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Abstract

The weighted incremental norm approach was originally introduced as a natural
framework for extending well-known H,, linear control concepts into the nonlinear
context. In this paper, we investigate the numerous links between this new approach
and the classical gain-scheduling technique. Althought based on heuristic rules, gain-
scheduled control is probably the most widespread nonlinear technique. In this paper,
we point out that the control objectives of the gain-scheduled controller design can be
expressed as the weighted incremental norm minimization of a nonlinear operator.
The result interest is twofold: it first provides a rigorous mathematical formulation of
the gain-scheduling problem. Furthermore, existing gain-scheduling techniques can be
interpreted as approximate solutions to the weighted incremental norm minimization
of a nonlinear operator.



1 Introduction

The gain scheduling approach is a very classical and widespread nonlinear control tech-
nique. The underlying idea is to design at one or more operating points linear time invariant
controllers using the associated linearized plant models. The nonlinear control law is then
obtained by interpolating (or scheduling) these controllers as a function of the operating
point [1, 2, 3, 4, 5, 6, 7].

From a theoretical point of view and from previous works, it seems that the main goal
of the gain scheduling approach is to ensure at least the exponential stability of the closed
loop system (time varying) linearizations. This point of view is in fact a direct consequence
of the Lyapunov’s indirect method. Based on a converse theorem due to Lyapunov, which
guarantees the existence of a suitable quadratic Lyapunov function for exponentially stable
linear systems, it is possible to ensure the existence of an open ball of initial conditions,
for which the nonlinear plant is also Lyapunov stable (under regularity assumptions on
the nonlinear dynamics). Despite its local nature, the method presents the advantage of
being rigorous. Unfortunately, testing the stability of a linear time-varying system which
is associated to a nonlinear system linearization is a difficult problem, So, the following
conjecture is generally used: if the frozen-time systems associated with the time varying
system are stable then the time varying system is also stable. This idea, which is the
foundation of most gain scheduling techniques (and which can be compared in some aspects
to the famous Aizerman/Kalman’s conjecture), is obviously false in the general case. This
conjecture is in fact neither sufficient nor necessary. This however explains that most of the
work concerning gain scheduling is devoted to the search of conditions, under which this
conjecture becomes true [1, 8, 9, 10].

Actually, in the context of nonlinear control, it is well-known that the exponential sta-
bility requirement for all the closed loop system linearizations is in general case a very
strong requirement. Following this remark, it seems necessary to make crystal clear if this
requirement can be justified in a theoretical way.

A second point is linked to a pragmatic point of view. As a matter of fact, when con-
trolling the nonlinear plant, a natural requirement is that the time invariant linearizations
along particular constant inputs satisfy the robustness and performance criteria, classically
considered in linear control. As a consequence, we focus the following question: is it possible
to justify in a theoretical way this pragmatic point of view?

As we will show in the sequel, the answer to these two questions is yes. In fact, a justifi-
cation can be found in the sensitivity problem. Let us recall that the desensitivity property
corresponds to the the fact that the feedback control laws can attenuate the effect of non
measurable system perturbations and ”shrink” the model uncertainty effects. Desensitivity
is in fact the major motivation (maybe the only one) for using feedback strategies versus
open loop one [11, 12, 13, 14, 15, 16, 17].

A first paper conclusion is that the classical gain scheduling control objectives (constraints
some system linearization properties) can be justified in many control problems, so that the



main restriction of the approach is the fact that existing gain scheduling techniques achieve
these objectives only in an approximate (or even heuristic) way.

A second difficulty of the gain scheduling approach is that this technique can not be
considered as an approximation of any existing nonlinear control design method. This fact
has been already pointed out by Wilson J. Rugh [3]:

“What is most striking about gain-scheduling is that, while it is ever more widely used in
practice, it has been widely ignored from a theoretical perspective. In particular, it remains
unstudied as an explicitly nonlinear control approach. So it seems that gain scheduling is
another example of the lamented theory/application gap but in this case application is ahead
of theory”.

In other words, a global nonlinear framework for the analysis and the design of gain
scheduling control systems has to be proposed. The interest of such a framework is clear:
assess the mathematical complexity of the control law design, satisfying the gain-scheduling
objectives in a nonlinear context.

As illustrated in the sequel, the weighted incremental norm seems to be a natural frame-
work for this problem. First, note that the weighted incremental norm was recently intro-
duced in [18, 19, 20] as a solution for extending well-known H,, linear control concepts into
the nonlinear context. The nonlinear control problem is transformed into a well-defined
optimization problem, which is the weighted incremental norm minimization of a nonlinear
operator. This approach allows to simultaneously consider major specifications such as ro-
bust stability, sensitivity and attenuation with respect to exogenous perturbations, suitable
steady state behaviors associated with step and periodic inputs and Lyapunov stability.

The main objective of this paper is thus to explain why and how this incremental ap-
proach provides a natural mathematical framework to the gain scheduling control problem.
This paper is the result of our continuing effort on developing the input/output approach
for improving engineering practice. One of its roots is the following Michael G. Safonov’s
remark|[21]:

“Sector conditions can provide a rigorous justification of the approximation used in gain
scheduling, and, more important from a practical point of view, they can give an engineer
the insight needed to make constructive design modifications when simulation results show
that the approximations have failed.”.

For the sake of completness and clearness, the paper is self-contained, that is, we present
some results which were elsewhere published in papers of the first author.

Paper outline Gain scheduling control techniques are shortly overviewed in section 2. In
section 3, we investigate the dual nature of the incremental norm approach. In this ap-
proach, both local aspects and global aspects of the control problem can simultaneously be
captured. In fact, the global behavior (respectively the incremental gain) of a nonlinear oper-
ator can be linked to the local behavior (respectively the induced gains) of its (time varying)



linearizations. Section 4 focus on feedback systems: contraints on the (nonlinear) feed-
back system (and its (time varying) linearizations) due to desensitivity to perturbations and
model uncertainties are discussed. The link with Lyapunov stability is then made in section
5. Connections between the incremental stability of the nonlinear system and the stability
requirement, along the system trajectories are presented. In section 6, performance specifi-
cations (desensitivy, tracking,..) and robustness are formulated as constraints on weighted
incremental norms on closed loop operators of the feedback system and connections with
weighted H,, norm of (time varying or time invariant) linearizations are developed: testing
the weighted incremental norm of a nonlinear operator is equivalent to testing an infinite
number of weighted induced norms of linear time-varying operators. We finally point out
that incremental stability ensures steady state properties. As a corollary of this discussion,
it can be claimed indeed that a gain-scheduling controller may be considered in this context
as an approximate solution of the problem of minimizing the weighted incremental norm of
a nonlinear operator. In section 7, incremental gain controller design is discussed. Rela-
tionships between incremental norm and existing nonlinear concepts are then proposed as a
conclusion. We first recall some notations and definitions.

Notations and definition The notations and terminology, here used, are classical in the
input-output context (see [22]). The Ly-norm of f : [ty,00) = R™ is || f|l2 = /[ | f(2)||*dL.
The causal truncation at T € [ty,00), denoted by Prf, is defined as Prf(t) = f(t) for
t € [ty,00) and 0 otherwise. The extended space, LS, is composed with the functions whose
causal truncations belong to L£,. For convenience, ||Prul|, is denoted by ||ul[2,7.

In the sequel, we consider systems with the differential representation

2N ) = h(x),u(t)) (1)

where z(t) € R", y(t) € R™, and u(t) € RP. f and h, defined from R"™ x R? into R"™ and R™
respectively, are assumed to be C? and uniformly Lipschitz. Moreover one has f(xq,0) =0
and h(zg,0) = 0. The unique solution z(t) = ¢(t, to, o, u) belongs to LS for all 25 € R™ and
for all uw € L£5. An unperturbed motion (of X) is a specific motion of ¥ associated with an
input, u, € £5, and with an initial condition, zo, € R"™, i.e. z.(t) = ¢(t, 9, Tor, ur). With
reference to this definition, we denote by x|z, u,] this unperturbed motion.

The notion of (incremental) Lo-gain can now be recalled.

Definition 1.1 X is said to be a weakly finite gain stable system if there exist v > 0 and
B >0 such that ||S(u)|la < yl|ulla + B for all u € Ly. X is said to be finite gain stable when
f =0. The gain of ¥ coincides with the minimum value of v and is denoted by ||X|;.



Definition 1.2 ¥ has a finite incremental gain if there exists n > 0 such that ||Z(uy) —
Y(ug)lle < nllur — usl|2 for all uy,uy € Lo. The incremental gain of o coincides with the
minimum value of n and is denoted by ||X||a. ¥ is said to be incrementally stable if it is
stable, i.e. it maps Ly to Lo, and has a finite incremental gain.

Remark. The above definitions may appear restrictive from an applicative point of view,
since a limited class of possible inputs is considered for the system: as an example, a non-
zero constant input does not belong to L£,. This restriction can be nevertheless bypassed
using the link between the input-output stability properties on L5 and its extended space
L5 [23, 22]. Indeed, if ¥ has a finite incremental gain less or equal to 7 then for all 7 > 0
and for all uy,uy € L5, the following relation is satisfied:

15 (w1) — B(ug)|l2r < nfjur — us

2,

From this inequality, we conclude that the input-output relation, which was already satisfied
by the input signals inside £,, remains valid inside L£§.

More generally, when studying the properties of the nonlinear system along a possible motion,
the use of the extended space LS enables to consider a much larger class of possible inputs
(e.g. non-zero constant inputs). As an illustration, by introducing:

Lu((0,T) = {F: R = R [ess sup /(1] < oo}

it can be noted that the following inclusion
Lo([0,T1) € L([0,T7)

is true for each value of T [24]. As a consequence, the extended space, which is associated
with £, for a specific value of T, contains all the signals which have (almost everywhere) a
finite amplitude on [0, T7].

In conclusion, when analyzing nonlinear system properties, the use of the extended space LS
enables to take into account most of the possible input signals, which are generally considered
in an application.

Figure 1: The nonlinear feedback system



We consider, in the sequel, the nonlinear feedback system depicted in figure 1, where
G, K, F' are nonlinear causal operators from L£§ into L, representing respectively the plant,
the compensator and the feedback, and where r,e,u and y, which belong to £, denote
respectively the system input, the error signal, the plant input, and the system output.
The closed-loop system is assumed to be well-posed and the input-output map between the
system input and the system output, denoted by Hy,, is given by GK (I + FGK) .

2 Gain-scheduled control systems: a quick overview

We first briefly review various nonlinear control techniques, from a gain scheduling per-
spective. Two classes of methods can be pointed out. In the first method class, the (time
invariant) closed loop linearizations are directly constrained. In the second one, global closed
loop specifications are achieved so as the constraints on the closed loop linearizations be-
come indirect. In the first class, the simplest method is first to compute linear controllers at
certain operating points and then to interpolate the controllers between these points. Any
linear design method can be applied. As a disadvantage of this method, the resulting non-
linear control law does not necessarily satisfy the integrability constraints, i.e. there does
not necessarily exist a nonlinear controller, such that its linearizations correspond to the
controllers obtained with the linear design method [3].

The first class also contains the pseudo-linearization methods (see e.g. [25, 26, 3]).
A nonlinear controller is now directly designed, so that the integrability constraints are
obviously satisfied. The linearizations of this controller on the equilibrium manifold satisfy,
for example, an eigenvalue type criterion.

Actually, the main disadvantage of both approaches is their local nature. Restrictive
assumptions on the rate of variation of the scheduling parameters have to be done, so as to
prove the stability of the nominal nonlinear closed loop system. Moreover, as it was pointed
out by Shamma in [1], the linear time invariant models associated with the equilibrium
manifold do not need to be too much emphasized in the context nonlinear control. It is
also necessary to ensure suitable properties to the associated linear time-varying systems.
Following this remark, Shahruz and Behtash [10] introduced quadratic stability concepts
which allow to remove the restrictions on the parameter rate of variation in the context of
Linear Parameter Varying (LPV) systems. In this context, following the fact that quadratic
stability concept can be formulated as an LMI (Linear Matrix Inequality) optimization
problem, other constraints can be introduced such as, for example, £, condition (see e.g.
[27, 28, 29]). As a great advantage of these methods, the proposed design process relies
on convex optimization involving Linear Matrix Inequality constraints, for which efficient
algorithms are now available. Actually, when the full state is measured, the feedback control
law reduces to a constant gain matrix and thus it is obviously integrable. Unfortunately, in
the case of output feedback, the synthesized LPV controller now depends on the scheduling



parameters and its integrability leads to impose strongly restrictions on the initial nonlinear
system [29].

The classical input/output linearization method (see e.g. [30]) is an other solution to
the nonlinear control problem. The idea is now to obtain a linear closed-loop system (from
an input/output point of view) using a nonlinear state feedback controller. Restrictive
assumptions have to be made on the minimum phase nature of the plant [30]. It is moreover
obvious that the system behavior is now linear and identical at all operating points (under
some restriction concerning the input-output stability of the zero dynamics, when they exist).

We would like to also mention the optimal methods with quadratic criteria. Two ap-
proaches can be considered. In the first approach, the open loop optimal trajectory is com-
puted. The tracking property is then robustified by computing a feedback controller, which
minimizes the second variation of the cost [31, 32]. In the same context, with reference to
a closed-loop approach, an optimal solution can be directly obtained by solving well-known
Hamilton-Jacobi equations’.

In both cases, using the result of [32] as a basis, it is possible to analyze the properties
associated with the system linearization along the optimal trajectory. It is then straight-
forward to observe the lack of homogeneity of the local criteria derived from the initial
global criterion. For instance, the linearized model at the zero trim point satisfies indeed the
quadratic criterion [33, 31|, which is associated with the initial problem. However, the local
criterion at other points blends the terms associated with the linearization of the nonlinear
criterion, with other terms involving the system dynamics. Here again, in these methods,
global aspects of the problem are focused, ignoring the local ones.

We finally point out the recent works on the nonlinear extension of the H,, approach.
The nonlinear extension of the H,, optimization problem was recently investigated in the
L, framework through dissipativity techniques / nonlinear differential game arguments (see
e.g. [34, 35]). In the same context, the LPV approach can be applied in a direct way for
computing a nonlinear controller minimizing the nonlinear system Lo gain. In this specific
context, an interesting result was published [35]. It was proved that a nonlinear system can
have a finite £, gain only if the system linearization at the origin point has also a finite
Lo, i.e. the system linearization for the null input has a finite H,, norm. This first result
indicates a possible way to link the gain scheduling approach to a nonlinear framework.
Unfortunately, as illustrated in [36], this property is not necessary true for other constant
inputs and its associated equilibrium point. In fact, it is possible to built an £, gain stable
system with, for non zero constant input, an unstable equilibrium point.

!The resolution of such a problem is obviously difficult in the general case.



3 Linearization and related results

The main concept in the gain scheduling approach is the linearization one. This concept
is classically related to the first order approximation of the dynamics along some specific
motion. This point of view is in fact clearly linked to stability considerations and Lyapunov
like arguments. In the sequel, we try to convince the reader that the Gateaux derivative
is, in the context of gain scheduling approach, a more interesting notion. Indeed, it is an
input/output notion which seems to be a better frame for analyzing the system properties. It
allows for example to analyze the asymptotic behavior of the system with respect to specific
classes of inputs. Moreover, the introduction of this input/output notion allows to interpret,
for any kind of inputs, the behavior of a nonlinear system as the sum of the behavior of
linear ones.

Since the Gateaux derivative is not necessary a well-known notion in the control field,
(even if it corresponds to some usual notions in this field), we present in the sequel a self-
contained presentation of various results on the differentiability of nonlinear operators on
functional spaces. We emphasize a powerful result in this context: the mean value theorem
in norm.

3.1 Global vs local: the Gateaux derivative as a limit

In the following, we characterize the global behavior of a nonlinear system as a sequence of
its local variations. Let us consider Au the input variation and Ay the associated output
variation:

Ay = X(u + Au) — X(u). (2)

The objective is to characterize in an accurate way the effect of Au on Ay. Defining the local
input variation du = Au/n, where n is an integer, the output variation is then rewritten as
the sum of the outputs associated with small input increments:

n
Ay =>" S(u+idu) — Z(u+ (i — 1)du). (3)
i=1
Let us consider equation (3) when the norm of the input increment goes to zero. As in
a classical space (e.g. R), the limit can be studied under the introduction of the operator
derivative around a specific input. In fact, in the functional analysis frame, there exist, at
least, five notions of derivative. The differences between these various notions are related to
the fact that we work on spaces of infinity dimension.
The Frchet derivative, which is “similar” to the classical derivative on R, can not be used
since it is not defined for many dynamical systems [38, 39]. We then use a weaker notion of
the derivative, the Gateaux one.



Definition 3.1 [37] Given an operator 3, defined from Ly into Lo, let us introduced ug € Lo
and let us assume the ezistence for any h € Ly of a continuous linear operator DXg[ug],
from Ly into Lo, satisfying:

Y(up + Ah) — 3(up)

li
1m \

L0

=0
2

— DX ¢[upl(h)

then DX.g[ug] is called the Gateaux derivative of ¥ at uy.

So, DX g[ug] is a bounded linear operator defined from L, into £, and such that for all h
belonging to L,, one has

S (1o + Ah) = X(ug) + ADS¢uo](h) + o(A)

when A | 0.

Unfortunately, the definition of the derivative is not necessary relevant in control context
since any linear and unstable system is not Gateaux differentiable. This difficulty is bypassed
by the the definition of a causal system derivative on the extended space. With reference to
the definition given by Willems in [22], we introduce the following definition.

Definition 3.2 DX[ug] from LS into LS is the Gateaux derivative at uy of the causal
operator ¥, defined from L§ into LS if it is linear and if for oll T € [ty,00), PrDXqluo]
s the Gateaux derivative of PrY at Pruyg.

Let us recall this simple, but essential result concerning causal operators.

Theorem 3.1 [22] Let us assume that a causal operator ¥ defined from LS into LS has a
Gateaux derivative DXglug) at ug of L. Then DX.glug] is causal on LS.

When the system is generated by differential equations, definition 3.2 reduces to the usual
linearization concept. More precisely, we have the following proposition.

Proposition 3.2 Let us consider ¥ defined by (1) and let us assume that f and h are
uniformly Lipschitz and C? (that is, it is twice derivable). Then, for any u, € LS, the
system has a Gateaux derivative which satisfies the following differential equations:

z(t) = A(t)z(t) + B(t)u(t)
y = DY¥¢lu)(u){ y(t) = C(t)z(t) + D(t)a(t) (4)

with A(t) = 5L (@ (t), (1)), BE) = G w(0), (1)), C(1) = Ja(w(#), (1)) and D(r) =
a—Z(xr(t),ur(t) and where x,.(t) = ¢(t,to, xo, u,) is the solution of system (1) under input

ur(t) and x(ty) = xo.



The proof is reported in appendix, page 33.

Remark. We note that it is possible to prove that ¥ does not have Frchet derivative on £
(under the assumption that f or h are not linear functions) (see [38, 39]).

Let us now consider equation (3). We first note that for all T > to:
Y(u+ ANu) = X(u) + DEg[u](AAu) 4+ o(N).
We consequently obtain on any time interval [to, T'] and for A sufficiently small:
Y(u + ANAu) = X(u) + DEg[u](AAu).

This last expression, with condition (3), enables us to approximate Ay for n sufficiently large
2 bv:
y:

n—1

Ay~ Y DIglu+ idu](du) (5)

i=0
This relation shows that the output variation can thus be interpreted as the sum of the out-
put signals, which are associated with the response of linear time-varying systems, namely
DY [u + idu] to the input signal Ju on a finite time interval.

3.2 Global versus local: an exact relation

The approximation given by (5) can be replaced by an integral formula.

Theorem 3.3 Let us assume that ¥ is Gateaux differentiable on LS. For any T € [tg, 00)
and uy,uy € LS, one has

() — S(uy) = /01 DS alur + Blus — un)] (s — ur)dB

The proof is reported in appendix, page 35.

3.3 Global versus local: a norm relation

A second result allows to relate local and global aspects under a simple result which links
the Lipschitz constant of the nonlinear operator and the norm of its derivatives.

Before presenting this result, let us introduce ¢¢, an open and convex subset of LS, i.e.
if uy and uy € U, then Auy + (1 — Nuy € U° for all A € (0,1).

Zby taking A = 1/n

10



Theorem 3.4 Let us assume that a causal operator ¥ defined from LS into L has a Gateaus
derivative at each point ug of L. Then, there exists a finite constant n such that for any
T >ty and for any ug, h € U®, one has

1DEcluo](h)[l2r < nl[hll2z (6)

if and only if the nonlinear operator is such that

15 (w1) — E(ua)|lo,r < nljur — uallor (7)

for any T >ty and any uy and uy belonging to U°.

Proof:

1/. We first prove that (6) implies (7). This implication is a direct consequence of the
mean value theorem. Indeed, using the mean value theorem (on U*¢) [37], it is clear that the
following relation is satisfied?:

[13(u1) = X(ug)[l2r < sup 1D [u][[illur — uall2r

u€[Pr(u1),Pr(us2)]

for any T' > t, and for any input signals uy, us € U°. This concludes the first part of the proof.

2/. We now prove that (7) implies (6) by contradiction. To this purpose, let us assume that
there exist T' > tg, ug and h € U® and p > 0 such that:

DY ug|(h
IDEcluol(Wllar o )
[1All27

By definition of the Gateaux derivative, we deduce that there exists A > 0 such that
[ (1o + Ah) — E(ug) — DEg[uo](AD) |2 0

| AR|2,7
and since
|1 DEgluo)(Ah) |20 — [[E(ug + Ah) — X(ug) — DEg[ue](Ah) ||o,r
| AR|2,7
< [[E(ug + Ah) = 5(ug)|la.1
- [ AR||o,r
one has
[ DEcluo](Mllzr _ |DXa[uo](Ah)|l2.r < 13 (uo + Ah) — X(uo)||2,r L P e n+ P
1Ao7 | AR||2,r | AR||2,r 2 2

which allows to deduce a contradiction.

*[Pr(ur), Pr(us)] = {u | u = Pp(ur) + a(Pp(us) - Pr(uz)), 0<a<1})

11



3.4 Incremental stability and exponential stability of the lineariza-
tions

We present in this section a necessary and sufficient condition for incremental stability. A
nonlinear operator is incrementally bounded if and only if its linearizations have exponential
stable minimal state-space realizations.

Definition 3.3 [40] DX, a Gateauz derivative of ¥ defined by (4), is said to have a min-
imal state-space realization if the pair [A(t), B(t)] is uniformly controllable and the pair

[A(t), C(t)] is uniformly observable.

Theorem 3.5 Let us assume that ¥ is Gateauzr differentiable on LS. If the state space
representation of each derivative of ¥ is minimal then there exists a finite constant n such
that for any T > ty and any u, and uy belonging to U® one has:

[135(u1) — (uz)

o < N|jur — ugllor

if and only if all its linearizations are exponentially stable.

The proof of this theorem is a direct consequence of theorem 3.4 and of this following classical
lemma.

Lemma 3.6 [40] If DX¥gluo] has a minimal state-space realization then 2(t) = A(t)z(t) is
exponentially stable if and only if DY.g[ug] is Lo gain stable.

4 The sensitivity as the key justification

4.1 Introduction

The key justification of gain scheduling techniques can be found in the sensitivity problem.
Remember that a deep motivation for using feedback control is the reduction of the effect of
non measurable noises and is the “shrinking” of the model uncertainties [11, 12, 13, 16, 17].
The sensitivity concept has been introduced in the linear context as a means to quantify the
efficiency of a feedback law, with respect to the effects of small perturbations which are due
either to exogenous perturbations, or to parameter variations [11, 12, 13]. The infinitesimal
nature of this analysis has however led some authors [14] to introduce a more general concept:
the comparison sensitivity function. The idea is now to compare the performance of a closed
loop system with the performance of an equivalent open loop system, against small or large
disturbances and model perturbations.

The sensitivity concept has been also investigated in the nonlinear context by Kreindler
[15], which has extended the sensitivity function introduced in [11] by defining the differ-
ential sensitivity function, which characterizes the first order sensitivity. This analysis is

4Since f and g is uniformly Lipschitz, D¥g[ug] has a “bounded” realization [40].

12



obtained from properties associated with the linearization of a suitable relation between an
input and an output of the nonlinear closed loop system. More recently, the comparison sen-
sitivity properties, associated with a nonlinear closed loop system, were exactly quantified
by Desoer and Wang [17], using a Taylor type expansion of a linearizable nonlinear operator.
Considering the results by Desoer and Wang (and obviously by Kreindler), it is possible to
claim that the performance of the nonlinear system (in terms of the sensitivity properties)
clearly depends on the properties of the linearization of the closed-loop operator along the
possible trajectories of the system.

As a consequence, the relation between the sensitivity objectives and the properties of
the linearizations allows us to give a justification to the local gain scheduling objectives (this
point can be considered as the main motivation for using a gain scheduling control law in an
adaptive control scheme - see [2] and for a theoretical justification to this fact when a slow
time variation of the system is assumed see [9]).

Finally, let us recall that the main limitation of the gain scheduling approach in this
problem is due to the fact that the linear time varying objective, associated with the sensi-
tivity requirement, is obtained using the following heuristic: the linear time invariant frozen
systems, which are associated with each constant value of the varying parameters, must have
“good properties”, so as to obtain also “good properties” for the time-varying system.

Unfortunately, this kind of condition is neither sufficient [1] nor necessary in the general
case for ensuring suitable properties to the linearization of the nonlinear closed loop system
and thus for ensuring suitable nonlinear properties with respect to the sensitivity problem.

4.2 Sensitivity objective: some recalls

In this section, it is shown how the output disturbance problem in nonlinear control implies
strong constraints on the closed-loop system linearizations. The reader is referred to [17] for
a complete presentation of desensitivity problem in the nonlinear context. In the sequel, we
will just consider the output disturbance problem (the other cases presented in [17] can be
worked out as well).

T+ u ¢+ y

Figure 2: The perturbed closed-loop system

For this purpose, let us assume that /' = I and let us associate to the closed-loop system
depicted in figure 2 an “equivalent” open-loop map, Ho,,, depicted in figure 3. If the open-
loop controller is defined by K, = K(I+GK)~" then the open-loop system depicted in figure

13



3, which maps the inputs (r,d) in £§ x L§ to the output y in L5, satisfies for all r € £§ and
for d = 0, the following equality:

Hoy,(r,0) 2 H,,(r,0)

where Hy, is the system depicted in figure 2 which maps inputs (r, d) which belong to £ x L5
to the output y which also belongs to LS.

r U ¢+ Y

—»KO G o—

Y

Figure 3: The perturbed equivalent open-loop system

We now calculate the effect induced by the output perturbations on the closed-loop system:
6Hyw(r,d) =d+GK(I+GK)™'(r —d) — GK(I + GK)™'(r)
Using the fact GK (I + GK)™!' + (I + GK)~! = I allows to rewrite the last relation as:
6Hy,(r,d) = S(r —d) — S(r) (8)

with S = (I + GK) .

In the case of the open-loop configuration:
§Hoy(r,d) = GK(I + GK) ' (r) +d — GK(I + GK) '(r) = d. (9)

The main interest of the feedback law strategy is that it allows to achieve a better reduc-
tion of effects of the disturbances with respect to the open loop strategy. In mathematical
terms, the feedback has a desensitivity effect if the following inequality is satisfied:

16, (r, d)

2,7 < ||6H oy, (1, d)||2,r.

Unfortunately for realistic systems, this inequality cannot be satisfied for any input and
disturbance in £§. Indeed, as in the linear context (see [16]), one has the following theorem.

Theorem 4.1 [19, 20] Consider the closed-loop system in figure 1. If the open-loop operator
GK is strictly causal then
(I +GK) a>1.

This relation implies that there exist r,d € £ such that:
1S(r = d) = S(r)[ler = |ld][2;r
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and thus there necessarily exists, a least, a disturbance such that the feedback law attenuation
is not better than the open loop type one. We moreover point out that desensibility implies
the incremental stability of S. Actually, if S is not incrementally stable, then for any K,
there always exists r and d, such that

1S(r = d) = S(r)llzr = Klldll2r

and thus there exists some perturbation whose effects are arbitrarily amplified.

Following this preliminary remark, the interest of feedback law is necessarily limited to
a specific class of perturbations. We then introduce a set of possible perturbations, namely
P¢ C LS, for which we want to ensure that the closed loop strategy performance is better
than the open loop one. It is moreover clear that the cost of feedback induced by the closed
loop stability problems implies that the use of the feedback control law could be justified if
(and only if) there exists an € (< 1) such that:

16H yr(r, d) |20 < €l|0H oy, (r, d) |2,

for all d € P° C L4 and for all r € LS.

4.3 Sensitivity objective strongly constraints the linearizations

We now prove that the sensitivity requirement strongly constraints the properties of the
system linearizations. Actually, sensitivity objective constraints the exponential stability of
the system linearizations.

Proposition 4.2 Let us assume that the sensitivity map, i.e. S = (I + GK)™!, is Gateaur
differentiable on LS and that the set of possible disturbances, i.e. P°, is a convexr set which
contains the null signal. The densisitivity is achieved with level € > 0, i.e for all r € L§ and
d € P¢, one has:

10Hyp (1, @)z < ellH oy (r, )l (10)

if and only if for all ug € LS and w € P°, one has:

1DScuol(w)ll2r < ejw

2,T (].].)

Proof:

Note that condition (10) is implied by incremental stability of S. The fact that the
stability of the derivative implies the incremental stability of S can be proved as in the first
part of the proof of theorem 3.4.

The converse implication must be examined. As a matter of fact, as in the proof of theorem
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3.4, we prove by contradiction that condition (10)implies condition (11). Let us assume that
condition (11) is not satisfied, that is, there exist uy € £, w € P and p > 0 such that

|DSeluo](w)
I

2’T2p+6

2,1
The Gateaux derivative definition ensures that there always exists A € (0, 1] such that
15 (uo + Aw) = S(uo) = DSgluo](Aw)ll2r _ p

[Awll2r m 2

and then since

15 (uo) = S(uo + Aw)llor + [|S(uo + Aw) = S(ug) = DSgluo]Aw)llar _ [[DSaluol(w)
[Aw|l2,r = | w

2,T

2T
which allows to conclude that

IS(u0) = Suo + Mw)larr o, _, p

[ Aw||o,r 2

which is a contradiction with condition (10). To conclude the proof, it remains to take

r = ug + Aw which belongs to £§ and d = Aw which belongs to P¢ since d is a convex
combinaison of two elements of P¢ (w and 0).
O

We then deduce from this short discussion that the nonlinear system sensitivity is achieved
if (and only if) all the system linearizations have a good behavior with respect to perturba-
tions belonging to Pj.

The desensitivity requirement is achieved only if the sensitivity map, i.e. S, has a finite
incremental gain. This ensures that the degradation introduced by the feedback use is finite.
Following theorem 3.5, this condition constrains the exponential stability of the linearizations
of the system:

Proposition 4.3 Let us assume that the sensitivity map, i.e. S = (I + GK)™!, is Gateaur
differentiable on L§ then desensitivity can be only achieved if and only if the minimal state-
space realization of each linearization of S is exponentially stable.

5 Some discussion about the Lyapunov point of view

5.1 Introduction

This section interest is twofold. We first want to recall classical arguments of the gain
scheduling approach ensuring that the unperturbed trajectories are at least asymptotically
stable. The gain scheduling approach leads to the exponential stability of the system lin-
earizations. The main interest of this property is then pointed out. Indeed, the exponential
stability of system linearizations implies incremental stability.

16



5.2 The “classical” rules

Let us consider the particular trajectory of system (1), which is associated with a continuous
input signal u, and to x,, i.e. z,(t) = ¢(t, to, o, u,)). We first recall the following definition.

Definition 5.1 [33] An unperturbed motion of ¥, associated with a particular input u, be-
longing to LS and with a particular initial condition xo,, i.e. x,(t) = ¢(t,to, Tor, ur), is said
to be uniformly asymptotically stable in the sense of Lyapunov, if for any € > 0, there exists
d(€) > 0 such that for all t, >ty and for all xo, such that ||z, (t1) — xep|| < 0(€), one has for
allt >t :
||¢(ta b1, xr(tl)a UT‘) - ¢(t7 ti, ZLop, UT‘) H <€

and

tll)r& ||d)(tv 11, l‘r(tl)a UT) - ¢(t7 t1, Tops uT) || =0
If this last property holds for any xop,, the unperturbed motion is called uniformly globally
asymptotically stable.
Finally, the unperturbed motion is said to be exponentially stable if there exist two positive

constants a and b such that there exists 6(€) > 0 such that for all t, > ty and for all xo, such
that ||z, (t1) — wop|| < d(€), one has for all t > t;:

lo(t, tr, e (h1), ur) = d(t, 11, mop, )| < (1) — wigpllae™ 7).

Under the regularity assumption, which has been made on the differential equation (1),
the study of the stability of the unperturbed motion can be made on the basis of the stability
properties of the linear part of the differential system. Let be z = x, + Z and v = u, + .
Equation (1) can be rewritten as a sum of linear terms, perturbed by a nonlinear term:

Ft) = AW®)Z() + BOa) + Ri(z(t), a(t)
y(t) = C@)x(t) + D(t)u(t) + Ra(z(t), u(t)) (12)
Zf'(t[)) = Xor — l'()p

0 o)
where A(t) = B%(xr(t),ur(t)), B(t) = ag(xr(t),ur(t)), C(t) = g%(xr(t),ur(t)) and D(t) =
g%(xr(t), u,(t)). All these matrices are bounded functions of time (since f and h are assumed
uniformly Lipschitz). Moreover, if we assume that z,(t) and u,(t) are uniformly bounded®

on [tg,00), then there exists finite constants L; and Ly such that:
1Rz, @) < Lo(I2)1* + llall*) and || Ra(2, @) < La([|Z[|* + [|ul*).

In this case, it is well-known [41, 33] that the exponential stability of the linear part of
system (12), i.e. z(t) = A(t)z(t), ensures the existence of an open ball of initial conditions
around z,, such that all the trajectories, associated with the particular input u, and with
any initial condition inside this open ball, are locally exponentially stable.

Sor that the Hessians of f and h are bounded along z,(t) and w,(t).
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Theorem 5.1 [41, 33| Let z[xg, u,| be a specific unperturbed motion associated with an input
signal u, € LS and with a specific initial condition xy. Let be A(t) = %(zr (t),u,(t)). If the
linear differential equation:

z(t) = At)=(t)

is exponentially stable, then the unperturbed motion x[xq,u,] is also exponentially stable.

Despite its local nature, this result presents the advantage of rigorousness. Unfortunately,
checking the stability of a linear time-varying system is a difficult problem. In many cases,
for bypassing this difficulty, the authors apply a classical heuristic: stabilization of the linear
time varying system z(t) = A(t)z(t) is researched by stabilizing the time invariant systems
2(t) = A(7)z(t) for each constant value of 7 belonging to [tg, 00). This idea, which is the basis
of most gain scheduling techniques (and which can be compared in some sense to the famous
Aizerman/Kalman’s conjecture), is obviously false in the general case (it is fact neither
sufficient nor necessary). This however explains that most of the works concerning gain
scheduling is dedicated to the search of conditions, under which this conjecture becomes true.
A classical condition consists in restricting the time variation of the scheduling parameters
[1, 8, 9]. Others conditions can be found using the quadratic stability concept [10] or the
averaging concept. This theorem moreover explains the interest of considering LPV systems,
i.e. Linear systems depending on Varying Parameters, [1, 8].

Finally, from a global point of view, the exponential stability of the time-varying lineariza-
tion only guarantees that the system motion tends toward a specific unperturbed motion,
but nothing is known about the behavior of this specific motion. Actually, this analysis
seems only possible in the case of constant inputs and in the existence of equilibrium points.

5.3 The “classical rules” imply incremental stability
By a suitable modification of theorem 3.5, we have the following result:

Proposition 5.2 Let us assume that ¥ is Gateauzr differentiable on LS. If the time-varying
linearizations of 2 associated with each input of U® are exponentially stable then there exists
a finite constant, n, such for any T > ty and any uy,us € U®, one has:

[135(ur) — (ug)

o < N|jur — ugllor

In other words, we claim that the underlying design objective of gain scheduling con-
trollers is to obtain a closed loop system at least incrementally bounded on /°.

6 Connections with the incremental approach

6.1 Introduction

The incremental norm framework was introduced for analyzing the properties of nonlinear
closed loop systems from both quantitative and qualitative points of view.
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In this framework, the robustness and the performance properties of a nonlinear closed
loop system can be analyzed in a quantitative way. The weighted incremental norm approach
was indeed originally introduced as an extension of the classical H,, control concepts to
nonlinear systems [18]. When considering linear time invariant systems, the original idea of
[16] was to formulate robustness and performance specifications of a closed loop system as
contraints on the H,, norm of weighted closed loop transfer functions. The main interest is
then to recast the controller design into a well defined optimization problem based on this
formulation. In the same way, in the incremental norm approach, the idea is to translate the
robustness and performance properties of a (nonlinear) (closed loop) system into constraints
on a suitable norm of weighted operator. The incremental norm was proposed as a suitable
norm [18].

In a qualitative way, incrementally stable systems possess suitable steady-state properties.
Furthermore, the effect of a non zero initial condition is ensured to decay asymptotically to
zero. As a first point, a unique steady-state motion corresponds to a given input signal,
independently of the initial condition and despite a vanishing perturbation on the input
signal. When analyzing the response of the nonlinear closed loop system to a reference input
signal, remember that introducing an unknown initial condition can be interesting, since it
allows to consider the past unknown values of the reference input signal. As a second point,
the steady state response to a constant (resp. periodic) input signal is also constant (resp.
periodic).

Note finally that some basic properties of incrementally stable systems will be recalled in
the following sections. The reader is referred to [18, 19, 42, 43, 36, 20] for a more complete
presentation.

6.2 Tracking and asymptotic properties

The notion of performance is quite difficult to handle in the nonlinear input-output context.
We first recall the approach of [17], in which the performance is defined as the ability for the
system to minimize “asymptotically” the gain between the inputs of interest  and the error
signals e (see figure 4). More precisely, denoting as RS the set of input signals of interest,
the following definition is introduced.

Definition 6.1 The asymptotic performance of the closed loop system of figure 4 is satisfied
on RS if there exist € > 0 and Ty > 0 such that :

(I + FGK)’ITHQ,T < €||r||er Vr € Ry
for T > Ty.

This definition ensures that the relation F'H,, ~ I is asymptotically satisfied on R (see
figure 4). In the sequel, the operator (I + FGK)™" is denoted S.
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Figure 4: Tracking performance analysis

As in the H,, context [16], we will consider

1= {r € LW (0)ller < ellr

2,T}

where W, and W, ! are two causal and incrementally stable operators. Such an operator W,
defines the set of input signals Rj. We then have the following result.

Theorem 6.1 [18, 20] The asymptotic performance of the closed system of figure 4 is guar-
anteed on R§ if

[SWifla <1
6.3 Desensitivity

In this subsection, testing conditions introduced in section 4 is formulated as the computa-
tion of the incremental norm of a weighted operator.

To this purpose, as in the H,, approach, we now assume that the set of possible distur-
bances for which desensitivity must be achieved can be defined by:

P ={d e L5||W,;(d) =W, (r + d)|| < el|d|| for all r € LS}

where W), and VV]D_1 are two causal and incrementally stable operators. Note that the set P¢
definition slightly differs from the set Rj definition. The main reason is to take into account
a non zero initial condition (for details, see [20]). By the introduction of this weighting
function, the desensitivity is achieved if the “weighted” sensitivity function incremental
norm is less than 1. More precisely, we have this following result.

Theorem 6.2 [18, 20| Consider the nonlinear feedback system depicted in figure 2. If
[SWplla <1 (13)

then |0 Hy(r,d)||20 < €||6Hoy (r, d)||21 for all d € P* C LS and for all r € LS.
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6.4 Robustness against unstructured uncertainties

We consider the case of an unstructured uncertainties A on the plant model G. This model
perturbation A may represent uncertainties on the actuator or sensor dynamics, and more
generally neglected dynamics. We assume that A belongs to a set defined as:

Oz = {A =W;AW; | Al < 1}

where A is a (possibly nonlinear) causal operator from £§ to £§ and Wy and W3 are known,
causal, incrementally stable input-output maps from £§ to L§.

A stability result is proposed for the interconnected system presented figure 5, where
M is a generic nominal closed loop system. In this case, the (internal incremental) stabil-
ity property corresponds to the incremental stability property of the (well posed) operator
defined by the inputs u; and uy and the outputs y; and ys.

Figure 5: Robustness analysis of the nonlinear feedback system

Theorem 6.3 [18, 20| If M is incrementally stable and if the following inequality holds:
[WoMWs||a <1
then the closed loop system of figure 5 is incrementally stable for any uncertainty A belonging

to Qz

6.5 Connections with linear time varying and time invariant con-

trol

In this section, we first point out the strong connections between the weighted incremental
approach and time varying H., control®. Following the previous section, we assume in

6Note that, stricto sensus, H., control refers to linear time invariant closed loop systems where the
controller is designed by minimizing a weighted transfer function Hy, norm. The Hy, norm is not defined
in the case of a linear time varying systems: in this case, a possible extension is the L5 gain (L5 induced
norm). Nevertheless, the £» gain control of linear time varying systems is usually referred to as the “Hq,
control”. In this paper, we are consistent with this use.
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the sequel that performance and robustness specifications are formulated as constraints on
the weighted incremental norm of a closed loop operator H, that is, the incremental of the
augmented closed loop plan, M,,, = W,HW,;. W; and W, are the input and output weighting
functions associated with robustness and performance requirements. We moreover assume
that the augmented system is described by a differential equation with C? and globally
Lipschitz state and output functions’. From theorem 3.4, we deduce

Proposition 6.4 If the augmented system, M,,, = W, HW;, has a Gateauzr derivative for
every input in LS then || M,,||a < 1 if and only if

[DWoe[H (Wi(wo))|DHe[Wi(wo) [DWig wollli <1 Vuwo € L5. (14)

Note that DM,,q[wp] is a linear time-varying operator: from proposition 6.4, solving a
weighted incremental problem is thus equivalent to solving an infinite number of linear time-
varying weighted induced norm problems. It is worth noting that the constraints (14) are
satisfied if (and only if) an infinite number of linear time-varying weighted H,, constraints
are satisfied.

The non-stationarity of the induced norm condition (14) is now discussed through a
simple example described by figure 4, that is, with H = S, where S = (I + FGK)!. Given
a small variation 07 (t) of the system input r(¢), the corresponding tracking error variation
can be then approximated on a finite time interval:

e =S(r+ \or) — S(r) = DSg[r](\dr). (15)

Let us here assume that the performance requirements are introduced with a linear
weighting input operator, W; = W;. This weighting function, assumed to be causal and
invertible, satisfies the following relation (see subsection 6.2):

W ()l < ellrllar (16)
where € < 1. If the condition (14) is satisfied, it can be claimed that

| DSa[Wi(we)]Wrll; < 1. (17)

The above relation is a time-varying H., constraint (see figure 6), which ensures for any
or € R that there exist € > 0 and a time, T > ¢y, such that for all 7" > Tj, one has:

1ellzr < ellor|l2r (18)

since

IDS[Wr(wo)](07) |2 < [[W/ (7)

2T S 6||(57"||2’T. (19)

In a performance context, proposition 6.4 can be interpreted in two different ways:

"This assumption ensures the existence of the augmented system Gateaux derivative.
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Figure 6: Linearization of the augmented plant

e as a constraint on the system linearizations along the trajectories defined by Wy (wy).
Consequently, this guarantees a good behavior of the nonlinear system along its tra-
jectories despite small perturbations belonging to Rj.

e as a constraint on the output variations with respect to small input variations. For
example, the output associated with a step input can be interpreted as the sequence
of responses to small step-inputs associated with each nonlinear system linearization
along the trajectory generated by this step. This output is directly related to the
weighting function W7 linearization.

Remark. In the approach proposed in [1], one has to test whether the gain scheduling
system satisfies a criterion similar to condition (14).

We now investigate the close connection between the incremental approach and ap-
proaches based on time invariant linearizations such as the pseudo-linearization. Note that
the class of time invariant linearizations is classically considered in the gain scheduling ap-
proach. We then define Z,, the set of equilibrium points associated with any constant input:

Ze = {(xe,ute) € R" X RP | ¢(t,t0, Te, ute) = T Yt > 1o} (20)
where ¢ is the state transition map of X.

Theorem 6.5 [42] Let X be the system given by (1) with the finite incremental gain 7. Let
ue be any constant input and x, be its associated equilibrium point. If x. is reachable from
xo then the linearization of X2, given by the following linear time invariant system.:

z(t) = Az(t) + Bu(t)
DXg(ue)§ y(t) = Cxz(t)+ Du(t) (21)
A= %(xeaue); B = %(xe,ue), C = %(xe,ue) and D = %(xe,ue), has a finite Lo gain less

than or equal to n, i.e. ||DXglue]|l; < n.
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This result makes crystal clear a direct connection between our nonlinear framework
and the classical gain scheduling techniques, especially with the approaches based on the
extended linearization (see e.g. [3]). In these approaches, some properties of the linear time-
invariant linearizations of the system associated with constant inputs are enforced. Finally,
with respect to the weighted incremental norm approach and with reference to the augmented
system previously defined M,,,, (whose norm is less than 1, i.e. ||M,y||a < 1), theorem 6.5
ensures that all the time invariant linearizations satisfy a weighted H,, norm condition.
This constraint is specified at each equilibrium point by the stationary linearization of the
nonlinear weighting functions, i.e.

[DWoi [H (Wi(wo))]DHe[Wi(wo) IDWig[wol[li < 1 (22)

where DW,q[H (W;(wy))], DHa[W;(wy)] and, DW;g|w,] are linear time invariant systems.
This last fact has interesting connections with the work presented in [4].

6.6 Fundamental interests of incremental framework: local behav-
ior versus global behavior

In this subsection, following the results given in [44], we point out that the exponential sta-
bility of the linearizations of a nonlinear system ensures suitable global behavior properties.
If the system linearizations are exponentially stable then the nonlinear system has the unique
steady state property. Moreover, it has a periodic (constant) trajectories for periodic inputs
and finally under some reachable assumption of its state space from the initial condition, all
its unperturbed trajectories are globally asymptotically stable.

We first consider the analysis of the system behavior with respect to a perturbation on
its input which vanishes when the time tends to the infinity.

Theorem 6.6 Let X, be a dynamical system associated with (1). If for all ug € U®, the
linearization DY g[ug) is exponentially stable then for all u,,u, € U® such that u, — @, € Lo,
one has:

tgrgo Hd)(t, to, To, ur) - ¢(t7 to, To, ﬂr)” =0.

Proof:
Theorem 3.5 implies that there exists a finite constant n such for 7" > t; and all u,, u, €

2,T S 77““7‘ - ar

U°, one has ||z[zg, u,] — x|z, U] o.7- Since by assumption, u, — @, belongs

to Lo, one has for any T > to:
|2[zo, u,] — x[xﬂﬂar]”Z,T < nlluy — @]

which allows to ensures that z[xg, u,| — z[x¢, 4,| belongs to L.
By applying Barbalat’s lemma, since both motions are two absolute continuous functions of
time, the result is proved.

O
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We now analyze the effect of persistent perturbations with a finite amplitude: a bounded
magnitude input generates a bounded magnitude state.

For sake of briefness, the proofs of theorems presented in this subsection are not developed
here (see [44]).

Theorem 6.7 [44, 43] Let 3, be a dynamical system associated with (1). If for all uy € U®,
the linearization DXglug| is exponentially stable and 0 € U® then for any L > 0, there exists
K >0 such that

||¢(t7 to, To, U’T‘) || <K

for all u, € U such that ||u,(t)]| < L a.e.
Incremental stability also ensures desirable response to a periodic input.

Definition 6.2 A motion, x(t), defined from [ty,o0) into R™ is said to asymptotically pe-
riodic if there exists a positive constant T, > 0 such that ||x(t + 7) — x(t)|| < € for all
t>1T,.

Theorem 6.8 [44, 43| Let ¥ be a dynamical system associated to (1). If for any u, € U®,
the linearization of DX g|u,] is exponentially stable and uw = 0 belongs to U°. then for any
periodic input belonging to U, the associated state space trajectory is asymptotically periodic.

We now present a result which ensures that the effect of the initial condition vanishes.

Definition 6.3 The state space of ¥ is said to be reachable from xy with respect to U if
given any x € R"™ there exist uw € U® and T, > ty such that v = ¢(t,t — T,,x9,u) for any
t >ty + T

A set Q C R"™ is said to be reachable from xy with respect to U° if given any x € Q there
exist u € U and T, > to such that x = ¢(ty,t + T}, xo, u).

Theorem 6.9 [44, 43] Let X, be a dynamical system associated to (1) and Q an open ball of
R™. If for all u, € U, the linearization of DXgu,| is exponentially stable and €2 is reachable
from ¢ with respect to U® then all the unperturbed motion associated with an initial condition
in Q are asymptotically stable at large, i.e. for any u, € U® and any x, € €2 one has:

(i) for any € > 0, there exists 0(ty,€) > 0 such that

||d)(t7 thl‘pauT) - ¢(t>t07fpvur)” S €

for any T, € Q such that ||z, — || < d(to,€).
(i1) for any &, € Q, one has

limt»oo||¢(t; th xpa ur) - ¢(t7 tUa jp? U’T‘) || =0
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7 Incremental gain: analysis and controller design

As pointed out in the introduction, the first interest of the above results is to propose
a mathematical framework, which, in some sense, allows to assess the complexity of the
classical gain scheduling objectives. We recall in the sequel some results concerning the
computation of a nonlinear operator incremental norm for analysis purpose. We first recast
the problem of computing an (upper bound)incremental gain of a nonlinear operator as an
optimization problem. We then more generally discuss the controller design.

7.1 The incremental real bounded lemma

Let us introduce the system y = S(w), described by the following equations:

y(t) = h(z(1) (23)

where f and h are assumed smooth enough, so that S is well-defined for all x5 € R™ and
for all w € L. Let us associate with this dynamical system, S, defined from L£§ into L5, a
fictitious dynamical system, Sy, defined from L£§ x L§ into LS by:

yr = Sp(wr, wa) = S(wy) — S(wa).

The available storage function (see [45]), namely S,, is then introduced as a function from
R™ x R™ into R° :

Sal@o1, T02) = sup — tOT(n2||wl(T) — wa(7)[* = Iy (7)|*)dr (24)

where the supremum is taken over all wq,wy € L4, and where the notation sup denotes the

T—
supremum over all motions of Sy, which start from state (xo1, zg2) at time ¢y, namely the
motions which are associated with the following dynamical system:

(

i (t) = f(x1(t) + g(@1(t))wi(t)
(t) f@2(t)) + g(z2(t))w2(t)
Spy yr(t) = h(za(t)) — hlaa(t)) (25)
r1(to) = zo1
[ T2 (to) = o2
Lemma 7.1 [43] § has an incremental gain less or equal to n if and only if S,(xq, x9) = 0.

A more classical condition can be formulated as follows.
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Lemma 7.2 (Incremental real bounded lemma) [18, 19] The system (23) has an in-
cremental norm less or equal to n if there exists a C' function S, defined from R"™ x R"™ into
R, such that the following conditions hold true for all x and z belonging to R":

(i) Dg(x) +Dg(z) =0

Remark In this lemma, the proposed condition is only sufficient for incremental bound-
edness since the available storage function S is assumed C'. Necessary conditions can be
obtained if this assumption is relaxed and if the solutions of the Halmiton Jacobi like equa-
tion are defined in the viscosity sense (see [46]).

Using this specific lemma, it is possible to illustrate in a simple way most of the results of
the previous section. We enlighten in the sequel the link between the conditions of lemma 7.2
and the Lyapunov stability result. As proved in [43], S parameterizes indeed the Lyapunov-
like functions for any system motion. Let us define indeed a specific function V', from R x R"™
into R, which is related to S by V(t,z) = S(z,(t), z,(t) + x), where z,(t) = ¢(t, to, Tor, wy)
is a specific motion of system (23). The conditions in lemma 7.2 can be used to prove the
Lyapunov stability of the unperturbed motion, since V' (¢,0) = 0 and V is decreasing along
the perturbed motion of the system:

Vi(tn0) = Vitaao) < = [ ln(®) = o)t < 0

where y,.(t) (resp. y»(t)) is the output of system (23), when applying the input signal w;(¢)
and the initial condition z, (resp. x3). The stability of the unperturbed motion is then
obtained if some uniform irreducibility conditions are assumed (ensuring that V' is positive
definite, for details see [43]). Asymptotic stability requires the uniform observability of the
unperturbed trajectory, which ensures that V' is now strictly decreasing along the perturbed
motions.

7.2 A computational test

Since computing the (upper bound) incremental gain of a nonlinear operator involves solving
Hamilton-Jacobi like equations, it is a difficult problem. In the sequel, we propose a result
based on a computational attractive (sufficient) condition. The purpose is to achieve a trade-
off between the conservatism and the complexity of the tests associated with (incremental)
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stability criteria. The interest of such a pragmatic approach was already emphasized by
Safonov in [21].

To this purpose, we point out the interest of quadratic type functions S [18, 36]. In
this new context, sufficient conditions for the incremental stability of a nonlinear system
can be obtained. Testing these sufficient conditions reduce to solve a convex optimization
problem involving Linear Matrix Inequality (LMI) constraints. The underlying idea is to use
a specific solution to the original Hamilton Jacobi type equation. Remember that efficient
numerical algorithms have been proposed [47] for solving LMI-based optimization problems.
Actually, we obtain the following result.

Theorem 7.3 [18, 36] If there exist n > 0 and a symmetric, positive definite matriz P €
R™™ such that

0 of" 0 _10hT
P_x(xéU)T+8_£ (z,u)P Pa—i(x,u) n 1%T(x,u)
8—£ (z,u)P —Inm 77*1% (zu) | < 0
n 'O (o, ) T TCRT R

is satisfied for all x € R™ and any u € RP, then system (1) is incrementally stable for any
initial condition xo € R"™ and has an incremental gain less than 1.

This theorem is a direct consequence of the mean value theorem, since the LMI condition
ensures that each linearization of the system is in fact £, gain stable.

7.3 Control design problem: singular differential games with in-
complete information

The incremental synthesis problem is now reformulated as an optimization problem. To this
purpose, we restrict our attention to a specific class of system defined as:

i(t) = f(z(t) +plx(t)ut) + g(z(t))w(t)
At) = h(z(t) + Du(t) (26)

where u(t) € RF w(t) € R™,y(t) € RP,z(t) € R*, 2y € R" and f, p, g, h are C? and
uniformly Lipschitz.

The full information control problem consists in finding the (stabilizing) control law

u = K(z,w), which minimizes the incremental gain of the nonlinear closed-loop system
M,w:
mI}n | M| A
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In a classical way, this optimization problem can be reformulated as follows. Let us associated
to system (26), this following fictitious system:

' T = fl(o1) +plz1)ur + g(z1)uwn
& = f(x2) + p(w2)us + g(w2)wy
zf = h(z1) — h(xse) + D(uy — us) (27)
z1(ty) = o

| 72(t)) =

By introducing u = u; — ug, w = wy — wo, 21 = (27,21, w; = (wh,wl) and ul = (uT,ul),

system (27) can be rewritten as:

(

Ty = f(x1) +p(r1)u + p(r1)uz + g(v1)w + g(21)w,

To = flw2) + p(w2)us + g(z2)w:

zf = h(z1) — h(zz) + Du (28)
ri(te) = o

To(te) = o

\

We then associate to the previous system, the following cost function:

Hosw) = [ (2@ = Pw)2) de

For a fixed constant i > 0, the issue is now to determine whether there exists a full infor-
mation controller u = K (x, w), solution of the problem:

su inf J (g, w
oy ({uth(m,w)} (ue t)>

The resolution of this optimal control problem is quite difficult. Actually, the cost func-
tion can be rewritten as:

I (ur, we) = /tOT (IR (1)) = h(@2(8) + Du(t)|* = n*|lw(t)|?) dt

In a differential game interpretation, since the criterion only depends on v and w, it is singular
with respect to the inputs associated with both players. Moreover, this “full information”
problem becomes an “incomplete information” problem since z; is not measured (see [34]
and references therein) .

A first solution was proposed in [18]. In this solution, the controller design problem is
performed in two steps. In the first step, the full information case is considered, i.e. all
perturbations and states of the fictitious system are assumed to be measured: when solving
this first problem, which is already difficult because of the criterion singularity, a full state
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feedback is obtained, which also depends on the fictitious system states. Since they are not
available measured, we add to the static controller a dynamical system which estimates the
fictitious system state. Actually, we implicitly apply the equivalence certitude principle (see
[34]). On this basis, the obtained controller is now dynamical and the closed loop system
is now the connection of two dynamical systems. The obtained controller is then a solution
of the synthesis problem if the closed loop system satisfies the incremental real bounded
lemma conditions. The conclusion of this short discussion is a new question: even in full
information case, has the controller to be dynamical? Clearly, this simple, but essential,
question is an open problem in the incremental approach (see [48] for a first answer to this
question). In addition, in the gain scheduling approach, the possible answer would allow to
assess the necessary structure of a gain scheduling controller.

8 Conclusion

As a conclusion, we first propose figure 7. In this figure, the advantages of the (weighted)
incremental norm with respect to existing nonlinear concepts and nonlinear system properties
developed in this paper are summarized.

Weighted
Desensitivity o Incremental
approach
Lipschitz
Continuity
Behaviors:
- Global Lyapunov stability
Gain Scheduling Localy - Unique steady-state
Classical Rules Exponentially - Specific behaviors
Stable

Figure 7: Main implications proved in this paper

Actually, our theoretical framework presents two main advantages.

e It provides a nonlinear framework to the gain-scheduling techniques.

e Solutions to the problem of minimizing the incremental norm of a nonlinear operator
can be used to improve the results provided by classical gain-scheduling techniques.
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A Proof of proposition 3.2

Before developing the proof of proposition 3.2, we first focus on the Gateaux differentiability
of a memoryless nonlinearity.

Let g(u) be a nonlinear function defined from R™ into R™ such that g(0) = 0. The
function ¢ is assumed continuous with respect to w. On this basis, we associate to g, a
nonlinear operator, noted N, defined from £5 into £5 by®:

N(u) = g(u).

8Note that N is well-defined if (and only if) g satisfies some sector constraints (see [38]).
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Lemma A.1 If g has a partial derivative g, (u) = 8%(73) which is bounded and continuous

with respect to u then N has a Gateaux derivative at any uy of LS, referred to as DNg,
which is defined as:

DNGlue](h) = 52 (o) ).

Proof:
We have the following equality:

gl + A1) = () = A2 o) () = [ S (€1 — AT o) 1)
Let us consider & = (1 — p)ug + p(ug + Ah). Then
oloto-+ M) — g(ug) ~ AoL(uo)() = A [ (%«1 — puto + plutg + M) — %(w)) hdp.

By taking the norm of the previous expression, we obtain:

H/ ( (o + Ah)—%(u@) hde2

and by applying the Cauchy-Bunyakovsky-Schwarz inequality (on R), one has:

H/ ( (up + Ah)—?(@) hdp2

Taking the norm on L§ allows to deduce that:

/T
to

1% (ot 430 — gt -

<

(gg (uo + pAh) — %(uo)> hH2 dp.

2

: (N(uo + Ah) =N (Uo)) — DNg[Ug](h) dr <

A

ou

to

Jdg ?
u0+ pAh) — ==(uyp) | h|| dpdr

Interchanging the order of integration by Fubini’s Theorem, one obtain:

2

|5 (w0 + 21 = N () = DNl (B)| <
//to ( (uo + )J“L)-%(uo))hHZdep.

We then apply Theorem 19.1 proposed in [38] which allows to prove that for any fixed T € R
and any fixed v € L, the operator defined from L§ into L by

folz) = (%(U—i—z) gZ( ))v
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is a continuous and bounded operator on LS, i.e. for all v € L5, for all T € R there exists
n(v,T) > 0 such that || f,(2)||2.r < n(v,T)||2]|2,7. From this result, we finally deduce that:

[ r1
2,T / p*dp
0

X (WG + 7)) - DNlul(h)], < an(h.T)

which allows to conclude that A has a Gateaux derivative on LS.

Proof of Proposition 3.2: Let us introduce the following operator:

. @ (@, u)
O(z,z,u,y) = —
) (y) (h(m))

with #,u and y in £§ and with x in ACS, which corresponds to the space of absolute
continuous functions (AC) of times equipped with the 2 norm.

This operator defined from ACS x L£§ x L5 x L5 into L5, has a Gateaux derivative on £
since it is the difference between a linear operator (which has a Gateaux derivative on ACS)
and a nonlinear operator, namely N : ACY x L£§ — L5, defined by

f(a,u) )

Nau) = ( h(z,u)

which has also a Gateaux derivative (see lemma A.1). We then deduce that

- R

D@G[l’,l",u,y] =

IS
/-~
o O
\_/
Il
/-~
< ORI
\—/
|
/-~

> |
g
= =
= =
> |
g
SRR
= =
o O
\—/
NI

|
<

which allows to conclude.

B Proof of theorem 3.3

Proof: By introducing a dummy variable, 5 € R, we define the following abstract function
from R into L5
f(B) = %(u + fAu)

where Au = uy — uy. Since ¥ is Gateaux differentiable then f has also a derivative. Indeed,

fB+AB) = f(B) _ E(u+ BAu+ ABAu) — E(u+ SfAu)

AB Ap
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and thus (by definition of the Gateaux derivative)

Voo S (B AB) — f(B)

= DX¢[u + BAu](Au).

In the same way, we can prove that

— AB) —
1(9) =t LE= 2010

= D¥¢[u + fAu](Au)
which ensures, since fy(8) = f_(f), that f has a derivative for any # which is given by

f'(B) = DEglu + BAu](Au).

Let us prove that f'(3) is a continuous function of its argument. To this purpose, let us
denote u; = v + SAu and uy = u + f'Au and let us define the following quantity:

I = |IACF(BY) = F (Bl — [[E(ur + AAu) = E(ur) — DZglw](AAu) - -
oo — (B(ug + AAu) — X(u2) — DEg[ug](AAw)) [lo7
Since [[z|| — [ly|| < |ly — [, one has
IT < [|Z(ug + AAu) — E(uy) — E(ug + AAu) + X(ug)||2.r-

¥ is Lipschitz continuous on L§ i.e for any T € [tg, 00) there exists a finite constant Ly (7))
such that ||E(w1) — E(’wg)“Q’T S LE(T)le — w2||2,T, and thus II S 2LE(T)||(B — 5')Au
On this basis, one has:

1F(8) — f1(B)|| < Z2D|(5 — ") Aulloz + - --

. ||E(’u.1+)\Au)72(ul)7DE(;[U1K)\AU)||2,T + ‘|2(UQ+AAU)72(U2)7D2G['LLQ](AAU)HQ,T
A A

2,T-

It is not difficult to conclude that f’ is continuous function, i.e. for any ¢ > 0, there
exists 0 > 0 such that for any 8 € R such that |5 — || < 0, we have ||f'(8") — f'(B)]| < €.
Indeed, since ¥ has a Gateaux derivative, A can be chosen such that the sum of the second
and third terms of the left side of the previous inequality is less than 5. On this basis, ¢ can
also be chosen such that the first term is also less than £.

Following classical results concerning integration of abstract functions (see [38]), it can
be claimed that, since f(f) and f'(/3) are continuous functions of their argument, we have:

F1) - 10) = [ 7(8)a8

and thus )
S(u+ Au) — S(u) = /0 DSelu+ BAu)(Au)df

which corresponds to the claimed result.
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