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Abstract

In this paper, we propose a necessary and sufficient condi-
tion for incremental stability of the interconnection of an
LTI system with a static nonlinearity. The complexity of
the condition is discussed.

1 Introduction

Incremental stability was recently proposed as a power-
ful tool for analyzing qualitative properties [11, 12, 13]
and quantitative properties [10, 14, 16] of nonlinear sys-
tems. Zames [39] proposed a sufficiency test for incre-
mental stability based on incremental conicity conditions.
However, related Popov-type multiplier stability criteria
(e.g., [41, 42]) do not in general assure incremental sta-
bility even when elements of the feedback system satisfy
incremental conicity conditions [18].

The issue of precise tests for incremental stability that
are both necessary and sufficient is, in the general case,
a difficult problem though there is a result showing that
the problem is equivalent to solution of certain Hamil-
ton Jacobi Isaac inequalities [10, 27]. In this paper, we
derive a simpler alternative necessary and sufficient con-
dition for the special case of nonlinear systems of the
Lur’e-type, which consist of a feedback interconnection of
a Linear Time-Invariant (LTI) element and a memoryless
single-input-single-output nonlinear element. Based on the
strong connection between the incremental stability of a
nonlinear operator and the exponential stability of its time
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varying linearizations, we prove that the incremental sta-
bility of an interconnection between an LTI system and a
nonlinearity is equivalent to the exponential stability of a
specific Linear Differential Inclusion (LDI).

Based on [25] and [21, 22, 23], we deduce a new nec-
essary and sufficient condition allowing to prove that the
interconnection between a specific C1 nonlinearity and an
LTI system is incrementally stable. Unfortunately, exact
testing of the obtained condition is an NP hard problem.

At the end of the paper, the conservatism of the
quadratic condition (introduced in [14]) in this specific con-
text is emphasized. Furthermore, we point out that poly-
hedric type condition allows to obtain more interesting al-
gorithms. By this way, using the approaches proposed by
[24] , [4], [43] and [20], we are able to provide algorithms
allowing to obtain a compromise between complexity and
computation time.

2 Preliminary

2.1 Notation and definitions

The notations and terminology, here used, are classical in
the input-output context [29, 30, 39, 40, 35, 8, 28]. The

L2-norm of f : [t0,∞) 7→ Rn is ‖f‖2 =
√∫∞

t0
‖f(t)‖2dt.

The causal truncation at T ∈ [t0,∞), denoted by PT f
gives PT f(t) = f(t) for t ≤ T and 0 otherwise. The ex-
tended space, Le

2 is composed with the functions whose
causal truncations belong to L2. For convenience, ‖PTu‖2
is denoted by ‖u‖2,T .

In the sequel, we consider systems exhibiting the differ-
ential representation:

Σ


ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t))
x(t0) = x0

(1)

where x(t) ∈ Rn, y(t) ∈ Rm, and u(t) ∈ Rl. f and h,
defined from Rn × Rl into Rn and Rl respectively, are
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assumed to be C1 and uniformly Lipschitz. The unique
solution x(t) = φ(t, t0, x0, u) belongs to Le

2 for all x0 ∈ Rn

and for any u ∈ Le
2. It is assumed that there exists x0e

such that f(x0e, 0) = 0 and h(x0e, 0) = 0, i.e. the system
initialized at x0e is unbiased, Σ(0) = 0. The notion of
incremental L2-gain can now be recalled.

Definition 2.1 Σ is said to be a weakly finite gain stable
system if there exists γ ≥ 0, β ≥ 0 such that ‖Σ(u)‖2 ≤
γ‖u‖2 +β for all u ∈ L2. Σ is said to be finite gain stable
when β = 0. The gain of Σ coincides with the minimum
value of γ and is denoted by ‖Σ‖i.

Definition 2.2 Σ has a finite incremental gain if there
exists η ≥ 0 such that ‖Σ(u1)−Σ(u2)‖2 ≤ η‖u1−u2‖2 for
all u1, u2 ∈ L2. The incremental gain of Σ coincides with
the minimum value of η and is denoted by ‖Σ‖∆. Σ is said
to be incrementally stable if it is stable, i.e. it maps L2 to
L2, and has a finite incremental gain.
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Figure 1: Internal stability

Definition 2.3 The interconnection between two causal
operators H1 and H2 is said to be incrementally stable if
the associated operator Σ : (w1, w2) → (q, p)

Σ =

[
I −H2

−H1 I

]−1

.

exists and is incrementally stable.

2.2 Gâteaux derivative and mean value
theorem in norm

In the functional analysis frame, there exist, at least, five
notions of derivative (see [1]). The differences between
these various notions are related to the fact that we work
on spaces of infinity dimension. The Fréchet derivative,
which is “similar” to the classical derivative on R, cannot
be used since it is not defined for many dynamical systems
[34, 31]. We then use a weaker notion of the derivative,
the Gâteaux one.

Definition 2.4 [1] Given a causal operator Σ, defined
from Le

2 into Le
2, let be u0 ∈ Le

2 and let us assume that

for any T ∈ [t0,∞) and for any h ∈ Le
2, there exists a

continuous linear operator DΣG[u0] from Le
2 into Le

2 such
that

lim
λ↓0

∥∥∥∥Σ(u0 + λh)− Σ(u0)
λ

−DΣG[u0](h)
∥∥∥∥

2,T

= 0.

Then DΣG[u0] is the Gâteaux derivative (the linearization)
of Σ at u0.

When the system is defined by differential equations, Def-
inition 2.4 reduces to the usual linearization definition.

Proposition 2.1 [15] Let us consider Σ defined by (1) and
let us assume that f and h are uniformly Lipschitz and C1.
Then, for any ur ∈ Le

2, the system has a Gâteaux derivative
that satisfies the following differential equations:

ȳ = DΣG[ur](ū)


˙̄x(t) = A(t)x̄(t) +B(t)ū(t)
ȳ(t) = C(t)x̄(t) +D(t)ū(t)
x̄(t0) = 0

(2)

with A(t) = ∂f
∂x

(xr(t), ur(t)), B(t) = ∂f
∂u

(xr(t), ur(t)),

C(t) = ∂h
∂x

(xr(t), ur(t)) and D(t) = ∂h
∂u

(xr(t), ur(t)) and
where xr(t) = φ(t, t0, x0, ur) is the solution of system (1)
with the input ur(t) and x(t0) = x0.

Definition 2.5 [32] DΣG, a Gâteaux derivative of Σ de-
fined by (2), is said to have a minimal state-space realiza-
tion if the pair [A(t), B(t)] is uniformly controllable and
the pair [A(t), C(t)] is uniformly observable.

We now recall a powerful result in the context of incremen-
tally bounded systems.

Proposition 2.2 [15] Let us assume that Σ is Gâteaux
differentiable on Le

2. If the state space representation of
each derivative of Σ is minimal then there exists a finite
constant η such that for any T ≥ t0 and for any u1 and u2

belonging to Le
2 one has:

‖Σ(u1)− Σ(u2)‖2,T ≤ η‖u1 − u2‖2,T

if and only if all its linearizations are uniformly exponen-
tially stable.

3 Main result

Let us consider that the nonlinear system, namely Σ, de-
fined as the interconnection between an LTI system

M(s) =


ẋ(t) = Ax(t) +Bq(t)
p(t) = Cx(t)
x(t0) = x0,

(3)

where x(t), x0 ∈ Rn, p(t) and q(t) ∈ Rl and A ∈ Rn×n,
B ∈ Rn×l and C ∈ Rl×n and the following nonlinearity:

q(t) = Φ(p(t) + w2(t)) + w1(t)
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with

Φ(p+ w2)
∆= diag (ϕ1(p1 + w21), · · · , ϕi(pi + w2i), · · · ,

· · · , ϕl(pl + w2p)
)

(4)
where w1(t) and w2(t) ∈ Rl and where each nonlinearity
is assumed uniformly Lipschitz continuous and C1 on R.

Assumption 3.1 Φ is a Lipschitz and C1 operator such
that there exists for each i ∈ {1, · · · , l}, two finite constants
αi < βi such that

αi = min
ξ∈R

∂ϕi

∂σ
(ξ) and βi = max

ξ∈R

∂ϕi

∂σ
(ξ)

We now propose a necessary and sufficient condition such
the interconnection between Φ and M(s) is internally in-
crementally stable.

Theorem 3.1 Let Φ be a Lipschitz and C1 operator satis-
fying assumption 3.1 and let M(s) be an LTI system with
the minimal realization (3). Let us denote A ⊂ Rn×n the
set of all time-varying and measurable matrices A(t) that
belong to the polytope of matrices defined as:

A = (A(t)|A(t) = A+Bdiag(k1(t), · · · , kl(t))C
∃ki(t) ∈ [αi, βi] ∀i ∈ {1, · · · , l})

Then, the interconnection between Φ and M(s) is inter-
nally incrementally stable if and only if all the solutions of
the Linear Differential Inclusion associated to A go to zero
as t→∞.

Proof: Following proposition 2.1, the linearization of Σ
along a specific input wr = (w1r, w2r)T corresponds to the
interconnection between this LTI system

M̄(s) =

{
˙̄x(t) = Ax̄(t) +Bq̄(t) ; x̄(t0) = 0
p̄(t) = Cx̄(t)

and the following vector of time-varying gains

q̄(t) = diag(k1(t), · · · , kl(t))(p̄(t) + w̄2(t)) + w̄1(t) (5)

with

ki(t) =
∂ϕi

∂σ
(pir(t) + w2ir(t))

and where pr(t) is associated to Σ for the input wr(t) =
(w1r(t), w2r(t))T and for the initial condition x0. Finally,
note that the realization of DGΣ[wr] is bounded and min-
imal since the realization of M(s) is minimal and all the
ki(t) are bounded (see lemma 3 in [32]). So, following
proposition 2.2, a necessary and sufficient condition for
the incremental stability of Σ is the uniform exponential
stability of DGΣ[wr] defined as

ż = Az(t) +Bdiag(k1(t), · · · , kl(t))Cz(t) (6)

where, by definition, each ki(t) belongs to [αi, βi] for any
t ∈ [t0,∞).

Sufficiency. From Lemma 2 p. 160 in [9], as all the solu-
tions of the linear differential inclusion (LDI) associated to
A go to zero as t → ∞, the equilibrium point of the LDI
is asymptotic stable. Moreover, an LDI is a homogeneous
differential inclusion. It is then possible to conclude that
the equilibrium point of the LDI system associated to A is
uniformly exponentially stable (see remark on Theorem 4
in [9]). Proposition 2.2 allows to conclude the sufficiency
part of the proof.

Necessity. The linear differential inclusion can be rewritten
in the following equivalent form:

ż = Az(t) +Bdiag(u1(t), · · · , ul(t))Cz(t) (7)

where each input ui(t) is a measurable signal such that
αi ≤ ui(t) ≤ βi for any t ∈ [t0,∞).

The necessity is proved using the following fact: for the
same initial condition, the solutions of system (7) are the
solutions of system (6), i.e. for any measurable input u(t)
such that αi ≤ ui(t) ≤ βi there at least exists an input
w2r, such that for any i ∈ {1, · · · , l}, one has:

ui(t) =
∂ϕi

∂σ
(pir(t) + w2ir(t)) almost everywhere

This fact can be proved in several steps. The first step
is to prove that it is always possible to choose the input
of Φ. To this purpose, let us assume that the input of
Φ is ν(t). Let us consider the output of the open-loop
system associated to the connection between M(s) and Φ,
i.e. qν(t) = M(Φ(ν(t)). Now, if we consider the closed-
loop system and if we define w2r as

w2r(t) = ν(t)− qν(t)

then by definition the input of Φ is ν(t).
Let us now prove that for any measurable u(t), there exists
w2r(t) ∈ Le

2 such that for any i ∈ {1, · · · , l}, one has

ui(t) =
∂ϕi

∂σ
(pir(t) + w2ir(t))

To this purpose, let us recall that a measurable function is
a step function limit1 (see e.g. [6]) then for any u(t), there
exist step functions, φn such that

lim
n→∞

φn(t) = u(t) almost everywhere.

Moreover, since ∂ϕi

∂σ is a continuous function, there exists
for any φn, at least a step function ψn, such that

∂ϕi

∂σ
(ψn) = φn

1A function φ, defined on a closed set [a, b] of R into R, is called
a step function if there exists a partition a = t0 < t1 < · · · < tn = b
of the interval such that in every subinterval Ik = (tk−1, tk) the
function φ is constant, i.e., φ(t) = ak for t ∈ Ik for k = 1, 2, . . . , n.
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We then deduce that there exists an input belonging to Le
2

defined by

w2ir(t) = lim
n→∞

ψn(t)− pir(t)

and such that

u(t) =
∂ϕi

∂σ
(pir(t) + w2ir(t)) almost everywhere

Indeed, w2ir(t) is the sum of two functions belonging to Le
2

since

1. the closed-loop is assumed well-defined that ensures
that pir(t) ∈ Le

2;

2. there exists a finite constantK > 0 such that |ψn(t)| ≤
K where

K = max(| arg min
ξ∈R

∂ϕi

∂σ
(ξ)|, | arg max

ξ∈R

∂ϕi

∂σ
(ξ)|).

We thus deduce that f(t) defined by f(t) = limn→∞ ψn(t),
is square integrable on any finite support since ‖f(t)‖2 is
a bounded and measurable function on any finite interval
of time. This last claim allows to conclude the proof. �

Remarks
(i) Theorem 3.1 conditions are closely related to con-

ditions ensuring absolute stability. Remember that the
absolute stability problem focus on the stability of the in-
terconnection between an LTI system and a time-varying
and memoryless sector nonlinearities, see [25, 21, 23]. In
the absolute stability case, necessity corresponds to a ro-
bustness result: if the condition is not satisfied, then there
at least exists one particular time-varying and memoryless
sector nonlinearity such that the interconnected system is
not stable. From this remark, we conclude that if we apply
this result for proving stability of the closed-loop system
with a given (sector) nonlinearity, the obtained condition
is only sufficient and it is generally conservative.

In the incremental case, this conclusion is no longer true.
Indeed, necessary and sufficient condition of theorem 3.1
ensures incremental stability of the closed loop system for
all C1 nonlinearities such that for any i ∈ {1, · · · , l}, there
exist two finite constants ξ1 and ξ2 such that

∂ϕi

∂x
(ξ1) = αi and

∂ϕi

∂x
(ξ2) = βi

The condition is thus necessary and sufficient for each non-
linearity of the prescribed sector (and such that the min
and max values of the sector are reached).

(ii) All the qualitative properties of the quadratically in-
crementally stable systems presented in [14] are also true
for the systems considered in the main result. Actually,
the system steady state is unique, its behavior for any pe-
riodic (resp. constant) input is asymptotically periodic
(resp. constant). Finally, all the unperturbed trajectories

of the system are globally exponentially stable (see also
[17]).

(iii) Theorem 3.1 remains valid on L∞.

(iv) Following the Y.S. Pyatnitskii’s proof in [25], in
the case of a non incrementally stable interconnection, the
corresponding nonlinearity (step function) inputs are such
that the derivative of each nonlinearity only takes the two
extreme values i.e. ∂ϕi

∂σ (ξ) = αi or ∂ϕi

∂σ (ξ) = βi. We then
conclude that theorem 3.1 condition holds if we just con-
sider the space of piecewise continuous functions equipped
with the L2 or L∞ norms.

4 Computation aspects: necessary
and sufficient conditions

For testing incremental stability, a sufficient condition was
previously proposed in [14]. Testing this condition is com-
putationally attractive (convex optimization over Linear
Matrix Inequality constraints). In the previous section, we
propose a necessary and sufficient condition for ensuring
incremental stability. From this condition, we can suspect
that the quadratic condition of [14] is overly conservative.
In the sequel, this fact is emphasized by an example. In
this section, we discuss on testing theorem 3.1 condition.
This theorem allows to recast testing incremental stabil-
ity as testing exponential stability of the associated Linear
Differential Inclusion. In the general case, this problem is
difficult.

Due to the theoretical importance of the absolute stabil-
ity problem, or more recently, the interest of the robustness
conditions against real time-varying parameters, many ap-
proaches were proposed for this problem.

More generally, this problem is closely related to various
classical results of the stability theory2, see e.g.:

– Absolute stability problem (see e.g.[25, 23, 20, 19, 43]);

– Time-varying stability radius (see e.g. [7] and see also
[26])

– Joint spectral radius of a set of matrices (see e.g. [4,
2, 33])

– Invariant sets and associated Lyapunov functions (see
e.g. [3] )

Based on these different results, we discuss different (suf-
ficient) conditions for testing the exponential stability of
an LDI system. Their interest is due to the (NP hard)
complexity of the necessary and sufficient condition.

2The number of references on these different results is so impor-
tant that it is not possible to propose an exhaustive list of references.
We just point out some of them.
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4.1 Necessary and sufficient condition:
specific Lyapunov function

Let us adapt Theorem 2 in [21] to our problem. To this
problem, let us introduce F (x), a compact set in Rn, de-
fined as

F (x) = {y|y = Ax+Bdiag(λ1, · · · , λl)Cx,
αi ≤ λi ≤ βi, i ∈ {1, · · · , l}}

(8)

Proposition 4.1 Let Φ be a Lipschitz and C1 operator
satisfying assumption 3.1 and let M(s) be an LTI system
defined by (3). The interconnection between Φ and M(s) is
internally incrementally stable if and only if there exist an
integer m ≥ n, a strictly positive constant δ and a positive
definite function V defined by

V (x) = max
1≤i≤m

xTPi, x (9)

where Pi for any i ∈ {1, . . . , m} is a positive definite
matrix and such that

max
y∈F (x)

D+V (x, y) ≤ −δ‖x‖22 (10)

for any x ∈ Rn and where

D+V (x, y) = lim
λ↓0

V (x+ λy)− V (x)
λ

is the directional derivative of V (x) at x in the direction
y ∈ F (x).

The main interest of this proposition is that the usual
quadratic condition is recovered with m = 1 [14]. Unfor-
tunately, conservatism of the condition for m = 1 can be
proved by a simple counterexample.

Counterexample Let us consider that the LTI system
is the second order system:

M(s) =
1

s2 + 2s+ 1

and let us consider that ϕ(x) belongs to the incremental
sector [0, β] i.e. 0 ≤ ∂ϕi

∂σ (ξ) ≤ β. From the result presented
in [36], a quadratic (m = 1) solution exists if (and only if)

β < ( min
ω∈[0,∞]

Re(M(jω)))−1 = 8.065.

Furthermore, Brockett proved (see p. 222 in [5]) that the
linearization of the interconnected system is exponentially
stable for β ≤ 11.6. We thus conclude that, in this exam-
ple, the quadratic condition is only a sufficient condition.

As a consequence, quadratic based conditions (such as
small gain theorem and passive theorem) are conservative.
Let us note that another possibility exists for decreasing
the conservatism of the small gain theorem: the use of

multipliers [41, 42, 8, 18]. Unfortunately, as it is proved in
[18], only constant multipliers can be used for incremental
memoryless nonlinearities. Following this result, this ap-
proach does not allow to decrease the conservatism of the
quadratic based condition.
In order to reduce conservatism, it is thus necessary to ap-
ply proposition 4.1 with m > 1. Unfortunately, as it was
pointed out in [21] (see also [37]), if m > 1 then the refor-
mulation of Proposition 4.1 condition as a standard opti-
mization problem3 is an open problem. For this purpose,
a usual approach is based on the use of the so-called S-
procedure. Unfortunately when quadratic constraints are
non integral, the S-procedure is only lossless4 in the case
of two quadratic constraints [38]. As a consequence, to
our best knowledge, testing Proposition 4.1 condition can-
not be equivalently transformed in a standard (efficient)
optimization problem.

To overcome this problem, the authors in [21] propose
the use of a piecewise linear Lyapunov function of the poly-
hedral vector norm instead of the use of the piecewise linear
Lyapunov function of the quadratic vector norm.

The main interest of the second approach is that the
constraint (10) reduces in the polyhedral case to a set of
linear inequalities. With these constraints, the S proce-
dure is replaced by the Minkowski-Farkas lemma which is
lossless for any value of m.

Proposition 4.2 Let Φ be a Lipschitz and C1 operator
satisfying assumption 3.1 and let M(s) be an LTI system
defined by (3). The interconnection between Φ and M(s) is
internally incrementally stable if and only if there exist for
some integer m ≥ n a full column rank matrix H ∈ Rm×n

and m×m matrices Γi, i = 1, . . . , 2l, satisfying5

µ∞(Γi) < 0 for all i = 1, . . . , 2l;

such that the matrix relations

HAi = ΓiH for all i = 1, . . . , 2l;

are satisfied where Ai are the vertices of a convex polyhe-
dron of n× n matrices in the n2 dimensional space which
embedded all the matrices A(t) that belong to the polytope
of matrices defined as:

{∀i ∈ {1, · · · , l}, ∃ki(t) ∈ [αi, βi],
A(t) = A+Bdiag(k1(t), · · · , kl(t))C}

Even if the previous problem is difficult to compute, it
is a first step in reducing the quadratic approach conser-
vatism. Actually, if the value of m is set, the previous
condition is then only sufficient. In this particular case,

3For instance convex optimization such linear, quadratic or LMI
optimization.

4Lossless means that the obtained condition by applying S-
procedure is also necessary.

5For a matrix A ∈ Rn×n, µ∞(A)
∆
=

max1≤i≤n

n
aii +

Pn
j=1,j 6=i |aij |

o
.
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an algorithm is proposed by [24]. Other classes of algo-
rithms exist, see especially [4], [43] or [20]. Finally, in
many cases, the necessary and sufficient conditions are re-
duced to the verification of conditions on particular sets of
matrices, (e.g. matrix polytope edges or vertices [19]).
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