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Abstract

The weighted incremental norm approach was origi-
nally introduced as a natural framework for extending
well-known H,, linear control concepts into the nonlin-
ear context. In this paper, we investigate the numerous
links between this new approach and the classical gain-
scheduling technique: more precisely, we show that the
control objectives of the gain-scheduled controller de-
sign can be expressed as the weighted incremental norm
minimization of a nonlinear operator. The result inter-
est is twofold: it first provides a rigorous mathemat-
ical formulation of the gain-scheduling problem. Fur-
thermore, existing gain-scheduling techniques can be
interpreted as approximate solutions to the weighted
incremental norm minimization of a nonlinear opera-
tor. This paper is a shortened version of the technical
report [13].

1 Introduction

The gain scheduling approach is a very classical and
widespread nonlinear control technique. The under-
lying idea is to design at one or more operating
points linear time invariant controllers using the asso-
ciated linearized plant models. The nonlinear control
law is then obtained by interpolating (or scheduling)
these controllers as a function of the operating point
[21, 2, 17, 15].

Actually, from a theoretical point of view and from pre-
vious works, it seems that the main goal of the gain
scheduling approach is to ensure at least the exponen-
tial stability of the closed loop system linearizations.
This point of view is in fact a direct consequence of
the Lyapunov’s indirect method. Despite its local na-
ture, the method presents the advantage of being rig-
orous. Unfortunately, testing the stability of a linear
time-varying system which is associated to a nonlin-
ear system linearization, is a difficult problem, so that
the following conjecture is generally used: if the frozen-
time systems associated with the time varying system
are stable, then the time varying system is also stable.
This idea, which is the basis of most gain scheduling
techniques (and which can be compared in some sense
to the famous Aizerman/Kalman’s conjecture), is ob-
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viously false in the general case. This conjecture is in
fact neither sufficient nor necessary. This however ex-
plains that most of the work concerning gain scheduling
is devoted to the search of conditions, under which this
conjecture becomes true [21, 9, 25, 20].

Actually, in the context of nonlinear control, it is well-
known that the exponential stability requirement for all
the closed loop system linearizations is in the general
case a very strong requirement. Following this remark,
it seems necessary to make crystal clear if this require-
ment can be justified in a theoretical way.

A second point is linked to a pragmatic point of view.
Actually, when controlling the nonlinear plant, a natu-
ral requirement, is that the time invariant linearizations
along particular constant inputs satisfy the robustness
and performance criteria, classically considered in lin-
ear control. As a consequence, we focus the following
question: is it possible to justify in a theoretical way
this pragmatic point of view?

As we will show in the sequel, the answer to these two
questions is yes. In fact, a justification can be found in
the sensitivity problem. Let us recall that the desen-
sitivity property corresponds to the fact that the feed-
back control laws can attenuate the effect of non mea-
surable system perturbations and “shrink” of the model
uncertainty effects. Desensitivity is in fact the major
motivation (maybe the only one) for using feedback
strategies versus open loop one [3, 4, 14, 24, 6]. A first
paper conclusion is that the classical gain scheduling
control objectives (constraint some system linearization
properties) can be justified in many control problems,
so that the main restriction of the approach is the fact
that existing gain scheduling techniques achieve these
objectives only in an approximate (or even heuristic)
way.

A second difficulty of the gain scheduling approach is
that this technique can not be considered as an ap-
proximation of any existing nonlinear control design
method. This fact has been already pointed out by
Wilson J. Rugh [17]: “What is most striking about gain-
scheduling is that, while it is ever more widely used in
practice, it has been widely ignored from a theoretical
perspective. In particular, it remains unstudied as an
explicitly nonlinear control approach. So it seems that
gain scheduling is another example of the lamented the-
ory/application gap but in this case application is ahead
of theory”.

In other words, a global nonlinear framework for the



analysis and the design of gain scheduling control sys-
tems has to be proposed. The interest of such a frame-
work is clear: assess the mathematical complexity of
the control law design, satisfying the gain-scheduling
objectives in a nonlinear context.

As we will show in the sequel, the weighted incremental
norm seems to be a natural framework for this problem.
First, note that the weighted incremental norm was re-
cently introduced in [7, 12] as a solution for extending
well-known H,, linear control concepts into the non-
linear context. The nonlinear control problem is in a
non-stationary way transformed into a well-defined op-
timization problem, which is the weighted incremental
norm minimization of a nonlinear operator. This ap-
proach allows to simultaneously consider major specifi-
cations such as robust stability, sensitivity and attenu-
ation with respect to exogenous perturbations, suitable
steady state behaviors associated with step and peri-
odic inputs and Lyapunov stability.

The main objective of this paper is thus to explain why
and how this incremental approach provides a natural
mathematical framework to the gain scheduling control
problem. For the sake of shortness, only some aspect
are developed in this paper. The reader is referred to
[13] for a far more complete discussion.

Notations and definition. The notations and ter-
minology are classical in the input-output context
(see [23]). The Lo-norm of f : [tg,00) +— R" is
£l = (ftzo lf(®)||2dt)' /2. The causal truncation at
T € [ty,0), denoted by Prf gives Prf(t) = f(t) for
t € [to,00) and 0 otherwise. The extended space, L is
composed with the functions whose causal truncations
belong to L5. For convenience, ||Prul|> is denoted by
-

In the sequel, we consider systems with the differential
representation

&(t) = fla(t),u(t))
2 gz,t(tg = Wla(t),u(®)) (1)

where z(t) € R™, y(t) € R™, and u(t) € RP. f
and h, defined from R™ x R? into R™ and R™ respec-
tively, are assumed to be C? and uniformly Lipschitz.
Moreover one has f(xo,0) = 0 and h(zo,0) = 0. The
unique solution z(t) = ¢(t, to, zo,u) belongs to L5 for
all zp € R™ and for any v € £5. An unperturbed motion
(of X) is a specific motion of ¥ associated with an input,
ur € L5, and with an initial condition, o, € R", i.e.
z(t) = ¢(t,to, Tor, ur). With reference to this defini-
tion, we denote by z[zo,, u,] this unperturbed motion.
The notion of (incremental) Lo-gain can now be re-
called. ¥ is said to be a finite gain stable system if
there exists v > 0 such that [|Z(u)|lz2 < ~||lu|l2 for
all w € L£5. The gain of ¥ coincides with the mini-
mum value of v and is denoted by ||Z||;. ¥ has a fi-
nite incremental gain if there exists > 0 such that
[[1E(u1) — Z(u2)lla < nllur — us|2 for all uy,us € Lo.
The incremental gain of ¥ coincides with the minimum
value of 1 and is denoted by ||X[|a. X is said to be
incrementally stable if it is stable, i.e. it maps Lo to
Lo, and has a finite incremental gain. We consider, in

the sequel, the nonlinear feedback system depicted in
figure 1, where G, K, F' are nonlinear causal operators
from L§ into L5, representing respectively the plant, the
compensator and the feedback, and where r, e, u and y,
which belong to L5, denote respectively the system in-
put, the error signal, the plant input, and the system
output. The closed-loop system is assumed to be well-
posed and the input-output map between the system
input and the system output, denoted by H,,, is given
by GK(I + FGK)~1.

Figure 1: The nonlinear feedback system

2 Linearization and related results

The main concept in the gain scheduling approach is the
linearization one. This concept is classically related to
the first order approximation of the system along some
specific motion. As a matter of fact, this point of view is
clearly linked to stability considerations and Lyapunov
like arguments. In the sequel, we try to convince the
reader that the Gateaux derivative is, in the context
of gain scheduling approach, a more interesting notion.
Indeed, it is an input/output notion which seems to be
a better frame for analyzing the system properties.

Global vs local: the Gateaux derivative as a
limit In the following, we characterize the global be-
havior of a nonlinear system as a sequence of its local
variations. Let us consider Au the input variation and
Ay the associated output variation:

Ay = X(u + Au) — B(u). (2)

The objective is to characterize in an accurate way the
effect of Au on Ay. Defining the local input variation
du = Au/n, where n is an integer, the output variation
is then rewritten as the sum of the outputs associated
with small inpl}Lt increments:

Ay = Z S(u + idu) — S(u + (i — 1)du). (3)

i=1

Let us consider equation (3) when the norm of the input
increment goes to zero. As in a classical space (e.g. R),
the limit can be studied under the introduction of the
operator derivative around a specific input. In fact, in
the functional analysis frame, there exist, at least, five
notions of derivative. The Fréchet derivative, which is
“similar” to the classical derivative on R, can not be
used since it is not defined for many dynamical systems
[22]. We then use a weaker notion of the derivative, the
Géateaux one.

Definition 2.1 [1, 23] Given a causal operator ¥, de-
fined from LS into LS, let us introduced uy € L5 and



let us assume the existence for any T € [ty,00) and any
h € L§ of a continuous linear operator DX [ug], from
LS into LS, satisfying:

E(UO + )\h) — E(U())

li
1m \

L0

=0
2,T

then DX.g[uo] is called the Géiteaux derivative of ¥ at
Ug.

— DX uo](h)

When the system is generated by differential equations,
definition 2.1 reduces to the usual linearization concept.
More precisely, we have the following proposition.

Proposition 2.1 [13] Let us consider ¥ defined by (1)
and let us assume that f and h are uniformly Lipschitz
and C? (that is, it is twice derivable). Then, for any
up € L§, the system has a Gateauz derivative which
satisfies the following differential equations:

z(t) = A(t)z(t) + B(t)u(t)
y = DXg[ur](a) 128)) = g() z(t) + D(t)u(t)  (4)

with A(t) = gL (o, (1), ur(t), B(t) = 5L (wa(t),un(t)),
Ct) = Fp(ar(t),ur(t)) and D(t) = Fu(z,(t),ur(?))
and where ,.(t) = ¢(t,to, xo, u,) is the solution of sys-
tem (1) under input u,.(t) and z(ty) = zo.

Let us now consider equation (3). We first note that
for all T > tg:

Y(u+ AAu) = E(u) + DEg[u](AAu) + o(N).

We consequently deduce that (3), enables us to approx-
imate Ay for n sufficiently large by:

n—1
Ay = Z DY¢[u + idu](du) (5)

=0
This relation shows that the output variation can thus
be interpreted as the sum of the output signals, which
are associated with the response of linear time-varying
systems, namely DX¥q[u + idu] to the input signal du
on a finite time interval.
The approximation given by (5) can be replaced by an
integral formula.
Theorem 2.2 [13] Let us assume that ¥ is Gateauz
differentiable on L§. For any T € [tg,00) and ui,us €
LS5, one has

S(us) — S(ur) = /0 DSl + Blus — uy)](us — uy)dB

Global versus local: the means value theorem
A second result allows to relate local and global as-
pects under a simple result which links the Lipschitz
constant of the nonlinear operator and the norm of its
derivatives.

Theorem 2.3 [23, 13] Let us assume that a causal op-
erator ¥ defined from L$ into L5 has a Gdteauz deriva-
tive at each point ug of LS. Then, there exists a fi-
nite constant n such that for any T > to and for any
uo, h € L§, one has

1D uo](h)ll2,r < nllhll2,r (6)

if and only if the nonlinear operator is such that
1B(u1) = B(u2)ll2,r < nllur — usll2,r (7

for any T >ty and any w1 and us belonging to L§.

Incremental stability and exponential stability
of the linearizations We present in this section a nec-
essary and sufficient condition for incremental stability.
A nonlinear operator is incrementally bounded if and
only if its linearizations have exponential stable mini-
mal state-space realizations.

Definition 2.2 [19] DX, a Gdteauz derivative of X
defined by (4), is said to have a minimal state-space re-
alization if the pair [A(t), B(t)] is uniformly controllable
and the pair [A(t), C(t)] is uniformly observable.

Theorem 2.4 [13] Let us assume that ¥ is Gateauz
differentiable on LS. If the state space representation
of each derivative of ¥ is minimal then there exists a
finite constant n such that for any T > ty and any uy
and uy belonging to LS one has:

1% (u1) -

if and only if all its linearizations are exponentially sta-
ble.

S(u2)ll2, 7 < nllur — uzl2,7

3 The sensitivity as the key justification

The key justification of gain scheduling techniques can
be found in the sensitivity problem. Remember that
a deep motivation for using feedback control is the re-
duction of the effect of non measurable noises and the
“shrinking” of the model uncertainties [3, 4, 14, 24, 6].
The sensitivity concept has been introduced in the lin-
ear context as a means to quantify the efficiency of a
feedback law, with respect to the effects of small per-
turbations which are due either to exogenous pertur-
bations, or to parameter variations [3, 4, 14]. The in-
finitesimal nature of this characterization has led how-
ever some authors [5] to introduce a more general con-
cept: the comparison sensitivity function. The idea is
now to compare the performance of a closed loop sys-
tem with the performance of an equivalent open loop
system, against small or large disturbances and model
perturbations.

The sensitivity concept has been also studied in the
nonlinear context by Kreindler [16], which has extended
the sensitivity function introduced in [3] by defining the
differential sensitivity function, which characterizes the
first order sensitivity. This characterization is obtained
on the basis of properties associated with the lineariza-
tion of a suitable relation between an input and an out-
put of the nonlinear closed loop system. More recently,
the comparison sensitivity properties, associated with
a nonlinear closed loop system, were exactly quantified
by Desoer and Wang, using a Taylor type expansion of a
linearizable nonlinear operator [6]. Considering the re-
sults by Desoer and Wang (and obviously by Kreindler),
it is possible to claim that the performance of the non-
linear system (in terms of the sensitivity properties)
clearly depends on the properties of the linearization of



the closed-loop operator along the possible trajectories
of the system.

As a consequence, the relation between the sensitivity
objectives and the properties of the linearizations allows
us to give a justification to the local gain scheduling
objectives (this point can be considered as the main
motivation for using a gain scheduling control law in an
adaptive control scheme - see [2] and for a theoretical
justification to this fact when a slow time variation of
the system is assumed see [25]).

Finally, let us recall that the main limitation of the
gain scheduling approach in this problem is due to the
fact that the linear time varying objective, associated
with the sensitivity requirement, is obtained using the
following heuristic: the linear time invariant frozen sys-
tems, which are associated with each constant value of
the varying parameters, must have “good properties”,
so as to obtain also “good properties” for the time-
varying system.

Unfortunately, this kind of condition is neither suffi-
cient [21] nor necessary in the general case for ensuring
suitable properties to the linearization of the nonlinear
closed loop system and thus for ensuring suitable non-
linear properties with respect to the sensitivity prob-
lem.

Sensitivity objective: some recalls we now inves-
tigate how the output disturbance problem in nonlin-
ear control implies strong constraints on the closed-loop
system linearizations. The reader is referred to [6] for
a complete presentation of desensitivity problem in the
nonlinear context. In the sequel, we will just consider
the output disturbance problem (the other cases pre-
sented in [6] can be worked out as well).  For this

Y

Figure 2: The perturbed closed-loop system

purpose, let us assume that F' = I and let us associate
to the closed-loop system depicted in figure 2 an “equiv-
alent” open-loop map, Ho,,, depicted in figure 3. If the
open-loop controller is defined by K, = K(I + GK) !
then the open-loop system depicted in figure 3, which
maps the inputs (r,d) in £§ x L§ to the output y in
L5, satisfies for all » € £5 and for d = 0, the following

equality: Hoy,(r,0) 2 Hy,(r,0) where Hy, is the sys-
tem depicted in figure 2 which maps inputs (r,d) which
belong to L£§ x L§ to the output y which also belongs
to L5.

The effect induced by the output perturbations on
the closed-loop system is given by 6Hy,(r,d) = d +
GK(I + GK) Y(r —d) — GK(I + GK)™'(r). Since
GK(I + GK) '+ (I + GK) ™! = I, one deduces that
§Hyp(r,d) = S(r —d) — S(r) with S = (I + GK)™'.
The effect induced by the output perturbations on the
open-loop system is given by dHoy,(r,d) = GK(I +

Y

—»KO G o—

Figure 3: The perturbed equivalent open-loop system

GK) Y(r)+d—-GK(I +GK) (r) =d.

The main interest of the feedback law strategy is that
it allows to achieve a better reduction of effects of the
disturbances with respect to the open loop strategy. In
mathematical terms, the feedback has a desensitivity
effect if the following inequality is satisfied:

10 Hy(r, d)ll2,7 < [[6H0y, (r,d)]|2,7-

Unfortunately for realistic systems, this inequality can-
not be satisfied for any input and disturbance in LS.
Indeed, as in the linear context (see [24]), one has the
following theorem.

Theorem 3.1 [7, 12] Consider the closed-loop system
in figure 1. If the open-loop operator GK is strictly

causal then
(I +GK) la > 1.

This relation implies that there exist r,d € L£§ such
thats S0 — d) = Sl > Ildlla,r

and thus there necessarily exists, a least, a disturbance
such that the feedback law attenuation is not better
than the open loop type one. We moreover point out
that the use of the feedback implies the incremental
stability of S. Actually, if S is not incrementally stable,
then for any K, there always exist r and d, such that

1S(r = d) = S(r)ll2,r = Kl|d[|,7

and thus there exists some perturbation whose effects
are arbitrarily amplified.

Following this preliminary remark, the interest of feed-
back law is necessarily limited to a specific class of per-
turbations. We then introduce a set of possible per-
turbations, namely P°¢ C L§, for which we want ensure
that the closed loop strategy performance is better than
the open loop one. It is moreover clear that the cost of
feedback induced by the stability problems implies that
the use of the feedback control law could be justified if
(and only if) there exists an (< 1) such that:

10Hyr(r, d)ll2,7 < €l|dHoy,(r, d)||2,r
for any d € P° C L5 and any r € LS.

Sensitivity objective strongly constraints the
linearizations We now prove that the sensitivity re-
quirement strongly constraints the properties of the
system linearizations. Actually, sensitivity objective
constraints the exponential stability of the system lin-
earizations.

Proposition 3.2 [13] Let us assume that the sensitiv-
ity map, i.e. S = (I + GK)™ ', is Gateauz differen-
tiable on L§ and that the set of possible disturbances,



i.e. P¢, is a convex set which contains the null signal.
The desensitivity is achieved with level € > 0, i.e for
any r € L5 and d € P°, one has:

10 Hy(r, d)||2,7 < €lldH oy, (r, d)l2,7

if and only if for any ug € L§ and w € P¢, one has:
1D Scluol(w)ll2,r < eflwll2,r

We then deduce from this short discussion that the non-
linear system sensitivity is achieved if (and only if) all
the system linearizations have a good behavior with re-
spect to perturbations belonging to Py.

The desensitivity requirement is achieved only if the
sensitivity map, i.e. S, has a finite incremental gain.
This ensures that the degradation introduced by the
feedback use is finite. Following theorem 2.4, this con-
dition constrains the exponential stability of the lin-
earizations of the system:

Proposition 3.3 [13] Let us assume that the sensitiv-
ity map, i.e. S = (I+GK)™ !, is Giteauz differentiable
on L then desensitivity can be only achieved if and only
if the minimal state-space realization of each lineariza-
tion of S is exponentially stable.

4 Connections with the incremental approach

The incremental norm framework is useful for analyzing
the properties of nonlinear closed loop systems from
both quantitative and qualitative points of view.

In a quantitative way, it is possible to analyze the
robustness and performance properties of a nonlinear
closed loop system. The weighted incremental norm
approach was indeed originally introduced as an exten-
sion of the classical H,, control concepts into a non-
linear context: in a linear context, the original idea of
[24] was to recast the initial design problem into a well
defined optimization problem, involving the minimiza-
tion of a weighted H., norm. In the same way, in the
incremental norm approach, the idea is to define the
robustness and performance properties of a (nonlinear)
system by adding a suitable weighting function, which
reflects the desired properties for the closed loop.

In a qualitative way, incrementally stable systems pos-
sess suitable steady-state properties, and the effect of a
non zero initial condition is guaranteed to decay asymp-
totically to zero (in fact incremental stability implies
asymptotic stability in sense of Lyapunov of any un-
perturbed trajectory of the system). As a first point, a
unique steady-state motion corresponds to a given in-
put signal, independently of the initial condition and
despite a vanishing perturbation on the input signal.
As a second point, the steady state response to a con-
stant (resp. periodic) input signal is also constant (resp.
periodic).

Note finally that some basic properties of incrementally
stable systems will be recalled in the following sections.
The reader is referred to [7, 11, 12] for a more complete
presentation. Note that an extended version of this pa-
per is available as a technical report [13].

Desensitivity In the sequel, it is shown how the condi-
tions given in section 3 can be reformulated as the mini-
mization of the incremental norm of a suitable weighted
operator.

As a matter of fact, as in the H,, approach, we now
assume that the set of possible disturbances for which
desensitivity must be achieved can be defined by the
set of disturbances belonging to £§ such that

W, (d) = Wy (r + d)ll2,r < elld]l,r

for any r € £§ where W), and W! are two causal and
incrementally stable operators. Under the introduction
of this weighting function, the desensitivity is achieved
if the “weighted” incremental norm of the sensitivity
function is less than 1. More precisely, we have this
following result.

Theorem 4.1 [12] Consider the nonlinear feedback
system depicted in figure 2. If

||SW10||A < 1

then ||0Hy, (r,d)||2,r < €||6Hoy(r,d)||2,r for any d €
P¢ C LS and any r € LS.

Stationary linearizations We now investigate the
close connection between the incremental approach and
the pseudo-linearization type criteria. To this purpose,
we restrict our attention to a specific class of lineariza-
tions, namely the time invariant ones. Note that this
class was classically considered in the gain scheduling
approach. We then define Z., the set of equilibrium
points associated with any constant input:

Ze = {(me:ue) € R" xRP | At to, Te,te) = Te Yt > tO}
where ¢ is the state transition map of X.

Theorem 4.2 [8] Let ¥ be the system given by (1) with
a finite incremental gain n. Let u. be any constant
input and x. be its associated equilibrium point. If x.
is reachable from xy then the linearization of X, given
by the following linear time invariant system:

z(t) = Az(t) + Bu(t)
DYq(uc)q y(t) = Ci(t)+ Du(t) 8)
:i(to) = 0
A= %(are,ue), B = %(me,ue), C = %(are,ue) and
D = %(are,ue), has a finite Lo gain less than or equal
ton, i.e. || DXgluellli < 7.

This result makes crystal clear a direct connection be-
tween our nonlinear framework and the classical gain
scheduling techniques, especially with the approaches
based on the extended linearization (see e.g. [17]). In
these approaches, some properties are imposed to the
linear time-invariant linearizations of the system associ-
ated with constant inputs. Finally, let M,,, = W,HW;
be the augmented plant where W; and W, are the in-
put and output weighting functions associated with ro-
bustness and performance requirements (see [12]). We



moreover assume that the augmented system is de-
scribed by a differential equation with C2? and glob-
ally Lipschitz drift and output functions (this ensures
the existence of the Gateaux derivative of the aug-
mented system). With respect to the weighted incre-
mental norm approach and with reference to the aug-
mented system (whose norm is assumed less than 1,
i.e. ||M.ulla < 1), theorem 4.2 ensures that all the
linearizations satisfy a weighted Ho, criterion. This
criterion is specified at each equilibrium point by the
stationary linearization of the nonlinear weighting func-
tions, ¢.e.
[1DWoa [ H (Wi(wo))]D Ha[Wi(wo)|DWig[woll|s < 1

where DW,q[H(W;(wo))] and DW;g[wp] are respec-
tively the input and the output linear time invariant
weighting functions associated to the H,, criterion.
This last fact has interesting connections with the work
presented in [15].

5 Conclusion

As a conclusion, we first propose figure 4. In this fig-
ure, the advantages of the (weighted) incremental norm
with respect to existing nonlinear concepts and nonlin-
ear system properties are summarized. Actually, our

Weighted
Desensitivity S Incremental
approach
Lipschitz
Continuity
Behavior:
- Global exponential stability
Gain Scheduling Locally - Unique steady-state
Classical Rules |————————= Exponentially - Specific behavior
Stable

Figure 4: Main implications proved in this paper

theoretical framework presents two main advantages:

1. It provides a nonlinear framework to the gain-
scheduling techniques.

2. Solutions to the problem of minimizing the incre-
mental norm of a nonlinear operator can be used
to improve the results provided by classical gain-
scheduling techniques.

A much more detailed discussion is proposed in the
technical report [13].
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