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Abstract

In this paper, we present a result allowing to com-
pletely analyze the behavior of a nonlinear system only
based on the properties of its linearizations. More pre-
cisely, we show that the exponential stability of all the
linearizations of a nonlinear system ensures suitable
global properties. We point out that a nonlinear system
for which the linearizations are exponentially stable,
has the unique steady state property, and has a peri-
odic (constant) motion for any periodic input. Finally
through some reachable assumption of the system state
space from the initial condition, we deduce that all its
unperturbed motions which are associated to bounded
inputs are uniformly globally asymptotically stable.

1 Introduction

The incremental norm approach was proposed as a pow-
erful tool for the analysis and the control of nonlinear
systems. Incrementally stable systems were proven in-
deed to exhibit suitable global and local properties [13].
As an example, the links between incremental stability
and Lyapunov stability were presented in [8, 9, 12]. In
this context, we propose a result allowing to completely
analyze the behavior of a nonlinear system when only
the properties of the linearizations (Gâteaux deriva-
tives) of the system are known. More precisely, we con-
sider in this paper a system described by a differential
equation:

Σ

 ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t))

x(t0) = x0

and assume that the set of possible inputs is a convex
subset of some functional space which is assumed to
be a normed vectorial space. We then prove that, if
the linearizations associated to each input belonging to
the set of possible inputs are exponentially stable, then
the behavior of the nonlinear system has the following
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qualitative properties:
1. for all input signal belonging to the set of possible

inputs, there is a unique steady-state motion despite a
vanishing perturbation on the input signal;

2. for all constant (resp. periodic) signal belonging
to the set of possible inputs, the steady state response
is a constant (resp. periodic);

3. for any bounded input belonging to the set of pos-
sible inputs, the associated state motion of the system
is also bounded.
Moreover, we prove that if the state space of the system
has some suitable reachability property with respect to
the initial condition then all the unperturbed motions
of the system, which are associated to bounded inputs,
are uniformly globally asymptotically stable.
It is clear that this result is very interesting in the con-
text of nonlinear control. Actually, some design meth-
ods try to achieve some global properties under con-
straints on the system linearizations only. We now il-
lustrate this point for two well–known techniques: the
gain scheduling and the Extended Kalman Filter.
Let us recall that the underlying idea of the gain-
scheduling is to design, at one or more operating
points, linear time invariant controllers using the as-
sociated linearized plant models. The nonlinear control
law is then obtained by interpolating (or scheduling)
these controllers as a function of the operating point
[20, 26, 2, 21]. From a classical point of view, it seems
that the main goal of the gain scheduling approach is
to ensure at least the exponential stability of the closed
loop system linearizations. The result presents in this
paper allows in fact to claim that imposing exponen-
tial stability to the linearizations leads to ensure global
properties to the nonlinear system (see [14, 15] for a
complete discussion about the gain scheduling tech-
nique and the incremental norm approach).
The importance of the linearizations can be highlighted
in the framework of nonlinear observers. This is espe-
cially true for the well-known Extended Kalman Filter
(EKF). The issue of finding conditions allowing to en-
sure the stability and robustness of the EKF remains
in the general case an open problem. The EKF is nev-
ertheless classically used in many engineering applica-
tions, so as to estimate the states or parameters of a
plant (estimation of the attitude of a satellite, missile
guidance problems, combined estimation of state and



plant parameters . . . - see e.g. [4, 18]).
Even if the EKF works well in many cases, only proofs
for specific case have been given in the literature. On
the one hand, local properties are often analyzed [18, 3].
These properties are generally (implicitly or explicitly)
obtained using the exponential stability of a specific
linearization of the system. On the other hand, some
specific results can be obtained when assuming a par-
ticular structure of this nonlinear system [22, 28].
In the context of the EKF, the result given in this pa-
per allows to point out an interesting fact: a crude
application of our result can lead to a wrong conclu-
sion. Indeed, as pointed out in [11], the linearization of
the EKF (the Gâteaux derivative of the nonlinear ob-
server along the estimated trajectory) does not corre-
spond to the linearization used to computed the associ-
ated Kalman gain: the true linearization (the Gâteaux
derivative) of the EKF has to include the linearization
of the dynamics of the Ricatti equation. According to
the result presented in this paper, only this fact allows
to provide a explanation of the EKF divergence even if
all the observability conditions of the linearizations are
satisfied.
The paper is organized as follows. Notations are in-
troduced in section 2 and some definitions are also re-
called. The key result allowing to link the exponential
stability of all the linearizations with the incremental
boundedness of the system is given in section 3. Sec-
tion 4 focus on the behavior of the system with respect
to perturbed or specific inputs. The results concerning
the Lyapunov stability of the unperturbed motion are
proposed in section 5. When not presented, the proofs
can be found in the technical report [14].

2 Notations and definitions

2.1 Normed functional spaces
The notations and terminology, here used, are classical
in the input-output context (see e.g. [6]). L denoted
in the sequel a vectorial normed space of functions de-
fined from [t0,∞) into Rn, i.e., L ∆= {f : [t0,∞) →
Rn|‖f‖L < ∞}.
The causal truncation of f ∈ L at time T ∈ [t0,∞), de-
noted by PT f is given by PT f(t) = f(t) for t ≤ T and
0 otherwise. For convenience, ‖PT u‖L is denoted by
‖u‖L,T . The extended space associated to L, denoted by
Le, is composed with the functions whose causal trun-
cations belong to L, i.e., Le ∆= {f : [t0,∞) → Rn|∀T ∈
[t0,∞), ‖PT f‖L < ∞}. We assume throughout the pa-
per that the norm ‖.‖L used to define L and Le satisfies
this two properties:
(i) ∀f ∈ Le, the map T 7→ ‖PT f‖L is monotonically
increasing;
(ii) ∀f ∈ L, one has limT→∞ ‖PT f‖L = ‖f‖L.
We define in the same way the extended open set as-
sociated to an open subset, OL, of L, i.e., Oe

L = {f :
[t0,∞) → Rn|∀T ∈ [t0,∞), PT f ∈ O}.

Some specific functional spaces are especially relevant
from a control point of view:

– L2(Rn, [t0,∞)): The set of Rn-value functions,
f(t), which are square integrable on [t0,∞), and such
that

∫∞
t0
‖f(t)‖2dt < ∞.

– L∞(Rn, [t0,∞)): The set of all essentially
bounded, measurable Rn-value functions on [t0,∞).

– B2(Rn, [t0,∞)) (1 ≤ p < ∞): The set of
Rn-value functions, f(t), which are almost everywhere
bounded and square integrable on [t0,∞), and such
that

∫∞
t0
‖f(t)‖pdt < ∞, i.e., B2

∆= L2 ∩ L∞.
– Ci

2(Rn, [t0,∞)): The set of all Rn-value functions
on [t0,∞), f(t), which are Ci functions of t and such
that

∫∞
t0
‖f(t)‖2dt < ∞ (by convention C2

∆= C0
2).

– Ci
∞(Rn, [t0,∞)) : The set of all bounded and Ci

Rn-value functions on [t0,∞).
More generally, in the sequel, the results are deduced
for various classes of vectorial normed spaces of func-
tions which are equipped with L2 or L∞ like norms. In
the sequel, U and Y generally denoted two open subsets
of some vectorial functional spaces equipped with the
same Lp norm with p ∈ {2,∞}.
Remark. It can be noted that the following inclusion
L∞([0, T ]) ⊂ L2([0, T ]) is true for each value of T ≥ t0
[5]. As a consequence, the extended space, which is
associated with L2 for a specific value of T , contains
all the signals which have (almost everywhere) a finite
amplitude on [0, T ].

2.2 Considered system, finite gain and incre-
mental stability
In the sequel, we consider systems exhibiting the differ-
ential representation

Σ

 ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t))

x(t0) = x0

(1)

where x(t) ∈ Rn, y(t) ∈ Rp, and u(t) ∈ Rm. f and
h, defined from Rn×Rm into Rn and Rp respectively,
are assumed such that f(x0, 0) = 0 and h(x0, 0) = 0.
We then assume that Σ is a well–posed system that is
a causal operator which associates to each input be-
longing to an extended open subset of LI , i.e., Ue

LI
, an

output belonging to an extended open subset of LO,
i.e., Ye

LO
. In the sequel, for sake of simplicity, we de-

note the input and the output extended open sets as
Ue and Ye respectively.
The well–posed assumption implies that the differential
equation of system (1) has for all t ∈ [t0,∞) and for all
u ∈ Ue, an unique and absolutely continuous solution
denoted by x(t) = ϕ(t, t0, x0, u).
An unperturbed motion (of Σ) is a specific motion of Σ
associated with an input, ur ∈ Ue, and with an initial
condition, x0r ∈ Rn, i.e., xr(t) = ϕ(t, t0, x0r, ur). With
reference to this definition, we denote by x[x0r, ur] this
unperturbed motion.
Σ is said to be a finite gain stable system from U into



Y if there exists γ > 0 such that ‖Σ(u)‖Y ≤ γ‖u‖U for
all u ∈ U . The gain of Σ coincides with the minimum
value of γ and is denoted by ‖Σ‖i,U,Y . Σ is incremen-
tally bounded from U into Y if there exists η ≥ 0 such
that ‖Σ(u1)−Σ(u2)‖Y ≤ η‖u1−u2‖U for all u1, u2 ∈ U .
The incremental gain of Σ coincides with the minimum
value of η and is denoted by ‖Σ‖∆,U,Y . Σ is said to be
incrementally stable if it is incrementally bounded and
stable, i.e., it maps U to Y.
We now make a preliminary remark concerning the class
of possible inputs. Indeed, the definitions of input-
output stability may appear restrictive from an applica-
tive point of view, since a limited class of possible in-
puts is considered for the system: as an example, a
non-zero constant input does not belong to vectorial
normed space equipped to an L2 type norm. This re-
striction can be nevertheless bypassed using the link
between the input-output stability properties on L and
its extended space Le (this result is due to I.W. Sand-
berg).

Theorem 2.1 [31] Let Σ be a causal operator, defined
from Ue into Ye and let η be a positive constant. One
has

sup
u1, u2 ∈ U

u1 − u2 6= 0

‖Σ(u1)− Σ(u2)‖Y
‖u1 − u2‖U

≤ η

if and only if for any T ∈ [t0,∞), one has

sup
u1, u2 ∈ Ue

u1 − u2 6= 0

‖Σ(u1)− Σ(u2)‖Y,T

‖u1 − u2‖U,T
≤ η

This theorem clearly indicates that the input-output
relation, which was already satisfied by the input sig-
nals inside L, remains valid inside Le. More generally,
when analyzing the properties of the nonlinear system
along a possible motion, the use of the extended space
Le enables to consider a much larger class of possible
inputs, e.g. non-zero constant inputs.

2.3 Gâteaux derivative

Definition 2.1 [1, 29] Given an operator Σ, defined
from1 U into Y, let ur ∈ U and assume the existence
for any h ∈ U of a continuous linear operator DΣG[ur],
from U into Y, satisfying:

lim
λ↓0

∥∥∥∥Σ(ur + λh)− Σ(ur)
λ

−DΣG[ur](h)
∥∥∥∥
Y

= 0

then DΣG[ur] is called the Gâteaux derivative of Σ at
ur.

Definition 2.2 DΣG[ur] from Ue into Ye is the
Gâteaux derivative at ur of the causal operator Σ, de-
fined from Ue into Ye, if it is linear and if for all

1Let us recall that U and Y are assumed to be open subsets
of some suitable vectorial normed spaces equipped with the Lp

norm.

T ∈ [t0,∞), PT DΣG[ur] is the Gâteaux derivative of
PT Σ at PT ur.

In the context of theorem 2.1, we recall that if Σ is a
causal operator then DΣG[ur] is causal too.

When the system is generated by differential equations,
definition 2.2 corresponds to the usual linearization con-
cept. More precisely:

Proposition 2.2 Let Σ, be a dynamical system asso-
ciated to (1), defined from Le

2 into Le
2. If f and h are

uniformly Lipschitz and C1, then, for any ur ∈ Le
2,

the system has a Gâteaux derivative which satisfies the
following differential equations:

ȳ = DΣG[ur](ū)


˙̄x(t) = A(t)x̄(t) + B(t)ū(t)
ȳ(t) = C(t)x̄(t) + D(t)ū(t)
x̄(t0) = 0

(2)

with A(t) = ∂f
∂x

(xr(t), ur(t)), B(t) = ∂f
∂u

(xr(t), ur(t)),

C(t) = ∂h
∂x

(xr(t), ur(t)) and D(t) = ∂h
∂u

(xr(t), ur(t))
and where xr(t) = ϕ(t, t0, x0, ur) is the solution of sys-
tem (1) under input ur(t) and x(t0) = x0.

Remarks:
(i) We note that it is possible to prove that Σ does
not have Fréchet derivative on Le

2 under the assump-
tion that f or/and h are not linear functions (see e.g.
[29, 24]).
(ii) The strong requirement concerning the uniform
Lipschitz continuity of f and g with respect to its sec-
ond argument is mainly due to the fact that the inputs
belong to Le

2 space. Actually, it is possible to prove
that this condition on f and g is in fact necessary (and
sufficient) condition such that the system (1) is a well-
defined system.

The strong requirement concerning f and g can be
weaken if we restrict our attention to functional spaces
of almost everywhere bounded functions. In fact, if
we assume that the solution of (1) is well-defined on
[t0,∞), one has the following result.

Proposition 2.3 Let Σ, be a dynamical system asso-
ciated to (1), defined from Le

∞ into Le
∞. If f and h

are two C1 functions of their arguments then, for any
ur ∈ Le

∞, the system has a Gâteaux derivative which is
given by system (2).

Remark. The previous propositions allow to deduce
that Σ is Gâteaux derivable on the normed vectorial
spaces which are subset of the L2 or L∞ spaces.

2.4 Means value theorem in norm
The theorem recalled hereafter is a key result in the
context of nonlinear control (see e.g. [31, 7, 13, 14, 15]).
It presents a strong connection between the incremen-
tal norm and the local properties associated with the
derivative of a nonlinear system.



Theorem 2.4 Let Σ, be a dynamical system associated
to (1), defined from Ue into Ye and let η be a positive
constant. Let us consider two values ua and ub belong-
ing to U such that the segment [ua, ub] ∈ U . Moreover,
let us assume that Σ has a Gâteaux derivative at each
point u0 of [ua, ub]. The following statements are equiv-
alent:
(i) For any u0, h ∈ [ua, ub], one has

‖DΣG[u0](h)‖Y ≤ η‖h‖U .

(ii) For any u1, u2 ∈ [ua, ub], one has

‖Σ(u1)− Σ(u2)‖Y ≤ η‖u1 − u2‖U .

If U is convex set, and all the linearizations of the sys-
tem are bounded for any u0 ∈ U then the system is
in fact incrementally bounded from U into Y. In the
same spirit, through the existence of a path belonging
to U which links u1 to u2, we can deduce this following
corollary:

Corollary 2.5 Let Σ be a dynamical system associated
to (1), defined from Ue into Ye and where U is as-
sumed to be an arc-connected set. If Σ has a Gâteaux
derivative at each point u0 of U and if there exists a
finite constant η ≥ 0 such that for any u0, h ∈ U , one
has ‖DΣG[u0](h)‖Y ≤ η‖h‖U then for any u1, u2 ∈
U , there exists a finite constant K > 0 such that
‖Σ(u1)− Σ(u2)‖Y ≤ K.

Proof: In fact, let us recall that if U is an arc-connected
subset of a normed space then by definition, there
always exists a path belonging to U which allows to
link u1 to u2. Moreover, U is a open subset of a normed
space, so it is always possible to built a path linking u1

to u2 by a finite series of segments (see remark 13 p. 261
in [25]). On this basis, let us consider the curve linking
u1 to u2 which is the concatenation of n− 1 segments,
defined by [ξ(i), ξ(i + 1)] where by definition ξ(i) ∈ U
for all i ∈ {1, · · · , n} and ξ(1) = u2 and ξ(n) = u1. One
has Σ(u1) − Σ(u2) =

∑n−1
i=1 Σ(ξ(i + 1)) − Σ(ξ(i))

and thus, we deduce by theorem 2.4, that
‖Σ(u1)− Σ(u2)‖Y ≤

∑n−1
i=1 ‖Σ(ξ(i + 1))− Σ(ξ(i))‖Y ≤

η
∑n−1

i=1 ‖ξ(i + 1)− ξ(i)‖U which allows to conclude the
proof since ξ(i) belongs to U .

3 Main result

Let us recall that U and Y are two open subsets of some
vectorial functional space equipped with the same Lp

norm with p ∈ {2,∞}.

Theorem 3.1 Let Σ, be a dynamical system associ-
ated to (1), defined from Ue into Ye where U is as-
sumed to be a convex set. If f and h are uniformly

Lipschitz and C1 and if for any ur ∈ U , the lineariza-
tion of DGΣ[ur], i.e., ż(t) = A(t)z(t), is exponentially
stable then there exists a finite constant η ≥ 0 such
that for any T ∈ [t0,∞) and u1, u2 ∈ Ue , one has:
‖Σ(u1)− Σ(u2)‖Y,T ≤ η‖u1 − u2‖U,T .

The proof is a straightforward consequence of the means
value theorem 2.4, theorem 2.1 and of this well-know
result:

Lemma 3.2 [27] Let us assume that the following lin-
ear system

Π


˙̄x(t) = A(t)x̄(t) + B(t)ū(t)
ȳ(t) = C(t)x̄(t) + D(t)ū(t)

x̄(t0) = 0

has bounded realization, i.e., A(t), B(t), C(t) and D(t)
are uniformly bounded matrices of time, then Π has a
finite Lp gain with p ∈ [1,∞] if ˙̄x(t) = A(t)x̄(t) is
exponentially stable.

When U is only an arc-connected set, we have the fol-
lowing result:

Corollary 3.3 Let Σ, be a dynamical system associ-
ated to (1), defined from Ue into Ye and where Ue is
assumed to be an arc-connected set. If f and h are uni-
formly Lipschitz and C1 and if for any ur ∈ U , the
linearization of DGΣ[ur], i.e., ż(t) = A(t)z(t), is expo-
nentially stable then for any u1, u2 ∈ U , there exists a
finite constant K ≥ 0 such that ‖Σ(u1)−Σ(u2)‖Y ≤ K.

4 Direct consequences of the main result

4.1 Boundedness of motions
We now analyze the effect of persistent perturbations
with a finite amplitude.

Theorem 4.1 Let Σ, be a dynamical system associ-
ated to (1) defined from Ue into Ye where U is assumed
to be an arc-connected set. If f is uniformly Lipschitz
and C1 and if for any ur ∈ U , the linearization of
DΣG[ur], i.e., ż(t) = A(t)z(t), is exponentially stable
and 0 ∈ U then for any L ≥ 0, there exists M ≥ 0 such
that ‖ϕ(t, t0, x0, ur)‖ ≤ M for any ur ∈ Ue such that
‖ur(t)‖ ≤ L a.e.

Proof: Corollary 3.3 implies that for any ur, ũr ∈
L∞ ∩ U , there exists a finite constant K ≥ 0 such that
‖x[x0, ur]− x[x0, ũr]‖∞ ≤ K.
By assumption ũr = 0 belongs to U , which allows to
deduce that ‖x[x0, ur]‖∞,T ≤ K since by definition one
has ϕ(t, t0, x0, 0) = 0. Finally, the motion is an absolute
continuous function of time which allows to conclude.



4.2 Steady-state
In this section, we consider the problem of the analy-
sis of the behavior of Σ with respect to a perturbation
on its input. We firstly consider the effects of perturba-
tions which “vanish” when the time goes to the infinity.

Theorem 4.2 Let Σ, be a dynamical system associated
to (1) defined from Ue into Ye where U is assumed to
be a convex set. If f is uniformly Lipschitz and C1

and if for any ur ∈ U , the linearization of DGΣ[ur],
i.e., ż(t) = A(t)z(t), is exponentially stable then for
any ur, ũr ∈ Ue such that ur − ũr ∈ L2, one has
limt→∞ ‖ϕ(t, t0, x0, ur)− ϕ(t, t0, x0, ũr)‖ = 0.

Proof: Theorem 3.1 implies that there exists a finite
constant η such for T ≥ t0 and any ur, ũr ∈ Ue, one
has ‖x[x0, ur] − x[x0, ũr]‖2,T ≤ η‖ur − ũr‖2,T . Since
by assumption, ur − ũr belongs to L2, one has for any
T ≥ t0: ‖x[x0, ur]− x[x0, ũr]‖2,T ≤ η‖ur − ũr‖2 which
allows to ensures that x[x0, ur] − x[x0, ũr] belongs to
L2. This enables to prove the result on the basis of
Barbalat’s lemma (see e.g. [19] p. 210) since the two
motions are two absolute continuous functions of time.

4.3 Periodic and constant inputs
The following theorem claims that the steady state re-
sponse to a periodic (resp. constant) input signal is a
periodic (resp. constant) trajectory.

Definition 4.1 A motion, x(t), defined from [t0,∞)
into Rn is said to asymptotically T–periodic if for any
ε > 0 there exists a positive constant Tε > t0 such that
for any K ∈ N and any t ≥ Tε, one has ‖x(t + KT )−
x(t)‖ ≤ ε.

Theorem 4.3 Let Σ, be a dynamical system associated
to (1) defined from Ue into Ye where U is assumed to
be a convex set. If f is uniformly Lipschitz and C2 and
if for any ur ∈ Ue, the linearization of DΣG[ur] ,i.e.,
ż(t) = A(t)z(t), is exponentially stable and 0 ∈ U then
for any periodic input belonging to Ue, the associated
trajectory is asymptotically periodic.

5 Lyapunov stability of the unperturbed
trajectories

5.1 Preliminary remark
Let us point out the problem of the definition of the
Lyapunov stability in the input-output context. Indeed,
in the input-output context, the motions with an initial
condition different from x0 at t = t0 are not necessarily
defined. This consequently implies that the Lyapunov
stability can not be defined without additional assump-
tions. Moreover, if these motions exist, their properties
(with respect to the input-output criteria) are not nec-
essarily related to the properties of the motion starting

at x0 at t = t0.
In the sequel, as in [32], we bypass this problem by
the introduction of a backwards extension of Σ which
is compatible with the input-output properties of the
system (see [31, 32]).

5.2 Global and asymptotic stability of the un-
perturbed motions
We firstly deduce a simple result which is a direct con-
sequence of theorem 4.2 and of some reachability as-
sumption of the state space of Σ from x0. Let us recall
this following definition.

Definition 5.1 An open subset of the state space of Σ,
i.e. Ω ⊂ Rn is said to be reachable from x0 with respect
to U if given any x ∈ Ω there exist u ∈ U and finite
constant Tr ≥ 0 such that x = ϕ(t0 + Tr, t0, x0, u).

Theorem 5.1 Let Σ, be a dynamical system associated
to (1) defined from Ue into Ye where U is a convex set
and Ω is a bounded and open subset of Rn. If f is
uniformly Lipschitz and C2 and if for any ur ∈ U , the
linearization of DGΣ[ur], i.e., ż(t) = A(t)z(t), is expo-
nentially stable, Ω is reachable from x0 with respect to
U and 0 ∈ U then all the unperturbed motion associated
with bounded inputs belonging to Ue and initial condi-
tions in Ω are globally (with respect to Ω) asymptotically
stable.

The proof is a straightforward consequence of the ex-
ponential stability of the linearizations and of theorem
4.2. Indeed, the system is globally asymptotically sta-
ble if the unperturbed motion is asymptotically stable
and the unperturbed motion is globally attractive from
Ω (see [12]).

Actually, the uniform and global asymptotic stability
is obtained if we consider constant or periodic inputs
since for periodic systems, the global and asymptotic
stability implies the uniform global asymptotic stability
(see e.g. [17, 30]). Let us firstly introduce the uniform
reachability definition:

Definition 5.2 An open subset of the state space of Σ,
i.e. Ω ⊂ Rn is said to be uniformly reachable from x0

if there is a finite constant T̄ such that for any x ∈ Ω,
any t1 ≥ t0 there exist u ∈ U and positive constant, Tr

with Tr ≤ T̄ such that x = ϕ(t1 + Tr, t1, x0, u).

We can now set a result concerning global and uniform
asymptotical stability of the unperturbed motion. To
this purpose, let us define an open ball of Rn, namely
Br(x0, ρ) ∆= {x ∈ Rn | ‖x − x0‖ < ρ}, which contains
all the points of a bounded unperturbed motion, i.e.
for any t ∈ [t0,∞), one has xr(t) ∈ Br(x0, ρ). We then
now define an open set, namely Ω(ur), which contains
Br(x0, ρ).



Theorem 5.2 Let Σ, be a dynamical system associated
to (1) defined from Ue into Ye where U is a convex set.
If f is uniformly Lipschitz and C2 and if for any ur ∈
U , the linearization of DGΣ[ur], i.e., ż(t) = A(t)z(t), is
exponentially stable, Ω(ur) is uniformly reachable from
x0 with respect to U and 0 ∈ U then all the unperturbed
motion associated with bounded inputs belonging to Ue

and initial conditions in Ω(ur) are globally (with respect
to Ω(ur)) and uniformly asymptotically stable.

The proof of this theorem is given in [16]. It is in fact
a direct consequence of results presented in [12].

6 Acknowledgments

The authors thank the reviewer for helpful comments.

References
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