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Laboratoire de Tribologie et Dynamique des Systèmes, UMR5513, CNRS/Ecole Centrale de Lyon/Univ Lyon/
ENISE/ENTPE - 36 Avenue Guy de Collongue, F-69134 Ecully, France

received 13 July 2016; accepted in final form 20 September 2016
published online 13 October 2016

PACS 05.45.-a – Nonlinear dynamics and chaos
PACS 02.50.-r – Probability theory, stochastic processes, and statistics

Abstract – The bouncing of an inelastic ball on a vibrating plate is a popular model used in
various fields, from granular gases to nanometer-sized mechanical contacts. For random plate
motion, so far, the model has been studied using Poincaré maps in which the excitation by the
plate at successive bounces is assumed to be a discrete Markovian (memoryless) process. Here, we
investigate numerically the behaviour of the model for continuous random excitations with tunable
correlation time. We show that the system dynamics are controlled by the ratio of the Markovian
mean flight time of the ball and the mean time between successive peaks in the motion of the
exciting plate. When this ratio, which depends on the bandwidth of the excitation signal, exceeds
a certain value, the Markovian approach is appropriate; below, memory of preceding excitations
arises, leading to a significant decrease of the jump duration; at the smallest values of the ratio,
chattering occurs. Overall, our results open the way for uses of the model in the low-excitation
regime, which is still poorly understood.

Copyright c© EPLA, 2016

Introduction. – The bouncing ball (BB) model, i.e., a
point-like ball of finite mass bouncing vertically under the
action of gravity, g, on an infinitely massive vibrating plate
(fig. 1(a)), has been widely studied in the last decades.
Its popularity is due to both its simplicity and the rich-
ness of its dynamics, from harmonic to chaotic, through
subharmonic and quasi-periodic solutions. It is now one
of the paradigms for nonlinear dynamics and chaos (see,
e.g., [1,2] for BB in textbooks). It has been used to model a
variety of systems, including granular flow [3–6], nanoscale
mechanical contacts [7], bouncing droplets on a vibrating
bath [8], impact-induced noise [9,10] and particle trans-
port by surface waves [11].

In most cases, the BB model has been studied with a
harmonic vertical motion of the plate (see, e.g., [12–17]).
The BB model with random vibrations of the plate, in
spite of its practical relevance to real systems and of the
qualitatively new dynamic regimes it offers, has been much
less investigated ([18,19] for BB or [20,21] for a modified
BB model in which the ball is confined between two walls
or when the ball is attached to a fixed wall through an
elastic spring [22]). In all these studies, the model was
treated using a non-linear mapping (Poincaré map) for
which the ball velocity vn just after the n-th impact is
related to vn−1 and to the plate velocity wn at the instant
of the n-th impact. The randomness of the excitation

Fig. 1: (a) Sketch of the bouncing ball (BB) model. A ball
submitted to gravity, g, bounces on an exciting plate having
a correlated random displacement, h(t). (b) (respectively, (c))
Typical realisation of the dimensionless plate displacement, H,
as a function of the dimensionless time, τ (bottom), and its
power spectral density (PSD), Shh (top), for a dimensionless
correlation time τcorr = 10 (respectively, 1.11). Solid lines are
the analytic PSDs.

was introduced by drawing each wn independently from
a known distribution. The excitation process was thus
assumed to be a memoryless Markov chain.

Real vibration signals w(t) are always characterized by
a finite auto-correlation time tcorr below which the sig-
nal keeps memory of its previous values. The limitation
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induced by the Markovian assumption of independent suc-
cessive wn is thus qualitatively clear: the ballistic flight
time of the ball between two successive bounces is assumed
to be much larger than tcorr. This situation is more prob-
able when the energy dissipation during impact is lower
and/or when the characteristic plate velocity is higher.
Note that for the so-called Chirikov conditions [23], in
which the height reached by the ball during a ballistic
flight is large compared with the table displacement, a
Markov-like excitation is expected. Conversely, for two
bounces separated by a short flight time, the two rele-
vant plate velocities can be strongly correlated. Thus,
in regimes in which short flight times are dominant, the
standard Markovian map approach is expected to fail to
capture the BB model dynamics.

The purpose of this letter is to characterize the BB
model dynamics with stochastic excitation, when memory
effects cannot be neglected. To do that, we performed
full simulations of the ball dynamics using continuous
excitations having various correlation times. We show
how the statistical properties of the dynamics are af-
fected by tcorr and we identify the range of model param-
eters for which the Markovian map approach is not valid
anymore.

Model. – The originality of our model is to consider,
for the vibrating plate, a correlated stochastic motion,
h(t), with tunable correlation time, tcorr. Figure 1 shows
typical realisations of h(t), for either a long (b) or a short
(c) tcorr. h(t) is obtained from an (uncorrelated) Gaussian
white noise, ψ(t), filtered by a second-order filter as

ḧ + 2ζΩcḣ + Ω2
ch = ψ(t), (1)

with Ωc being the center frequency of the filter and ζ
its damping coefficient. Note that ζ is related to the
frequency contents of the signal, because the bandwith
of its power spectrum density (PSD), Shh(Ω), is equal
to 2Ωcζ. h(t) is twice differentiable in the least square
sense, so we can define w = ḣ and a = ḧ. h and w
have the property to be independent centered Gaussian
random variables, with their stardard deviations being re-
lated by σw = Ωcσh. The autocorrelation function of h is

〈h(t)h(t + t′)〉 = σ2
he−ζΩc|t′|f(t′), with f a periodic func-

tion of t′ [24], so that the correlation time can be defined
as tcorr = 1

ζΩc
. To avoid infinite energy in the accelera-

tion signal, a, h is further filtered by a first-order low-pass
filter with a cutoff frequency, ΩL, much larger than Ωc,
so that this further filtering has negligible effect on h and
thus on tcorr (in this study we use ΩL = 10ΩC). The role
of this extra filtering will appear later on. Typical PSDs
of the signals used are shown in fig. 1, together with their
analytical prediction, for two cases: narrow band (b) and
broad band (c).

For any generated excitation signal, h, we then solve
the bouncing ball problem by calculating the values of the
post-impact velocity, vn, and instant, tn, of all successive

impacts. In practice, we solve the following equations:

tn+1 = tn + θn, (2)

vn+1 = −e(vn − gθn) + (1 + e)wn+1, (3)

with e being the restitution coefficient. The flight time, θn,
is obtained from the following equation:

−
1

2
gθ2

n + vnθn + hn − hn+1 = 0. (4)

Equations (2) and (3) represent a classical Poincaré map
for the BB model (see, e.g., [2], sect. 2.4). Equation (3)
describes an instantaneous partially inelastic impact pro-
cess, with energy dissipation quantified by e ∈ [0, 1] (e = 1
and e = 0 correspond to purely elastic and completely
inelastic limit cases, respectively) and a pre-impact ve-
locity vn − gθn resulting from the finishing free flight.
Equation (4) enables analytic determination of the impact
time, as the intersection between the parabolic free flight
and the plate motion, h. In practice, h is obtained using
the fourth-order Runge-Kutta method with time step ∆t
and piecewise linearized between integration points. To
ensure that this interpolation is accurate, ∆t was chosen
sufficiently small compared to the time period of the high-
est relevant frequency of the excitation signal, 2π/ΩL. As
a consequence, the flight time determination was found to
be essentially independent of the time step. Nevertheless,
the shortest free flights are affected by the largest relative
error on their flight time. This unavoidable limitation was
handled by imposing that the ball will stick to the plate
if the estimate of the coming free-flight duration, 2vn

g , is
found smaller than 10∆t, which amounts to define a cut-
off velocity vstick = 5g∆t. After sticking, the ball takes
off again as soon as the acceleration of the plate becomes
larger than gravity (ḧ > −g); at this time, the ball takes
off with an initial velocity equal to that of the plate.

Let us rewrite eqs. (2) to (4) in a dimensionless form:

τn+1 = τn + Tn, (5)

Vn+1 = −eVn +
e

Λ
Tn + (1 + e)Wn+1, (6)

−
1

2Λ
T 2

n + VnTn + Hn − Hn+1 = 0, (7)

with τ = Ωct, T = Ωcθ, H = h
σh

, W = w
σw

, V = v
σw

and

Λ =
σ2

w

gσh
. It is now clear that the system dynamics are

fully controlled by two dimensionless parameters, the resti-
tution coefficient, e, and the reduced plate acceleration, Λ.
The effect of the correlation time, tcorr, will be obtained
by varying ζ, because the dimensionless form of tcorr is
τcorr = Ωctcorr = 1

ζ . We have performed simulations for a

large number of values of the triplet {Λ, e, τcorr}, with for
each a large number of flights (the last 9·105 out of 106, to
avoid any initial transient) so that accurate steady-state
distributions of Vn and Tn could be obtained. In the fol-
lowing, Vn will be denoted as the take-off velocity, because
it represents initial flight velocities either after an impact
or after a stick period. All simulations start with the ball
lying on the plate and use ∆τ = 5 · 10−3.
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Fig. 2: Bars: typical probability density functions (pdf) of the
dimensionless take-off velocity, Vn, for selected Λ and τcorr (see
legends), with the example of e = 0.8. Mean values are 3.65 in
(a), 1.93 in (b), 3.12 in (c) and 0.85 in (d). Solid lines: pdf of
the fully uncorrelated case, PWB (mean value 3.76).

Results. – The case of a completely uncorrelated
(Markovian) excitation has been studied by Wood and
Byrne (WB) [18]. Assuming that i) all impact velocities
are downwards, ii) all post-impact velocities are upwards
and iii) between impacts, reversal due to gravity always oc-
curs, they provided the (Λ-independent) probability den-
sity function (pdf) of post-impact ball velocity, PWB(V ),
which depends only on e. We will use PWB as a refer-
ence to highlight the differences brought by our improved
model including correlation in the excitation. Such mem-
ory effects are expected to be negligible when individual
flight times are larger than the correlation time. This case
is favoured for large excitations (large Λ) and/or short
correlation time, τcorr. Figure 2 indeed shows that, in our
simulations, the pdf of Vn closely matches PWB when Λ is
large and τcorr is small (fig. 2(a)). Contrary to PWB , our
distributions are not only dependent on e, but also on the
two other control parameters, Λ (see fig. 2(b)) and τcorr

(see fig. 2(c). As expected, changes in the distribution
occur when Λ is reduced or when τcorr is increased. Com-
bining a small Λ and a large τcorr produces even larger
deviations from PWB (fig. 2(d)). Those deviations quali-
tatively change the distributions compared to PWB . For
instance, in fig. 2(d), the mean value of the distribution
is 4.3 times smaller than that of PWB , with almost half
of the distribution corresponding to negative velocity val-
ues. Such negative velocities being forbidden in the WB
analysis, PWB fails to capture, even qualitatively, the ob-
served distributions in this range of control parameters.
Figure 2 alone demonstrates that, although it has not been
considered previously, the correlation time of the excita-
tion has a significant influence on the BB dynamics.

To quantify the effect of τcorr, let us now focus on the
mean values of the distributions of the dimensionless take-
off velocity and flight time, 〈Vn〉 and 〈Tn〉, respectively.
The inset of fig. 3(a) shows the evolution of 〈Vn〉 as a
function of the reduced acceleration, Λ, for various values
of τcorr and e. The main graph of fig. 3(a) shows that all
those velocity data can be collapsed onto a single master

curve when plotting 〈Vn〉
VW B

as a function of ΛVW B

α , with VWB

the mean value of PWB and α =
σ2

w

σhσa
, which is computed

Fig. 3: (a) 〈Vn〉
VW B

and (b) 〈Tn〉
TW B

as a function of ΛVW B

α
, for

various triplets {Λ, e, τcorr}. Grey, black and white symbols
correspond to e = 0.7, 0.8 and 0.9, respectively. Circles,
squares, diamonds, stars and triangles correspond to τcorr =
10, 8, 4, 2 and 1.11, respectively. Insets: (a) 〈Vn〉 and (b) 〈Tn〉
as a function of Λ; same data as in the main panels.

from the actual simulated excitation signal used. The
physical interpretation of ΛVWB/α will be discussed later
on. α is a bandwidth parameter (see, e.g., [24], sect. 10.3)
which depends only on the spectral contents of the excita-
tion signal, i.e., on τcorr; it is close to 1 (respectively, 0)
for a narrow-band (respectively, wide-band) process. Note
that σa exists because of the ΩL-centered first-order low-
pass filter. VWB depends only on e and the function
VWB(e) is provided in fig. 11 of [18].

An equally good collapse can be obtained with the time

data when plotting 〈Tn〉
TW B

as a function of ΛVW B

α (fig. 3(b),
main panel). TWB = 2ΛVWB is the mean dimensionless
flight time in the WB model, which straightforwardly fol-
lows from combining the classical relation 〈Tn〉 = 2Λ〈Vn〉
valid under Chirikov’s assumption, with 〈Vn〉 = VWB .

From fig. 3, we can clearly define the range of parame-
ters for which the BB dynamics are uncorrelated. It cor-
responds to the plateaus in both panels, i.e., ΛVW B

α larger
than about 7. Indeed, in this regime, both 〈Vn〉 and 〈Tn〉
are equal to their uncorrelated counterparts, VWB and
TWB . Below 7, correlation effects are observed as both
〈Vn〉
VW B

and 〈Tn〉
TW B

become smaller than 1, as already illus-
trated for three particular cases in fig. 2. The decrease is

massive when ΛVW B

α is decreased down to about 1: 〈Tn〉
TW B

drops by a factor as large as 100; concurrently 〈Vn〉
VW B

goes
all the way down to zero and even changes sign.

In order to exhibit more clearly how the BB dynamics
are correlated at low ΛVW B

α , we now consider the altitudes
of two successive take-offs, Hn and Hn+1. Figure 4 shows
the probability that Hn+1 be smaller than Hn, p(Hn+1 <
Hn), for all performed simulations. We find that all data
are reasonably collapsed onto a single master curve by the
same dimensionless quantity, ΛVW B

α , that we already used
in fig. 3. Three regimes appear, the typical ball trajectories
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Fig. 4: Fraction of flights such that Hn+1 < Hn, as a function
of ΛVW B

α
. Symbol colors and shapes have the same meaning

as in fig. 3. Insets: typical ball trajectories in three different
simulations, each one being extracted from one of the three
regimes described in the text.

of which are illustrated as insets in fig. 4:

– For ΛVW B

α larger than about 7 (regime I), p(Hn+1 <
Hn) = 50%, which is consistent with fully uncorre-
lated dynamics: the ball can easily jump over any
peak (local maximum) of the excitation H(τ) and
thus has equal chances to impact the table again at a
larger or smaller altitude.

– When ΛVW B

α is decreased below 7 (regime II), an in-
creasing fraction of jumps become smaller than the
coming peak in H(τ). More and more jumps are re-
quired in order to climb the peaks. Helped by gravity,
the way downhill is achieved in relatively less jumps.
Overall, there are more jump uphill than downhill;
which explains why p(Hn+1 < Hn) becomes smaller
than 50%.

– For values of ΛVW B

α smaller than about 4 (regime III),
another phenomenon is involved. Climbing the peaks
requires so many inelastic jumps that their amplitude
decreases down to the sticking limit. The rest of the
climbing is thus achieved with the ball stuck to the
plate, i.e., with no more uphill jump. Take-off and
jumps may start again when the plate goes down
again, which explains why p(Hn+1 < Hn) rises, up
to values exceeding 50%.

– For ΛVW B

α below about 1, the probability of the ball
to take-off when it is in a stuck state is almost zero.
For instance, for ΛVW B

α ≃ 1.42, we found less than 15
take-offs during a simulation time τ ≃ 6 · 106. This
explains why there is no point below 1 in figs. 3 and 4.

In regimes II and III, the free flights are significantly modi-
fied compared to the symmetric parabolae expected under

Chirikov conditions, due to early or late intersections with
the non-negligible table motion. This, or equivalently the
fact that the term Hn − Hn+1 is not negligible anymore
in eq. (7), induces memory effects which translate into the
drastic decrease of 〈Vn〉 and 〈Tn〉 observed in fig. 3 for
ΛVW B

α below 7.

Discussion. – Given the above-described picture of the
three bouncing regimes, we can now explain why ΛVW B

α is
the relevant parameter that controls the BB dynamics, in-
cluding the emergence of memory effect. As we have seen,
understanding the transition from uncorrelated (regime I)
to correlated dynamics (regimes II and III) amounts to
evaluating whether a single jump will be able or not to
overcome the immediately coming peak (local maximum)
of the plate motion. In other words, one needs to com-
pare the typical duration of a jump with the typical time
interval between two successive peaks. In dimensionless
units, the former is directly 〈Tn〉 which, at the transition
from regime I to II, can still be approximated by TWB

(fig. 3(b)). The latter can be shown to be Tpeak = 2πα.
The parameter used to rescale figs. 3 and 4 is thus nat-
urally proportional to the ratio TW B

Tpeak
between these two

characteristic time scales.
We emphasize that ΛVW B

α combines into a single quan-
tity all three control parameters of the model: Λ, e
(through VWB) and τcorr (through α). This finding will
considerably simplify further studies of the correlated
stochastic BB model by drastically reducing the dimen-
sion of the parameter space to be explored, from three
down to only one.

To complete the story about memory effects in the BB
dynamics caused by correlation in the plate motion, we
now need to identify the relationship between α and τcorr.
There is no universal such relationship, because α depends
on the shape of the PSD of h(t). In our case of a white
noise filtered by a second-order filter and extra-filtered by
a first-order filter with a cut-off frequency ΩL, one can
show that α(τcorr) = [(1 + 2ΩL

Ωcτcorr
)(1 + 2Ωc

ΩLτcorr
)]−1/2. We

found that this formula is in perfect agreement with cal-
culations of α done using the various generated h(t).

Regime III bears many analogies with the important
phenomenon of chattering (or inelastic collapse), which
consists in the sticking of the inelastic ball onto the plate
after a finite time, but an infinite number of bounces.
Again, so far, this phenomenon has been studied for pe-
riodically vibrating tables (see, e.g., [13,25,26]) or with
Markovian random excitations [19]. Here, we also observe
chattering in the case of correlated random excitations:
regime III is a random succession of bouncing and stick-
ing periods, the statistics of which are found to strongly
depend on the value of the correlation parameter ΛVW B

α

(see the strong variations of p(Hn+1 < Hn) with ΛVW B

α
when the latter becomes smaller than about 4).

The transition from regime I (uncorrelated) to regime II
(correlated bouncing dynamics) is expected to be indepen-
dent of the details of our model, in particular of the precise
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PSD used. In contrast, the transition from regime II to
regime III (correlated random chattering) may depend on
modelling choices. In our simulations, the onset of sticking
depends on an arbitrary cutoff velocity vstick. Although
we have found that doubling and halving vstick has neg-
ligible influence on our results, the sticking process is not
identical to the pure inelastic collapse case, in which the
ball velocity goes down to arbitrarily small values before
sticking. We believe that extending our model to include
pure collapse conditions will provide significant insights
into random chattering.

Overall, our results provide new insights into how and
why memory arises in BB dynamics when realistic, contin-
uous correlated excitations are concerned. The main effect
of memory is to significantly decrease the jump duration
with respect to its expected value for uncorrelated exci-
tation. The present study opens new research avenues to
apply the BB model to low excitation levels or to under-
stand the transition from sticking to bouncing dynamics
when the excitation is increased. Our work is part of the
effort to include memory effects in some of the most promi-
nent non-linear dynamics and statistical physics models,
including the BB (this work), the random walk [27], the
predator/prey [28], the foraging [29] and the Ising [30,31]
models.
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