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Abstract—The main goal of this paper is to investigate the II. NOTATIONS, DEFINITIONS AND SOME RECALLS

links between two incremental stability tests. First condi- . . . ) .
tions, based on the dissipativity framework, leads to test the A. Considered system, finite gain and incremental stability

existence of a suitable available storage function satisfying ; ; ;
Hamilton—Jacobi—Bellman type equations. Second conditions, The notations and terminology are classical [6].denoted

deduced of the mean value theorem in norm, leads to test (€ Space ofR™ valued functions defined oft, oc), for
the finite gain stability of all the linearizations (Gateaux Which the pth power of the norm is integrable. The,

derivatives) of the nonlinear system. The main contribution i : _ (,/ P
of this paper is to point out how the Jacobi like necessary norm is defined by ]|, f If#®)l|dt. The causal

conditions, i.e. the second order variations of the dissipativity ~truncationof f € £, attime1" € [to, c0), denoted byPr f

criteria, allows to connect the test based on the mean value is given by Prf(¢) = f(t) for ¢t < T and0 otherwise. For
theorem in norm to the one based on the dissipativity convenience| Prul|, is denoted by||u||, 7. The extended
framework. spaceassociated ta,, denoted by.¢, is composed with

the functions whose causal truncations belongCio i.e.,

L8 2 {f : [to,00) — RMNT € [to,00), |Prfll, < oo}.

Incremental stability was recently proposed as a powelith p > ¢ > 1 andT € [to,00), there existsCr > 0
ful tool for analyzing qualitative properties [9], [10] and Such that ifu € L7 then [[ully 7 < Cr[|ul,r andu € Lg.
guantitative properties [8], [11] of nonlinear systems. Usin? ) ]

two approachespecessary and sufficiembnditions were In the sequel, we consider systems defined by:
proposed for ensuring incremental stability and computing .

I. INTRODUCTION

t) = t t
the incremental norm of nonlinear operators. Nevertheless, 5 zgt; _ £E§Et§7zgt§§ @
due to the problem complexity, deriving computationally o(to) — z/o )

efficient tests from these conditions is a difficult problem.
This is the motivation of proposing alternative conditions invhere z(t) € R™, y(t) € R™, andu(t) € R™. f andh,
order to obtain a maximum number of possible tests. Neyrom R” x R™ into R andR™ resp., are assumed at least
ertheless, if different conditions are obtained, the question? with f(x(,0) = 0 andh(zg,0) = 0. f andh and their
of their connections arises. gradients are uniformly Lipschitz continuous.is assumed
A first approach is based on the dissipativity theory andell-posed, that is, a causal operator frdfinto £5. ¥ is
leads to conditions involving Hamilton—Jacobi—Bellmarfinite gain stablgincrementally boundedrom £, into Lo
inequalities [8], [7] (an equivalent result was obtainedf there existsy > 0 (n > 0) such that|X(u)|l2 < v]u2
independently in [20]). The second approach is based onfer all v € Lo (||[2(u1) — X(uz)|l2 < nllur — uzl|2 for all
mean value theorem which presents the strong connectian, u, € £5). The gain (incremental gain) df, denoted
between the incremental stability of a nonlinear operatdsy ||X||; (]| X]|a). is the minimum value ofy (). X is said
and the uniform£, gain stability of its time varying lin- to be incrementally stabldf it is incrementally bounded
earizations [14]. Based on this connection, a necessary aadd stablej.e., it maps £, to £,. Theorem 2.1 links the
sufficient condition of incremental stability was recentlyinput-output stability properties ofi, to its properties on
proposed in [13] for the Lur'e nonlinear system analysis.the extended spacés.

In order to get insight on the relationship between both

approaches, we focus on the necessity of unifdsngain  Theorem 2.1[@5]): Let ¥ be a causal operator, frouis
stability of its time varying linearizations for ensuring theinto £5 and let bey > 0. || Z(u1) —3(u2)|l2 < nljus —uz||2
incremental stability of a nonlinear operator. In this papefor any uy,us € Lo if and only if for any T' € [tg, 00)
we prove that necessity can be obtained by applicatiof=(uy) —3(uz)||l2,r < nljus —uzl|2,r for anyu;, us € LS.
of the dissipativity theory. Actually, we reveal how the

singularity of the optimal incremental stability criterion Remark:There exists a similar theorem ftine finite gain
implies the uniform£, gain stability of its time varying stability. | X(u))|l2 < 7||u||2 for anyu € Lo if and only if
linearizations by a second order variation condition. for any T' > to, ||Z(w))|l2,r < 7|lull2,r for anyu € LS.



B. Gateaux derivative and the mean value theorem [14] results is, e.g, the computation of thel, gain (H.

Here,p andgq are real numbers greater than or equal to 100rm) of an LTI system by the bounded real lemma
(LMI optimization) or its associated Riccati equation.

Definition 2.1: Let & be an operator front, into £, and This approach had be successfully applied to nonlinear
u, € L,. If there exists, for anys € £,, a continuous SyStem analysis, see [28], [16], [17], despite numerous

linear operatotDY.;[u,], from £, into £,, such that: technical problems,e.g. assumptions on the storage
function differentiability, computational complexity, etc.

iy | 2 +AR) = B(uy) DSolu ()| =0 In nonlinear, the Riccati equations or the Linear Matrix
Al0 A " q Inequalities are replaced by Hamilton—Jacobi—Bellman

equations or inequations. Recent results on the resolution
of Hamilton—Jacobi—Bellman equations lead to necessary
d’;\nd sufficient conditions with weak assumptions on the
system [18]. For the incremental stability, we proved
in [8], [7] that the incremental stability analysis boils down
to the resolution of Hamilton—Jacobi-Bellman equalities
(a similar result is in [20]).

then DX [u,] is called the Gteaux derivative oE at u,..

The Giteaux derivative definition is now extended to
larger class of operators.

Definition 2.2: DY [u,] from L into L7 is the Gateaux
derivative atu,. of the causal operatot from ﬁ; into Eg
if it is linear and for allT € [ty, o), PrDX¢lu,] is the

Gateaux derivative of;S at Ppu,.. Let us now consider our problem. From our previous

works [7], [10], we know that the incremental stability
Proposition 2.1:Let ¥ be a dynamical system associateogroplem ?ar) _be r((ajcast as e|1 d'ss"gt'v_;_tz. problem bfy Intro-
to (1) from £§ into £5. If f andh are uniformly Lipschitz ucing a_ |ct|t|ous. ynamical systehy. This system, rgm
and C' then, for anyu, € L5, the system has adBeaux £5 x L5 into L5, is related toX by @y = Xp(u1,uz) =
derivative defined by the following differential equations: X(u1) — X(u2). A state-space realization is then given by

i) = A®)Z(t) + B(t)u(t) a(t) = f((h), um(b)
7=DPelul@ | 90 = COO+DON0 ml D e )
o) = 2 z1(to) = z1w0,  T2(to) = 20
with A(t) = 2L (1), un(8)), Bt) = 2L (2,(8), up (1)) . . (3)
Qg 7T T Qu TP et us associated t& a specific supply rate function

ct) = %(azr(t)wr(t)) and D(t) = %(zr(t),ur(t)) w(t) = 02wy () —usz(£)]|2—||ys (t)||> and a cost function:
and wherer,.(t) = ¢(t, to, xo, u,) is the solution of system T
(1) under inpumr(t) and I(fo) = Zg. J(tO7T7x10’ Tog, U1, uQ) = —/ wf(T)dT
to
Theorem 2.2 is a key result in nonlinear control sincavith its associated optimal cost:
it links the nonlinear system incremental norm to its A
derivatives norms. Sa(Ta to, r1, 952) = 51117132 J(to, T, x10, T20, U1, uz)-

Proposition 2.2 [10]): Let ¥ be a dynamical system (1)

Theorem 2.2:Let_ Y. be a (_jynamical system _asgociateqcrom £5 into £5 and lety > 0. ¥ has a incremental gain
to (1) from £ into £§, with a Giteaux derivative at less or equaly if and only if S, (T, to, zo, 7o) = 0.

each pointu, of £§. Let ben > 0. For anyu,,h € Lo,

one has|| D¢ ur|(h)l|l2 < #lhl|o if and only if for any Proof: By Theorem 2.1, if the system has a incremen-

u1,uz € Lo, one hag|%(ur) — S(uz)ll2 <nllur —uz2ll2- ta) gain less than or equal ipthen for anyT’ > #, and any
Uy, U € LS, one haS](to,T, CEO,ZQ,Ul,Ug) < 0. We thus

C. Incremental stability and dissipativity have prove thatS, (T’ to,z1,22) < 0. In the other hand,

Dissipatitivity is a powerful framework for nonlinear Whenui(t) = uz(t), one hase, (t) = 2(t) £ 2(t) for any
system analysis from the input-output point of view and € [to, T] sincex: (to) = z2(to) = xo. Finally y;(t) = 0
from the internal stability (Lyapunov like) point of view. IN [to, 7] and thus necessarily, (T’ o, z1,z2) > 0 which

It is now clear that Willems, by introducing dissipativity allows to conclude the proof. u

in [28], proposed a theoretical framework which unifiedRemark:S, (tg, 21, x2) = limr_, o0 S (T, t0, 21, x2), When
these two fundamental aspects of stability, see e.g. [2@he limit exists, can be proved to thevailable storage
[17]. Another major interest of dissipativity is to formulatefunctionassociated t&€; andwy, see [28].

input-output properties as optimization problems (the

paper results are based on this). In general, the resolutidlecessary condition of Proposition 2.2 is very weak since it
of these optimization problems reduce to the resolution d$ satisfied by any system. In order to propose an alternative
Hamilton—-Jacobi—Bellman like equations [28], [16], [18].proof of the mean value theorem necessary condition, the
This approach is now usual. One of the most strikindirst and second order conditions are now considered.



1. NECESSARY CONDITIONS BASED ON FIRST AND Remark:The problem is not an abnormal optimal problem
SECOND ORDER VARIATIONS since necessarily\g # 0. Indeed, condition(i) implies
hat A # 0 for any t € [to,T]. As, from condition (iv),
(T) = 0 and \o(T") = 0, we have)ly # 0. We thus
sume in the sequel thag = 1 without loss of generality.

In this section, an alternative proof of the mean valu
theorem necessary condition is proposed by investigati
the optimality necessary conditions of the dissipative-lik

criterion. We first consider the conditions deduced froml_et US now focus on the incremental stabilit bl Wi
the Pontryagin’'s maximum principld,e. conditions de- - o Ay probiem. YWe
duced from the first order variations. We emphasize th%ﬁee.k. ‘?O”d'“or.‘? Sa.t'Sf'ed by the worst inputs3of when

the incremental criterion leads to a total singular optimaI s_|n|t|al_ condmon_ 'S S.UCh that, (0) = :1:2(())_ = To. ANy
control problem, even if the generalized Legendre—CIebsc‘?]a'r Pf Inputs W.h'Ch. is such that, = u, is a ”atuf"’."
conditions are considered. We then deduce the main p‘,jlpcea[,nmdate for optimality. Let us prove that all the conditions

contribution by considering the second order variativas ©f Proposition 3.1 are satisfied when = uz = u(t) for

Jacobi like conditions. any u € LS. Indeed,z;(t) = z2(t) = z(t), by condition
(1), A1(t) and \2(t) are equal and they are the solution of

A. First order conditions the following backward differential equation:

Let us now introduce\; € R" and\, € R", an(2n +1)- of

- At) = —=(t) = (x(t t
vector AT = (Ao, AT, AT) with )y € R and the Hamilto- ®) ( )817 ((t), u(t))

nian H (z1, z2, u1, u2, \) = Ao (IlyslI* = n?lur —u2||?) +  which is initialized att = T' to zero by condition(iv).

M f(@1,u) + A f(x2,u2). We moreover define: We then deduce thaX,(t) = X2(t) = 0 in [to, T] and then

M(zy,22,\) = sup,, ., H(z1, 22, u1,u, ). Following M(t) = 0in [to, T] and thus that conditiofvii) is fulfilled.

[5], the necessary conditions deduced from the PontryagirFnally, the pair(«, u) maximizes the Hamiltonian a.e. since

maximum principle can be formulated as follows. H(z,x,u1,u3,\) = —n?|lu; —uz|*. All the conditions of
Proposition 3.1 are thus satisfied when= u..

Proposition 3.1 [5]): If (u},u3) is an optimal solution, In the general case, the main interest of the Pontryagin’s

that is for anyuy, us belonging toLS, one has maximum principle is to restrict the number of the possible
. optimal trajectories. It is not longer true in the incremental
J(to, T, 210, T20, uy, u3) > J(to, T, 10, T20, U1, u2) case since the maximization of the Hamiltonian does not

really restrict the number of possible optimal solutions:

the optimal problem is said to be singular [2], [5].

(1) There exists an absolute continuous vector functiogjassically, when a singular optimal control problem is
AT = (Mo, M), X2(t)T) # 0, t € [to, T] where  considered, it is possible to obtain (and to restrict) possible
Ao > 0 does not depend on and whereA,(t) and  optimal solutions by considering more sophisticated
A2(t) are given for almost € [to, T by necessary conditionsthe generalized Legendre-Clebsch

then the optimal solution has the following properties.

i (t) oI . necessary conditionsWe show in the next section that
& - f%(xi(t),xé(t), ui(t),u5(t),A(t))  these conditions does not give information on the possible
Ao (t) 81} optimal solutions. In fact, the incremental stability leads

7 = fa—(xf(t),xz(t), wi(t),us(t), A(t))  to consider “a totally singular optimal problem”.
T2
(i) For all t € [to,T], the Hamiltonian as a function of

w1 andus takes its maximum atuf,u3), i.e. almost B. The generalized Legendre-Clebsch necessary conditions

everywhere infty, T, one hasH (x7, x5, ui,us, A\) = In_order to simplify the conditions deduce(_j _from the gener-
M (%, x5, A). alized L_egendre-C!ebsch necessary condltlon_s, we consider
(i4i) The function M(t) = M(aﬁ(t),xg(t),j\(t)) is con- an equivalent partially singular probIAem obtained by con-
stant on(ty, 7. sidering that the pair of inputs i&u = u; — us and us.
(iv) We have the transversality conditionsy;(7) =  Following this modification Au = 0 is the unique solution
0 and \y(T") = 0. which maximizes the Hamiltoniar (z1, za, Au, us, \) 2

No (lygl> = P |1 8ull?) + AT f (1, Autus) + 0 f (2, ua).
This proposition can be proved from [5], section 7. Indeedndeed, by Proposition 3.1, one hag # 0 and \((t) =
the Bolza problem and the Meyer problem can be transw,(t) = 0 in [to, 7] and thus
formed one into another. The necessary conditions for Bolza _ -
problem can be thus easily deduced from the necessary il (0) =0 and O°H _ —n? <.
conditions of the Meyer problem. Proposition 3.1 proof is OAu
thus related to Theorem 7.1.i proof in [5]. It is moreoverln contrast,us remains singular since the Hamiltonian
necessary to use arguments presented in[5], sections ddes not depend on it. We then have defined a partially
and 7.3.H to take into account, respectively, the lack aingular problems [2]. Following a classical approach of
dynamics convexity and the unboundedness of the inputgartially singular problems, the successive derivatives of




OH /duy, denoted in the sequel,, with respect to time second order derivatives given by:
are considered in order to obtain. The so-calledyeneral- (i) — The first order derivative of is given by

ized Legendre-Clebsch conditioage then obtained. These T
conditions are satisfied at the ordgif for any ¢ € [to, T, P(6) = 2/ lys (1) "5(r) — n?(0u(r)) a(r)] dr
one has, withy is a positive integer: to 4)
d_d*rt! - e 0 g i(t) = A(t)z(t) + B(t)u(t)
Bug apzart e =0 and - (=115, g Hu, 20 where git) = C®z(t)+DE)a)  (5)
In our case, sincé?uz, = 0, the two previous quantities are 0

(to) =
)

always equal to zero for any. No condition involvingus ; 0 f _ of
is thus obtained. with A(¢ ) ( 1(t), w (1)), B(t) = %%(331(75)7@41(75))1

B(t)
We then conclude that necessary conditions deduced frdalt) = uy(t)) and D(t) (z1(t), 1 (1))
andyy

~ Ou
the Pontryagin's maximum principle or from the moreand, by f?eflnltlonm (t), za(t) (t) given by
sophisticated generalized Legendre-Clebsch conditions ar i1(t) = flxi(t), ult) + su(t))
unable to restrict the infinity number of trajectories which o(t) = f(arg(t): u(t))
are candidates for the optimality. This result is clearly a yr(t) = h(xi(t), ut) + 5u(t)) — h(za(t), u(t))
direct consequence of the singularity of the cost function z1(t)) = wa(te) = o

associated to the incremental stability. o o
(7i) — The second order derivative @f(9) is given by

C. Second order variations: Jacobi like conditions T
In the previous section, we have deduce that there exists’(d) = 2/ [yr (D) Cr) + |g((OI1° = n?lla(r)]?] dr

an infinite number of inputs which are compatible with to 6
the first ord diti We th i tigat - ©)
the first order necessary conditions. We then investigate ) = A®EDEE) + A2(D)z)Z(t) + - -
in this section the necessary condltlo_n _deducec! _from the L2E(H)z(t)a(t) + B2(t)a(t)u(t)
second order type arguments., Jacobi like condition's where B 5 B

The necessary part of the mean value theorem is then ) = O (tlx(t) + Ot )2 Z(t)2(t) + -
obtained (see Theorem 2.2). The main goal of this section +2E()z(t)u(t) + D(t)u(t)u(t)

is to prove the following proposition. () = 0 )
Proposition 3.2:Let > be a dynamical system (1) from where ) )

L3 into £3 and letn > 0. 3 has a incremental gain less A2(t) = ng( 1(t),u1(t), E() = 6%8%(331“)’“1“»
or equaln only if the £, gain of all its linearization are 8 f 921

necessarily less than or equalso B3(t) = s (@1 (8), ua (1)), C3(t) = 2y (w1 (), un (1)

2

Let T be a fixed value of time irjty, oc) and letu be an Ft) = %(Il(t)’ul(t))’ D*(t) = %(Il(t)’ul(t))'
input belonging taCs. Let us first consider a small variation
of the first input ofX; defined byu;(t) = u(t) + ¢ u(t)
whered > 0 andu € L£5. We prove in the sequel that
the second order necessary condition associated to a s ﬂg has
variation ofd, @ in £§, implies that the linearization of the
system atu DgX[ul(@) has necessarily aff, gain less

than or equal to). To prove this, we introduce a function,
) ; Indeed, whend = 0, one hasu;(t) = ua(f) and then
denotedy(§), defined fromR into R and related to the 21(t) = 22() in [to, T). We then deduce that () = 0 in

cost function by (6) = J(to, T, zo,x0,w + & u,u). The éto,T], and thus, by (4) that’(0) = 0. Let us now consider

D e o seente o e oo Mne consecuence o the second order cond() < 0
" Since ys(t) = 0 in [ty,T], (6) can be rewritten has:
T

Proof of Proposition 3.2:From section II-C,X is incre-
mentally stable only ifJ(to, T, x0, xg,u,u) < 0 for any
Moreover, sinceJ(tg, T, o, xo,u,u) = 0 then

to be a maximum. The proof of the proposition is
then a direct consequence of Theorem 3.1 and Lemma 3.1.
Indeed, we easily deduce from Lemma 3.1 th§t0) = 0.

Theorem 3.1:If ¢ has a second order derivative theris " (0) = 2/ [l9((T)|I* — n?(la(r)||*] dr which does not

H H / _ 1 0
a local maximum only if(0) = 0 and+"(0) < 0. depend of titme -varying variables defined by (7) but depends

of time-varying variables defined by (5). Moreovér= 0
and it is thus not difficult to see that the linear system
defined by (5) is in fact the linearization &fatu. We have

e
Lemma 3.1:Let ¥ be a dynamical system associated to (1)then proved that for an” € [to, o0) and for anyu € L5,

from £§ into £§. Then, for anyu € £§, ¥ has a first and fhe I|near|zat|0n ob> atu, y = DeX[ul(w), has to satisfy.

Lstrictly speaking, the Jacobi's conditions are usually only associate@ = DaX[ul(u) has thus necessa”ly afy gain less than
to Lagrange problems and we consider a Bolza one. 1. |

Let us apply it to our problem. We first compute the first
and the second order derivatives®fo).




IV. CONCLUSION [21] M.G. Safonov. Stability and Robustness of Multivariable Feedback

- . . SystemsMIT Press, Cambridge, 1980.
Obtaining an alternative proof to a powerful result, useful if22] i.w. Sandberg. An observation concerning the application of

control is not questionable. The classical proof of the mean contraction-mapping fixed-point theorem, and result concerning the

: ; : : ; norm boundedness of solution of nonlinear functional equatidhs.
value theorem in norm is made in the functional analysis g, Sys. Tech. J26:1809-1812, 1965,

framework. In this paper, we propose to use the dissipativifgs] M.M." Vainberg. Variational methods for the study of nonlinear
framework in order to obtain, based on the classical calculus operators Holden-Day, INC. 1964.

o 4] M. Vidyasagar. Nonlinear Systems Analysi®rentice-Hall, Engle-
of variations, the necessary part of the mean value theorelf’ wood Cliffs, second edition, 1992.

Finally, we emphasize that it is also possible to obtaifps) Jj.c. willems.The Analysis of Feedback SysteMiT Press, 1970.
the sufficient part of the mean value theorem in norni26é] J.C. Willems. The generation of Lyapunov function for input-output

; S . stable systemsSIAM Journal on Contrgl9(1):105-134, 1971.
using the same way. Indeed, Jacobi like conditions allo 7] J.C. Willems. Least Squares Stationnary Optimal Control and the

in some cases to obtain also sufficient conditions for a " Algebraic Riccati EquationEEE Transactions on Automatic Contyol

local maximum, see [19][Theorem 9 p. 358From this 16:621-634, 1971.

i e ; 8] J.C. Willems. Dissipative dynamical systems part I: General theory.
preliminary local result, it is possible to develop a completé2 Archive for Rational Mechanics Analysd5:321-351, 1972.

and different proof of the mean value theorem.
APPENDIX

Proof of Lemma 3.1J = J (w1, ws) is an operator defined
from L£§ x £§ to L§ by
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2The small variations considered here belong’fpand not toL¢, .

lg(t,w)|| < bl|ul|®* + a(t) and let A be the associated
memoryless nonlinear system defined fraf§ into £
by NV(u) = g(t,u(t)). If g and 22(t,u) are continuous
functions with respect ta, for almost everyt € [tg, o0)
and measurable offty,00) with respect tot for every
fixed valued u € R and there exista’ € L and
¥ > 0 such that||3(t,u)|| < V|ull + a'(t) then N
admits a Giteaux derivative at any, of £ given by



DNeluo)(h) = 99 (t,uo)h.

Proof: For anyT € [tg, 00), ug, h € L§ and A > 0,

TI(t) = g(t,uo(t) + M(t)) — g(t, uo(t)) — A (¢, uo(t)) (1)

/uo(t)+>\h(t) dg

Jg
o BB OE =G w®h)
with & = (1 — p)uo(t) + p(ug @ can be

rewritten as

(t) + Ah(t)).

/0 ($<t,uo<t) + pAh(t)) — gz(t,uo(t))> h(t) dp

Ex(t,h,p)

(9)

where
/ %9 (1 uo(t) + pAR(D))(D)dp =
3 (t, wo(t) + ;Ah(t)) h(t)

exists and is a measurable functiontofndeed, this is the

limit of a sequence of measurable functions [4]. Moreover

since| fo

p)dp| < fo |f(p

II(¢ b
152 < [Eenona
0

By Fubini’s theorem, we deduce that for afiye [tg, o)
one has

)|dp then

HA — N (ug)] = 6N (ug, h) 1

1 T ’
< / / IEx (7, b, p)drdp
0 to

where 6N (ug, ) = 6 9 (t,u0)h. From the last inequality,

the proof is achieved |ffO j; IEx (7, h, p)||dTdp goes to
zero when)\ goes to zero.

Let us pickv(t) € £5 and let us introduce this following
nonlinear function defined frorfty, o0) x R into R by

@(t,uo(t) +u) - %(t’“ow) v(t)

and its associated operatdt, defined fromZs into £5. We

then prove thafF is a continuous operator. To this purpose,
we use a classical theorem (see [23] or Theorem 10.9iv i

[5]) which ensures that the operatéris continuous from
L5 into £ if (and only if) there exists: € £ andb > 0

such that|| f(t,u)|| < b||ul|? + a(t) for any u. Since it is
has been assumed tl'#;kg%(t, u)H < V||lu|l +4’(t), one has

89(

H u < (¥ llull + ¥ luol| + @) [o]

t,up + u)v

2+ (y/2)° -

From the last inequality and sinegy = =
y/2)?, on has

(2~

%(t’%(f) + u)v(t)H <O ||ul|® +a" ()

wherea” (t) = V'[[o(t) /2]|*+'|[uo(£) [[v(t) | +a’ (£) [ (E)]].
Since v,uy and o’ belong to £§ thus a”(t) belongs to
£<. Finally, since %(t,uo(t))v(t)H belongs toL¢, we
have thus proved thatF is continuous from£$ into
LS. Moreover, since¥(0) = 0 then for anye > 0
there exists\g > 0 such that for anyp € [0,]1]
one has||F(pAh)|1,r < € for any A < Xo. We fi-
nally deduce that for any > 0, there exists\, > 0

such thaH% IV (o + M) — N (uo)] — 6N (o, h)H1 <

which allows to prove thad A\ (ug, h) = g—g(t,uo)h is the
first variation of A/. Since N is a linear and bounded
operator from£§ into £§, N has a Gteaux derivative at

any pointug on £§ given by DNg[ug](h) = g (t, ug)h.
]

We now deduce thay/ is Gateaux differentiable. Let us
introduce a function®(z, , w, J) which is equal to:

1 J(xy,wy)
i f(x27w2)
17 (z1,w01) = h(w2, w2)|[* = n?[lwr — wal?
J T3
with 27 = (21,29,23) and wT = (wy,ws). When

®(x, &, w,J) = 0, we recover system (8). The dynamical
system defined by (8) is well-defined therand J belong

to £§ whenw belongs tols. Moreover,z belongs toACY
which is the space of absolute continuous functions (AC) of
times endowed with th&€, norm and® is then an operator
defined fromACY x L{ x £§ x L into LS. ® has a Giteaux
derivative since it is the difference between a linear operator
(which has a @teaux derivative omdC¢) and a nonlinear
operator, namely\V : AC{ x £§ — L , associated to this
nonlinear function

f(xy,wy)

[z, w2)
(21, w1) = h(w2, ws)l?

xs3

T, W) =
q( ) _772||w1_w2H2

which has a @teaux derivative by the previous
lemma. Since D®¢z, &, w, J|(Z,Z,w,J) 0 then
(Z1, o, T3, J = Jy[u,u](z, w) with J, the Jacobian of:

o o1
oz 0 0 Odwy 0
af 0 0 83f
wo

2y 2h gy o o poy 2 oy
0 1 0 0

wherey = h(z1,u1) — h(ze, ws) andw’ = wy — wo.

For the second order &eaux derivative ofy:, similar
arguments can be used. The assumptions of Lemma 1.1 are
fulfilled in this context sincef (resp.h) and its gradient

are assumed uniformly Lipschitz continuous.



