and hence, using point (i) of theorem 4.1, one obtains:
AzTPAf, + AfTPAz < —€| Az (19)

On the other hand, the Cauchy-Schwarz inequality and condition (i7) of theorem
4.1 ensure that:

AgTPAfy < ||AsTP|[|Afull < op,opl| Azl Aull (20)

where Au = u; — us and op is the maximal singular value of matrix P.

Using the completion of the square, inequality (18) is deduced from in-
equalities (19) and (20):

dS(z , L 20 N
Blopm) < g (el - a0l + 2L | AsfAu)
ofr 0
< —glasl? + 2570 | Aul?
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B.1 Incremental stability.

Since P > 0, S(z1,2z2) > 0 for all 1 and x5. Using inequality (18), it can be
claimed then that there exists a scalar v satisfying for system (17) ||Az|l2 <
v?||Aul|. System (16) is thus incrementally bounded. f(0,0,0) = 0 allows to
prove that the system is L9 stable and thus incrementally stable.

B.2 Behavior with respect to the initial condition.

We can now prove the exponential stability of the unperturbed motion of system
(16). To this purpose, we associate with a specific motion of the system, a
function V, from R+ x R™ into R, which is related to S by:

Vi, Ax(t) = Sr(t),z,(t) + Ax(t)) = Aw(t)TPAz(t) (21)

where z,(t) = ¢(t,0, zor, u,) and Az(t) = ¢(t,0, zor, ur) — ¢(t,0, zop, ur).
Let ui(t) = ua(t) = ur(t), zo1 = zor and g2 = zgp. We deduce from equation
(18) that:

T =% < cilaap
Classical arguments can then be used to conclude that the unperturbed motion
is exponentially stable.

B.3 Input-output behavior of incrementally bounded systems.

In the same way, the function V', which is defined by equation (21), can also
be used to prove the qualitative behavior of incrementally bounded systems.
Az is now defined as the difference between the motion associated with u, and
the one associated with u,, i.e. Ax(t) = ¢(¢,0,zor,u,) — ¢(t,0, zor, uy). Using
inequality (18), one obtains:

dv 2 2 2

2 < —cilAn|? + 42 Au|

dt

This last inequality is the basis of the proofs of the properties, which character-
ize the behavior of the system with respect to particular classes of input signals.

See [22, 18] for more details.
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