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Abstract. Recently, an approach based on the incremen-
tal norm was proposed for formalizing nonlinear perfor-
mance as a well posed optimization framework. Many re-
alistic specifications can be considered in this framework.
The underlying philosophy is close to the Hy, approach
proposed by Zames in 1981. In this paper, we illustrate
the strong interest of this approach for analyzing nonlin-
ear PID control of linear time invariant (LTT) systems on
an example (a nonlinearity is introduced for improving
noise filtering). This analysis is based on the extension
of the p analysis (LTI robustness analysis) to nonlinear
systems, referred to as p,,; in this paper.

1 Introduction

In many industrial applications, automatic control de-
signers have confronted to nonlinear closed-loop systems.
In some cases, even if a LTI model of to-be-controlled
process is accurate, the closed loop performance obtained
with usual LTI control law can be dramatically improved
by introducing a nonlinearity in the control law, see e.g.
nonlinear PID controllers. In other cases, the to-be-
controlled process can not be assumed to be LTI (see e.g.
missiles, ships, irrigation canals, etc.). Nevertheless, LTI
control law can ensure desired closed loop performance.
The basic feature of these applications is that the
automatic control designer has to design or to improve a
controller in order to ensure performance and robustness
specifications for the nonlinear closed loop system. The
main difficulty is that the specifications are not local
and that the input signals are not necessarily constant
inputs. For instance, usual specifications can be: steady
state behaviors with respect to classes of inputs (steps,
periodic signals, etc), rejection of disturbance classes,
expressed e.g. as a norm ratio between the disturbance
and the tracking error, noise effect limitation, robustness
with respect to system uncertainties, etc.
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Actually, when the closed loop system can be assumed
LTI, closed loop performance specifications can be read-
ily analyzed using e.g. classical tools such as the closed
loop and open loop frequency responses, pole and zero
location or more recent tools as e.g.  p-analysis. Un-
fortunately, such tools are not “available” when analyz-
ing nonlinear systems. As a consequence, the nonlinear
closed loop performance is usually “validated” by inten-
sive time domain simulations with few guarantees for the
non simulated scenarios. Consequently, there is a strong
interest in developing analysis methods, allowing perfor-
mance validation when the closed loop is nonlinear.

In the nonlinear approach, a possible solution to this prob-
lem can be found in the incremental norm framework
[10, 5]. Remember first that a nonlinear system H is
said to be incrementally bounded on L,, the set of en-
ergy bounded signals, if there exists a positive constant n
such that ||H (u1) — H (u2)]2 < nljur — usl|2 for all 4y and
us in L5. The incremental norm framework is useful for
analyzing both qualitative properties and quantitative of
nonlinear closed loop systems, including desensitivity (see
[10] for details).

In a qualitative way, incrementally stable systems possess
suitable steady-state properties:

1. all the unperturbated trajectories are globally asymp-
totically Lyapunov stable;

2. for a given input signal, there is a unique steady-state
motion independently of the initial condition and despite
a vanishing perturbation on the input signal;

3. the steady state response to a constant (resp. peri-
odic) input signal is also constant (resp. periodic).
These properties are usual control specifications. Note
that Lo-gain stability of the closed loop system does not
ensure these properties [9]. Consequently, this fact em-
phasizes the special interest of the incremental norm in an
engineering context when considering qualitative proper-
ties.

Furthermore, in this framework, it is possible to analyze
quantitative robustness and performance properties of a
nonlinear closed loop system. The weighted incremen-



tal norm approach was indeed originally introduced as
an extension of the at now classical H., control concepts
from the LTI systems to the nonlinear systems [5, 10].
When considering LTT systems, the original idea of [22]
was to recast the initial design problem into a well de-
fined optimization problem, involving the minimization
of a weighted Ho, norm.

In the same way, the underlying idea of the incremental
norm approach is to define the robustness and perfor-
mance properties of a (nonlinear) system as optimization
constraints involving weighted incremental norms. The
introduction of a weighting function allows to explicitly
take into account the desired quantitative properties for
the closed loop systems.

As it was pointed out in [5, 9], testing incremental stabil-
ity using necessary and sufficient conditions is not an easy
task since involving the resolution of Hamilton-Jacobi
like equations. Nevertheless, based on sufficient condi-
tions, incremental stability can be tested using efficient
convex optimization involving Linear Matrix Inequality
constraints. This approach could present a certain con-
servatism. Nevertheless, our main purpose is to achieve
a trade-off between this possible conservatism and the
complexity of the considered test. Such an approach was
adopted in [9] by introducing “nonlinear p tools”. Due to
the strong link with the (LTT) p analysis, such tests are
denoted in the sequel py;. These tests rely on well-known
input/output approach results (see e.g. [21], as well as re-
cent results such as [15, 16]). A successful application to
the analysis of the a realistic nonlinear missile PI control
was presented in [9].

In this paper, we apply these tools to the analysis the non-
linear Pl-like control of linear time invariant processes.
What is the interest of considering such a problem? In
this class of controllers, a nonlinearity is introduced in
order to improve closed loop system performance with re-
spect to the linear closed loop system. Consequently, the
main problem is to test if the performance specifications
(i.e., input margin, steady state, perturbation rejection,
etc.), ensured in the linear design, are at least recovered
in the nonlinear one.

In the sequel, we illustrate how the incremental norm
framework application and the use of the p,,;-analysis, al-
low to prove that the nonlinear PI controller performance
recovers (at least) the linear PI controller performance.
An extended version of this paper is available as a tech-
nical report [12].

2 Considered case: Nonlinear filtering

Engineers use to improve the performance of classical
PI(D) based controllers by introducing nonlinearities in
the controller, in a heuristic way. Numerous approaches
are possible; the most well known approach is probably
the fuzzy approach (see e.g., [20]). The main difficulty is
then to ensure that some performance specifications are

satisfied with the nonlinear controller.

Our purpose is to discuss and to emphasize the interest
of p,; analysis for analyzing such controllers. Of course,
considering related applications, there is numerous classes
of design specifications for controlling different classes of
systems. For the sake of clarity, we choose to focus on a
particular problem: PI(D) control with nonlinear filter-
ing of a low order plant. Note that our approach is not
specifically dedicated to these problems.
perturbation
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To-be-controlled plant we consider a second order one:

K

O = s T Dms v D)

with K =9.09, 1y =0.1s and m» =2 x 1072 s.
Specifications The control specification is to reject out-
put perturbation despite important measurement noise
(high noise/signal ratio at low frequency) with a limited
noise magnitude.

Controller design When designing linear time invariant
controller, it is a well-known fact that there is a trade-off
between rejection time of the output perturbation and
noise effect attenuation, especially on control input. In
many situations, the noise/signal ratio is low at low fre-
quency allowing a large control bandwidth thus a small
rejection time.

In the considered case, the noise/signal ratio is high at
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Figure 1: System output with low gain controller (dash-
dotted line), high gain controller (full line) and
nonlinear controller (dash line)

low frequencies, but the noise magnitude is limited. The
controller is then modified using the classical idea which
is to introduce a nonlinearity such that controller gain is
decreased when the tracking error magnitude gets below a
certain level. Most precisely, let us denote e the tracking



error and u the command input. Then, the controller has
the following structure:

u(s) = kKo(s)e(s)

with &k a constant gain and Ko(s) = % where 7, =
|
8> Te = T00°

If the constant k is “small”, that is k = kp,;, = 0.2 then
the noise effect is attenuated on the command input and
on the system output but the output perturbation rejec-
tion is slow (see figure 1 and figure 2). If k is “big”, that is
k = kmae = 1.45 then the output perturbation rejection
is fast but the noise effect is not attenuated on the com-
mand input and on the system output (see figure 1 and
figure 2). Note that the difference between two controller
bandwidths is around one decade.

Command PI (LB)

Figure 2: Command input u with low gain controller (top),
high gain controller (center) and nonlinear con-
troller (bottom)

A nonlinear controller can be obtained by scheduling the
constant k as a function of the tracking error e:

k(e(t))e(t) = kie(t) — kosat(e(t))

where k1 = kmaz, k2 = kmin/kmaez — 1 and the saturation
function sat is defined as follows:

sat(e(t)) = —-02 e(t) < -0.2
sat(e(t)) = e(t) le(t)] < 0.2
sat(e(t)) = 02 e(t) > 0.2

From figure 1 and figure 2 note that controller structure
allows to get both the benefit of the low gain controller
and the benefit of the high gain controller: a good noise
attenuation with a good rejection time.

3 Incremental norm approach (see [12])

Notations L, is the space of R™ valued func-
tions defined on R, where the norm is defined by

11l = (f |£(8)[12d) /2. Py is defined by Prf(t) = £(£)
for t < T and 0 otherwise. The extended space L5 is the
space of R" valued functions defined on R whose causal
truncations belong to L». Let us consider a nonlinear
system, y = X, (u):

i(t) flz(t),u(t));
So{ 3 2 I

where z(t) € R™,u(t) € RP and y(t) € R™. f and h are
assumed uniformly Lipschitz and C! with f(z0,0) = 0
and h(zg,0) =0.

l‘(to) = 2o, (1)

Definition ¥,, has a finite incremental gain on Lo if
there exists 7 > 0 such that

10 (w1) =

for all uy,us € L£5. The incremental gain of ¥, denoted
[|X2,]la, is the minimum value of . X, is said to be
incrementally stable if it is stable, i.e. it maps Lo to La,
and has a finite incremental gain.

o (u2)|l2 < nllur — uzll2

A sufficient condition for the incremental stability was
proposed in [9], involving solving convex optimizations
problem on Linear Matrix Inequality (LMI) constraints!,
for which efficient numerical algorithms have been pro-
posed [1].

Theorem 3.1 X, , defined by (1), has an incremental
gain less or equal to n for any initial condition xog € R™
if there exists a symmetric and positive definite matriz
P such that for oll x € R™ and u € RP the following
matrices are definite positive:

PO @, w) + 9L (@)™ P P L (e,u) 7 P, )"

Gh@wTPp “Ipy 7 G w)| @)
' P@w a7 Gew) L

Note that the previous condition can be satisfied only if
there exists a symmetric and positive definite matrix P
such the following condition: for all z € R", for all u €

RP,

of of
Ox Ox
This condition ensures that there exists a finite > 0 such
that the operator which links the input of system (1) to its
state is incrementally stable i.e. ||z1 —z2|l2 < nllur —uz||2
where 1 and z» are respectively the solution of system
(1) for the input u; and wus.

P = (z,u) + == (z,u)" P <O0. (3)

We now point, out that some robustness and performance
problems of multi-input multi-output closed loop nonlin-
ear systems can be formulated as well posed optimization
problems, in the same way as in the linear context [22, 3].
For a complete explanation see [5, 9]. Due to the consid-
ered exemple we mainly focus on perturbation rejection.

IThe underlying idea is to compute a particular solution of the
Hamilton Jacobi like equation.



Figure 3: The perturbed closed-loop system

Perturbation specification The use of feedback control
(see figure 3) is mainly linked to their ability to reduce
the effect of non measurable perturbations or to shrink
model uncertainties: the desensitivity property [2, 22].
We introduce a set of possible perturbations, namely P¢ C
L5. As in the H, approach, we now assume that the set
of possible perturbations P¢ can be defined by:

{d e £§|||Wp71(d) — Wpfl(r + d)|| < €||d|| for any r € L5}

where T, and W, ! are two causal and incrementally sta-
ble operators. By following [2, 10], comparison desensitiv-
ity to the considered perturbation is said achieved if the
“weighted” incremental norm of the sensitivity function
S = (I +GK)™!is less than 1, that is: ||[SW,||a < 1.

Robustness against unstructured uncertainties We
consider the case of unstructured uncertainties A,on the
plant model G. This model perturbation A may rep-
resent uncertainties on the actuator or sensor dynamics,
and more generally neglected dynamics. A is assumed

belonging to Q5 = {& = WsAWs | |Alla < 1} where A

is a (possibly nonlinear) causal operator from L£§ to £§
and W> and W3 are known, causal, incrementally stable
input-output maps from £§ to £§. A stability result is
proposed for the interconnected system of figure 4.

Figure 4: Robustness analysis of nonlinear feedback

If M is incrementally stable and if the following inequality
holds:

W2 MWsl[a <1

then the closed loop system of figure 4 is incrementally
stable for any uncertainty A belonging to Q5.

Performance with uncertainties The performance of
the closed system of figure 5 is incrementally robust if it

holds for every A€ Qx, that is:
VAeQx, [[I+FGUI—-A)"'K)'Wi|la<1

As in the linear case, conditions ensuring performance

A

w r o+ +
Wi

Figure 5: Robust incremental performance

against a perturbation and incremental robustness can be
combined to capture both performance and uncertainties
in a single statement.

4 u,-analysis for practical analysis of
incremental properties

We now propose computationally attractive conditions
ensuring robust incremental stability and robust incre-
mental performance. The closed loop nonlinear system is
rewritten as the connection of a stable LTI system M (s)
with an operator A, which simultaneously contains the
uncertainties and the nonlinearities:

p = Al v u
R
(4)

where e is the output of the system and w its input. p
and ¢ are internal signals. The operator A, which thus
models the uncertain and nonlinear part of the system,
has the following structure:

A 2 diag(Ay,..., Ay A,). (5)

Each sub-block of A belongs to a certain class of uncer-
tain and nonlinear systems.

e A; may be an (unstructured) model uncertainty: it is
thus a multi-input multi-output operator, which is only
known to be incrementally passive?; depending on the
considered problem, A; can be nonlinear time variant,
linear time invariant or even a uncertain parameter;

e A; may be otherwise a single input, single output

2In the previous section, we consider uncertainties whose incre-
mental gain was bounded by 1. Note that using loop shifting trans-
formation, the interconnected system can be readily rewritten as an
interconnection with a incrementally passive incertainties.



static nonlinearity, i.e. A; = f;, where f; is an incremen-

tally passive nonlinearity.

One way to prove the (robust) incremental stability
of the connection of My, with A is to directly apply
the incremental passivity theorem [21]. Nevertheless,
such an approach can lead to a conservative criterion.
One way to reduce this conservatism is to introduce
multipliers [21, 15, 16].The basic idea is to transform the
connection of Mg, with A into a new connection of qu
with 3, which has the same stability properties, i.e. the
former is stable if and only if the latter is also stable.
Furthermore, if A is incrementally passive, then A must
also be chosen incrementally passive.

Families of multipliers are now proposed for each A;
sub-block class. Assume first that A; is a passive
multi-input multi-output nonlinear time variant model
uncertainty or a static nonlinearity. Then the operator
mA is also passive for any real m > 03. m is thus a
multiplier. In addition, if A; is linear time invariant, then
m can be taken as frequency dependent, with no pole or
zero on the imaginary axis [15]. When considering the
overall operator A of equation (5), let us now introduce
the set of multipliers M,,,;(A) with the following

structure: M, 2 diag (mq1,...,m;I,...,m,.I) where
m; is possibly frequency dependent if A; is linear time
invariant or an uncertain parameter.

Theorem 4.1 The connection of Mg, with A is incre-
mentally stable, for any A which is incrementally passive,
if there exists a multiplier M € Mpmw (A) satisfying:

M (jw) Mgy (jw) + (M (jw) Myp(jw))™ < 0.

(6)
Theorem (4.1) can be applied to prove the robust incre-
mental stability property.

We now focus on the (robust) incremental performance
evaluation. We propose conditions for ensuring that the
interconnected system (4) has an incremental gain less
than one. Using a loop-shifting transformation , this
problem can be transformed in ensuring that the connec-
tion of M with A, where M is:

for all w,

Myp 4+ My (I — Mey) ™ Moy
(I = Mew) ' M.,

—2Myo (I — My) ™"
—I = 2Mo (I — Mew) ™!

is incrementally passive. To this purpose, let us introduce

the set of multipliers M7 (A) of the form: MP/ 4
diag (M, MperI) where My € My (A) and myper

is a positive real scalar.

Theorem 4.2 System (4) is incrementally passive, for
any A which is incrementally passive, if there exists a

multiplier MP"T € MPT(A) satisfying:

mul mul

Mperf(

perl (jw)M (jw) + (ME] (jw)M(jw))™ < 0.

mul
(7

3Kulkarni and Safonov in [13] prove that in the case of nonlinear
operator, only constant multipliers are possible.

for all w,

Figure 6: Closed loop for incremental stability analysis

Testing condition (6) and testing condition (7) boil down
to convex optimization problems which are infinite dimen-
sional. The optimization variable is My, (or M r’;fJZf ) that
is an infinite dimensional variable.

In order to obtain an attractive test, we are interested
by a suffisant condition which is a finite dimensional con-
vex optimization problem. First, in condition (6), the
multipliers M,,,; is researched in a state space represen-
tation: M (8) = Dyt + Conwt (ST — Aput) ' B In
order to get a finite dimensional variable, the matrices
A and By, are fixed. Mﬁf:lf can be similarly dis-
cussed. Furthermore, remember that, given a real rational
transfer function H(jw) = D + C(jwl — A)~! B, Kalman
Yakubovich Popov (KYP) lemma [17] claims that testing
that Yw, H(jw) + H(jw)* > 0 is equivalent to finding a
symmetric matrix P such that :

ATP+PA PB+C
BTpP+CT D+ DT

Actually, this classical lemma allows to replace an infinite
number of inequalities by one (matrix) inequality by in-
troducing an additional decision variable P. By applying
this lemma, testing (6) and testing condition (7) reduce
to finite dimensional convex optimization involving Lin-
ear Matrix Inequality constraints where the optimization
variables are P, D, and Cp,q. A similar approach was
adopted in [15].

Remarks: Note the strong link between conditions (6)
and (7) and the g upper bound (in the form presented in
[15]) for the robustness analysis of LTI systems. The basic
difference is in the considered classes of multipliers M, ;.
When analyzing LTI systems, for two different frequencies
w1 and wae, M. (jwr) can be computed independently of
My (jwz). It is no longer true when nonlinear systems
are considered. In our problems, M, (jwi) explicitly
dependent on M, (jws). As a consequence, u analy-
sis based on frequency gridding cannot be applied when
considering nonlinear systems.

5 Application of the pu,l tool to PI control with
nonlinear filtering

and ky = %

kmin | kmaa

Let us introduce k, = 1 — ky

km
kbd = and k

1+—A};u




Figure 7: Incremental performance analysis

Figure 8: Robust incremental stability analysis

Incremental stability Incremental stability is analyzed
by testing condition (6) of Theorem 4.1. M is defined
from the closed loop system represented figure 6 where
A is a nonlinear operator which corresponds to the PID
nonlinearity. Condition (6) is satisfied with the multiplier
Winw = 0.103.

Incremental performance Incremental performance is
analyzed by testing condition (7) of Theorem 4.2. M is
defined from the closed loop system represented figure 7
where W,(s) is weighting function defined as: Wy(s) =

0.556%. This weighting function ensures fast step
perturbation rejection (rejection bandwidth greater than
2.2 rad/s). Condition (7) is satisfied with the multiplier
MPr = diag(3.58,1.56).

Robust incremental stability We now investigate in-
cremental stability with respect to a DC gain uncer-
tainty. See the closed loop system presented in figure
8 where A, is an parametric uncertainty which corre-
spond to an upper gain margin. Let us denote AG"
the guaranteed lower bound on the upper gain mar-
gin. Then, with AG* = 7.5 dB, condition (6) of The-
orem 4.1 is satisfied with the multiplier M,,.,;(jw) =

. jw—29.62)(jw+0.68
diag(1.28,2.34, U200 0.69) )

Robust incremental performance We now investigate
incremental performance with DC gain uncertainty (see
figure 9). To this purpose, the performance is relaxed
with respect to performance analysis without DC gain

uncertainty: Wy(s) = 0.4“;;?*0":‘%{4 (rejection bandwidth
greater than 1.7 rad/s). As we investigate performance,

the gain margin is reduced: AG* = 6dB. Condition

(7) is then satisfied with the multiplier: MP*"f(jw) =
. (jw—36.4)(jw—6.4)(jw+8.9)(jw+0.9)

diag(1.1,2.62-< (].w+10)3(].w_10)(Jjw+1)(ji_1) ,0.4).

Figure 9: Robust incremental performance analysis
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