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The failure of the population of microjunctions forming the fric-
tional interface between two solids is central to fields ranging
from biomechanics to seismology. This failure is mediated by the
propagation along the interface of various types of rupture fronts,
covering a wide range of velocities. Among them are the so-called
slow fronts, which are recently discovered fronts much slower
than the materials’ sound speeds. Despite intense modeling activ-
ity, the mechanisms underlying slow fronts remain elusive. Here,
we introduce a multiscale model capable of reproducing both the
transition from fast to slow fronts in a single rupture event and
the short-time slip dynamics observed in recent experiments. We
identify slow slip immediately following the arrest of a fast front
as a phenomenon sufficient for the front to propagate further at
a much slower pace. Whether slow fronts are actually observed is
controlled both by the interfacial stresses and by the width of
the local distribution of forces among microjunctions. Our results
show that slow fronts are qualitatively different from faster fronts.
Because the transition from fast to slow fronts is potentially as
generic as slow slip, we anticipate that it might occur in the wide
range of systems in which slow slip has been reported, including
seismic faults.
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he rupture of frictional interfaces is a central mechanism in

many processes, including snow slab avalanches, human ob-
ject grasping, and earthquake dynamics (1). Rupture occurs through
the propagation of a crack-like microslip front—the rupture front—
across the interface. This front represents the moving boundary
between a stick region and a slipping region that coexist within the
interface plane. In so-called partial-slip situations, fronts propagate
quasistatically at a pace controlled by the external loading, as
studied in mechanical engineering for decades (2, 3). Recently,
fast cameras enabled the observation of much faster fronts, which
are classified into three types: supershear fronts faster than the
material’s shear wave speed cy, sub-Rayleigh fronts propagat-
ing at velocities close to c;, and slow fronts much slower than
¢s (4-8). Whereas the first two types have been predicted theo-
retically, the physical mechanisms underlying slow fronts are
still debated.

A better understanding of slow fronts appears as a significant
step toward an improved assessment of how frictional motion
begins. It is also expected to shed light on the important topic of
slow earthquakes, which have been increasingly reported in the
last decade (1). In this context, an intense theoretical and nu-
merical activity arose to investigate the origins and properties of
rupture fronts. Two different approaches have been explored.

On the one hand, 2D or 3D elastodynamic models have been
used to relate the macroscopic loading conditions to the stress
field along the contact interface (9-13). These local stresses were
indeed shown experimentally to play a role in the selection of the
front type (6). However, the models were based on simple fric-
tion laws, e.g., Coulomb friction (11) or velocity-weakening
friction (12, 13) and did not exhibit slow fronts. On the other
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hand, fronts much slower than the speed of sound were produced
by 1D friction models using improved local friction laws in-
volving an intrinsic time-scale: either (i) an aging scale related to
the long-time strengthening of an interface at rest (14, 15) as is
classically considered in rate-and-state theories (16, 17), or (i)
a dynamic scale related to the short-time collective dynamics of
formation and rupture of a statistical number of microjunctions
during the rupture of the interface (18, 19). Time scales i and ii
were shown, in the same experiment (20), to control the recovery
of contact area after slip arrest and the transition between a fast
and a slow regime for the slip motion triggered by the front
passage, respectively. However, because 1D models are unable
to reproduce realistic stress distributions at the interface, they do
not allow for quantitative comparison with experiments. Here we
combine both 2D elastodynamics and time-dependent friction
into a multiscale model for rupture fronts. We demonstrate that
the model simultaneously reproduces two separate, unexplained
experimental observations: the transition between fast and slow
front propagation during a single rupture event, and the transi-
tion from fast to slow slip motion at the interface shortly after
rupture. In addition, through a more general study of the model,
we show that slow slip occurring immediately after a fast front’s
arrest is a sufficient phenomenon for the front to propagate
further as a slow front, and we identify parameters involved in
front type selection.

Model Description

The frictional stability of a system made of two solids in contact
depends on the level of normal and shear stresses at the contact
interface. These interfacial stresses result from the external
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forces applied at the boundaries of the solids, transmitted through
the bulk. Slip motion will in general be triggered when the local
interfacial shear stress reaches a threshold, the level of which
crucially depends on the interface behavior law at the microscale.

The net contact between two solids generically consists of
a large number of stress-bearing microjunctions whose nature
depends on the type of interface. For rough solids, each micro-
junction corresponds to a microcontact between antagonist
asperities, whereas for smoother surfaces the junctions can be
solidified patches of an adsorbate layer (21). The three physical
aspects of the junction behavior that we consider to be essential
are as follows. (i) A microjunction in its pinned state can bear
a shear force fr, provided it remains smaller than a threshold
finres- When fies 1s reached, a local fracture-like event occurs,
and the junction enters a slipping state. (if) In the slipping state,
the microjunction can let the interface slip, either through the
microslipping of microasperities in contact or through the flu-
idization of an adsorbate layer. During slip, the microjunction
sustains some residual force f7 = fgip, With fip, smaller than fipres.
(iii) Slipping microjunctions have a certain probability to disap-
pear or relax. For example, a microcontact disappears when an
asperity moves away from its antagonist asperity by a typical
distance equal to the mean size of microcontacts, as classically
considered for slow frictional sliding, e.g., in rate-and-state fric-
tion laws. However, another picture may arise as a consequence
of the sudden release of energy when pinned junctions break.
This energy will transiently heat the region around the micro-
junction (20). The rise in temperature will significantly increase
the rate of a thermally activated relaxation of the slipping
microjunction during the time necessary for the interface to cool
down (21). The frictional consequences of such temperature
rises have recently received renewed attention (e.g., ref. 22), but
remain poorly understood. In an attempt to include such thermal
processes in our model, we recognize that they will lead to time-
rather than distance-controlled relaxations, so that the shear
force drop will be distributed in time. In order for the interface
to continue bearing the normal forces applied to it, the micro-
junctions that relax are replaced by new, pinned junctions bearing
a small tangential force f; ey

The physical aspects described above have been modeled in
a simple way using the following assumptions (Methods). We
consider the rough frictional interface between a rigid track and
a thin linear elastic slider of length L and height H (Fig. 14). The
bulk elastodynamics of the slider are solved using a square lattice
of blocks connected by internal springs (11, 23) (Fig. 1B). The
multicontact nature of the interface is modeled through an array
of N; tangential springs representing individual microjunctions,
attached in parallel to each interfacial block (Fig. 1C) (18, 19,
21). The individual spring behavior is as follows (Fig. 1F) (24).
A spring pinned to the track stretches linearly elastically as the
block moves, acting with a tangential force f7 on the block. When
the force reaches the static friction threshold fi,..s (We neglect
aging, so that fiyes iS time independent), the microjunction
ruptures and the spring becomes a slipping spring acting with a
dynamic friction force fr = fuip. [finres and fyip are taken pro-
portional to the normal force p on the corresponding block
(Methods). This assumption ascribes the pressure dependence of
the forces on a block to the individual forces bore by a constant
number N, of springs, rather than to a pressure dependent
number of springs per block.] After a random time ¢z drawn from
a distribution 7T(tg), the slipping spring relaxes. It is replaced
immediately by a pinned, unloaded spring (f,w = 0) and a new
cycle starts. Here we use T(tg) as a simplified way of modeling
the distribution of times after which microjunctions relax. Due to
the variety and the complexity of the underlying thermal pro-
cesses, we did not try to derive T(¢g) for a specific situation.
Rather, we chose to model T(tg) in the simplest way, as a
Gaussian with average time (fg) and width &tg. The shape of
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Fig. 1. Sketch and behavior of the multiscale model. (A) Slider and external
loading conditions. (B) Spring-block network modeling elastodynamics. (C)
Surface springs modeling friction on a block. (D) Macroscopic loading curve,
the ratio F;/Fy of driving shear force to total normal force. (E) Mesoscopic
loading curve, the ratio z/p of shear to normal stress on a block. (F) Micro-
scopic friction model for the spring loading curve, the ratio f-/fy of friction
to normal force for one spring (fy = p/N;). (G) Steady-state friction force on
a block vs. sliding velocity.

T(tg) is not crucial: We obtain qualitatively similar results with
an exponential distribution. The width of T(tg) is the only source
of randomness in our model and causes the interface springs of
a block to evolve differently from each other.

The Model Reproduces Rupture Front Observations

In this section we use the model to reproduce unexplained experi-
mental observations made in polymethylmethacrylate by Fineberg
and coworkers (4, 20). We use the loading conditions and ma-
terial constants of ref. 4, as done in ref. 11. We then select the
parameters of the friction law to reproduce both the complex
space—time evolution of the front velocity reported in ref. 4 and
the time-dependent interfacial slip history reported in ref. 20.
The slider is first submitted to normal load Fx only. Then,
a slowly increasing tangential load Fr is applied on its left side,
at height & above the interface (SI Methods). Macroscopically
(Fig. 1D), the slider is first loaded elastically, yielding high shear
stresses in the vicinity of the loading point. These growing
stresses eventually trigger the slip of a first block, the motion of
which increases the force on its neighbors (Fig. 1E) until they
also start to slip, and so on. This mechanism results in the
propagation of a rupture front across the interface. The first such
events arrest before reaching the interface’s leading edge and
correspond to so-called precursors to sliding (11, 25-28). In the
following, we will only consider interface-spanning events (Fig.
2) that are responsible for the large force drops in Fig. 1D. We
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Fig. 2. Two interface-sized events. (A) A fast-slow-fast event (I in Fig. 1D).
Spatiotemporal plot of the fraction of pinned springs. (B) A fast-only event
(ll'in Fig. 1D) shown as in A. (C) Rupture front speed v, vs. front location for
both events. Block rupture is defined to occur when 70% of interface springs
have broken (white dashed line in the colorbar). Front speed is measured as
the inverse slope of the rupture line (indicated by arrows in A and B) using
the endpoints in a five-point-wide moving stencil.

measure the front propagation speed v, as a function of position
x along the interface (Fig. 2C) by defining rupture at the block
scale when the fraction of pinned springs drops below a thresh-
old value (Fig. 2 A and B).

Fig. 24 shows an event starting as a fast front (v. = ¢,/3), then
turning into a slow front (v, = ¢,/100) at x ~ 0.4L, before turning
back into a fast front at x ~ 0.6L. This space-time development
is in excellent agreement with the experiments from which the
model parameters were taken (4). In particular, the locations of
the transitions between fast and slow fronts, the duration of the
slow front (~1 ms), and the velocity ratio between fast and slow
fronts are all matching the experimental observations. Other events
are fast across the whole interface (Fig. 2B). We emphasize that
such spatially heterogeneous dynamics arise spontaneously in our
model. This success is presumably due to the two-dimensionality
of the model, which allows it to reproduce interfacial stress
heterogeneities arising from macroscopic sample geometry and
external loading (11) (Fig. S1).

Fig. 3C shows the slip experienced by an interfacial block during
an event, the time-evolution of which exhibits two distinct regimes.
A fast slip regime is followed by a roughly linear slow slip regime, in
good agreement with the slip history reported in ref. 20. Notably,
both the ratios of slip distances and of slip velocities experienced in
either regime are matching the experimental observations.

The simultaneous agreement found with two independent
measurements—reproducing the fronts’ spatiotemporal dynamics
at the slider scale and the slip dynamics at the block scale—
indicates that our model can provide insight into the set of ex-

8766 | www.pnas.org/cgi/doi/10.1073/pnas.1321752111

periments reported by Fineberg and coworkers (4, 6, 20, 25).
Because the basic ingredients of the model represent general
features of frictional interfaces, we expect the model to be ap-
plicable to a larger class of systems.

Relationship Between Slow Slip and the Transition to Slow
Fronts in the Model

From this section forward we change the scope from reproducing
particular experiments to performing a systematic study of the
model. We begin by varying select model parameters to unravel
the mechanisms underlying slow fronts.

Fig. 3C (reference curve) shows the slip history of a block
during an event with a slow front (Fig. 34); it has both fast and
slow slip regimes. Fast slip initiates with the passage of the rupture
front and is independent of (¢g) (the three curves in Fig. 3C overlap
during fast slip). It is followed by a short period of arrest. Then,
slow slip originates from the following mechanism: For each spring
leaving the slipping state after ¢ the friction force on the block is
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Fig. 3. Slow rupture is governed by slow slip. (A and B) Event Il restarted at
1.0571 s with driving speed V = 0, shown as in Fig. 2A. Slow slip is either
active (A) or turned off (B). (C) Slip profiles for block at x = 0.34L under
varying (tg) (A uses the reference (tg)). The fast slip part is not affected. (Inset)
Measured slow slip speed Vonsiip Matches Viow siip, estimate =4-27siip /K (tr)
(S/ Equations). Blue represents data from full simulation and green the data
for prepared homogeneous interfaces. k; is the block-interface stiffness, zq, =
Nifip. Error bars represent minimum and maximum values. Markers represent
the mean (S/ Equations). The line represents linear fit to mean values, through
origin. (D) Data collapse of slow rupture speed vs. Vo siipkilo/ (tthres — 70) along
prepared homogeneous interfaces, for full and simplified models, and for wide
variations in input parameters (see key within the graph). Iy is a characteristic
length (SI Equations), tinres = Nsfinres- (Inset) Unscaled data.
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reduced. As a result the block moves a small distance, driven by
the forces from the neighboring blocks. Slow slip results from the
succession of such incremental block movements. A scaling
analysis of this mechanism (SI Equations) yields a prediction for
the slow slip velocity vgow siip, Which quantitatively captures the
data (Fig. 3C, Inset).

The fast-slow—fast front in Fig. 34 becomes an arrested front
in Fig. 3B when we restart the simulation in the same state, but
with slow slip turned off. We do this by setting fycw = fip S0 that
springs leaving the slipping state no longer relax, but return to the
pinned state bearing the same force as during slip. The front in Fig.
3B arrests where the fast-to-slow transition used to take place.
These results support the following scenario: Slow fronts are fronts
that would arrest in the absence of slow slip, but are pushed further
by the increasing loading due to slow slip behind the front tip.

To show that slow slip occurring immediately after front arrest
is a sufficient condition for the transitions to slow fronts to be
allowed, we consider the following simplified model. We leave
microscale dynamics out by replacing the ensemble of springs
connecting each block to the track with a single spring: The
spring breaks when reaching the force Nfipres, it slides with a
force N fqip, and it returns to the pinned state still bearing the
force Nfsiip when the block velocity vanishes. Slow slip is in-
troduced directly as a small velocity applied to the spring at-
tachment point (SI Methods). The transition from fast to slow
fronts is indeed observed in this simplified model (Fig. S2), and
disappears if slow slip is turned off.

To characterize the relationship between slow slip velocity and
slow front velocity, we consider both the complete and simplified
models and use interfaces prepared as follows (SI Methods). We
choose the normal force p(x) on each block from the substrate to
be uniform in space and constant in time, and the shear force
profile z(x) to have initial values 7y(x) uniform in space except
in a region used to initiate front propagation (Fig. S3). We vary
different model parameters, keeping the front initiation region
unchanged, and systematically measure the slow front velocity
Ve, slow s a function of vgoy gip (Fig. 3D, Inset). Suitable rescaling
(SI Equations) of vqow siip allows all points to collapse on a single
straight line (Fig. 3D). This collapse shows that v, g, is pro-
portional to Vgow siip, With the same conversion factor for both
models. We conclude that even though v oy s1ip depends on the
interfacial dynamics, the conversion factor does not; it mainly
depends on the way stresses are transferred from the slowly slipping
region to the rupture tip. Similar linear relationships between slip
and front velocities were found in previous models (14, 15, 29).

Selection of the Front Type in the Model

We now turn to the question of front type selection. Ben-David
et al. (6) showed that slow (fast) fronts correlate locally with
small (high) shear to normal stress ratio 7o(x)/p(x) just before the
event. In equilibrium, 7 is the sum of the spring forces fr for each
block. Due to the randomness in the slip times ¢, the individual
fr will be different. As in previous works (21, 24, 30), it is useful
to define a distribution ¢ (fr) of the forces in the springs attached
to each block. ¢ is a dynamical quantity evolving with both the
loading on and the motion of blocks. Note that in general ¢ will
be different for every block.

We find that the width ¢ of the distribution ¢ is as important
as the stress ratio for front type selection. To demonstrate this we
take event II as a reference and modify it by changing o for all
blocks at x > 0.25L. To isolate the effect of ¢ from the effect of
the stress ratio on front propagation, we increase o but keep zo(x)
unchanged. We do this by making each block’s ¢(fr) a uniform
distribution while keeping its average unchanged (Fig. S4). We
then restart the simulation and observe that the front has changed
from a fast-slow—fast one (Fig. 44) to a fast one across the whole
interface (Fig. 4B). The reason for this behavior is that increasing
o from Fig. 44 to Fig. 4B weakens the interface, which enables
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the fast rupture to reach the leading edge without stopping
and becoming a slow front. The weakening can be understood
from Fig. 4C, which shows the effective static friction coefficient
T = 7../p of an interface block, with 7., the maximum
friction force on the block before it starts to slip. Small (large) o
correspond to large (small) 7,,.x (Fig. S9), i.e., a locally stronger
(weaker) interface, consistent with the fact that points corre-
sponding to slow fronts cluster at low ¢ in Fig. 4C.

Fig. 4 A and B indicates that, besides zo/p, ¢ is involved in
front type selection. Using interfaces prepared as in Fig. 3D, we
systematically vary the values of 7y and ¢ and observe which
front type is selected (Fig. 4D). The effect of 7, agrees with ex-
periments (6), but is modulated by the effect of o. Low 7y and &
lead to fronts that arrest before spanning the whole interface.
Large 79 and o yield fast fronts. Global events containing a slow
part are found in a region of intermediate 7y and o. These results
are found qualitatively robust not only against changes in sample
geometry or energy stored in the nucleation region, but also
against changes in the individual behavior of the interfacial
springs (Fig. S6). We therefore expect the main features of Fig. 4D
to be widely relevant.

Discussion

The present model differs from classical rate-and-state friction
laws (16, 17), which are empirical laws based on experimental
results obtained for small sliding velocities (< 100 pm/s), for
which self-heating of the interface is negligible. In rate-and-state
models the relevant timescale is that of aging, i.e., the slow (log-
arithmic) recovery of contact area at rest. The relevant slip dis-
tance is the average microcontact size, after which all junctions
are renewed. Here, we focus on a different friction regime, with
a microsecond-long fracture process, followed by large slip
velocities in the fast slip regime (~100 mm/s in ref. 20), both
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phenomena contributing to a significant temperature increase at
the interface. Our model thus considers the relevant timescale
tg to be the one of thermally activated relaxations during the
period needed for the interface to slowly slip and stop (we neglect
aging). The corresponding slip distance is the one allowed by
junction relaxations during the same period.

In the context of rate-and-state friction, it was recently sug-
gested that slow slip velocity corresponds to the sliding speed
at which the interface’s steady-state friction laws reaches a
minimum (14, 15, 31). In our model, however, slow slip has a
completely different origin, related to the intrinsic relaxation
dynamics of the interface after a fast slip period (Fig. 3C and SI
Equations). As a matter of fact, the steady-state friction law that
emerges from the microjunction dynamics at the block scale is
purely monotonic and decreasing (Fig. 1G) (24). To what extent
the slow fronts related to both types of slow slip share similar
properties remains to be investigated.

Up to now, the term slow front has been used in the literature
to name any front propagating at least 1 order of magnitude
slower than the material’s wave speeds. Our results allow for a
tentative definition of the slow fronts first observed in ref. 4.
They are fronts that would arrest in the absence of slow slip, but
are pushed further by the increasing loading due to slow slip
behind the front tip. Importantly, the motion results from the
intrinsic relaxation dynamics of the interface and not from an
external driving. A direct consequence is shown in Fig. 54, where
the increase in tangential load is stopped during the propagation
of the slow front of Fig. 2. We observe that the slow front is not
affected and propagates exactly like in the original event, which
indicates that the front is truly dynamic. This contrasts with the
behavior of the event shown in Fig. 5B, where the loading is
applied to the bottom left-most block. Extremely slow fronts are
then observed, similar to the ones reported in, e.g., refs. 15, 18,
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Fig. 5. Dynamic vs. quasistatic slow fronts. (Upper and Lower Left) Macro-
scopic loading curves. (Upper and Lower Right) Fraction of pinned springs
shown as in Fig. 2A. (A) Event | restarted. (B) Data from a simulation where
driving is applied at h = 0. Gray scale represents the original data with no
change to V. Color represents the data in which the driving speed is set to
V = 0 during front propagation. After setting V = 0, we only show color
when at least 5% of a block’s springs are slipping.
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19, and 32, which propagate over the timescale of the interval
between two dynamic events. These fronts stop when the driving
stops, indicating that they are of a different, quasistatic nature.

This distinction sheds light on the difference between our
model and recent models for the onset of sliding of extended
interfaces. Urbakh and coworkers (18, 19) have used 1D spring-
block models with an interfacial behavior also based on micro-
junctions having two possible states. However, they used fy, = 0,
which prevented slow slip to occur. As a consequence, they ob-
served fast and quasistatic fronts, but did not observe dynamic
slow fronts like those reported here. Bouchbinder and coworkers
(14, 15, 32) have developed an improved rate-and-state law and
used it in 1D. They consider the classical aging timescale whereas
we consider a dynamic healing timescale relevant during the short-
lived rupture-induced temperature rise of the interface. They ob-
served the transition from quasistatic to fast dynamic rupture, but
no fast-to-slow dynamic front transition. Other works considered
2D models, but with velocity-weakening local friction laws (12, 13).
Although they observed fast and quasistatic fronts, they did not
report any transition from fast to slow dynamic fronts.

Our results make a direct bridge between the separate obser-
vations of a transition from fast to slow fronts and of slow slip in
recent experiments (4, 20). As slow slip was observed in many
systems from geoscience (1, 33, 34) to materials science (20, 35),
we expect the transition to slow fronts to be possible in these
systems, too. The physical process underlying slow slip, e.g., thermal
softening in glassy polymers (20), thermal creep in paper (35),
and dilatant strengthening in subduction zones (36) differs from
system to system (22). The present model does not aim at modeling
one particular process. Rather, through the time distribution
T(tg), we introduce the minimal generic ingredient necessary
to yield a slow interfacial slip motion.

Using the simplified model, we demonstrated that slow fronts
can in principle exist even if only one microjunction is kept per
block, i.e., the force distribution ¢ has width ¢ = 0, provided slow
slip is introduced in another way. However, we believe that vir-
tually all frictional interfaces are of the multijunction type at the
relevant scale, e.g., microcontact or molecular scale. Due to random
physical properties or stochastic pinning/relaxation events com-
bined with the previous sliding dynamics, there will always be
some disorder in the forces bore by the junctions, as recognized
in various friction models (e.g., refs. 18, 21, 24, and 30). The
disorder was shown to control, e.g., the steady sliding friction
force and the transition between smooth sliding and stick—slip
regimes (30). Here we showed that the force distribution is also
a key parameter in front type selection. It appears as a state
parameter that, by controlllng the effective friction threshold
4 at the block scale (24), is able to affect interfacial rupture in
a way analogous to but different from the usual age state used in
rate-and-state friction laws.

We believe that all our results are relevant to a large class of
systems with a random population of stress-bearing entities having
both a threshold-like rupture behavior and a time-dependent
healing process, such as nanoscience (37), polymer science (38),
and seismology (39).

Methods

Parameters are in Table S1. Spring j of block i has strength finres = puspi/Ns
and stiffness kjj < \/p;/Ns. The force on block i from spring j is frj = kj;(xjj — X;),
where x;; is the attachment point of the spring to the track and x; is the
block’s position. While slipping, the spring trails the block with x; adjusted
in every time step to ensure fT,-,-}zfsup:ﬂdp,-/Ns. Note that if the block
motion reverses, x; stops changing and remains fixed while |fr;| <fp.

The probability distribution T(tg) is based on a Gaussian Tg(tg) =(1/(v2x5tg))

exp(—(tg — tr)%/(26t2)), modified so that negative lifetimes are forbidden:

T(tr) =Tg(tr) + Te(—tr),tr €[0,00]. With the parameter values we use, (tg)=tg.
In the simulations behind Fig. 3 C and D, the ratio 5tg/tg is maintained. Details
on initialization and nonfrictional boundary conditions are in S/ Methods.
The motion is found using a velocity Verlet scheme with At=2x10"7s.
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S| Methods

This section supports the model description found in the main text
and Methods with detailed information on how we initialize the
system and apply the boundary conditions. We also provide some
additional information on the simplified model.

The slider is initialized with full normal load Fy and no tan-
gential load Fr by gradually applying Fx without allowing springs
to break, a technicality required because the normal forces on
the springs, fy;j, start at zero and therefore the springs, if allowed
to, would break under any stretching. We distribute the load Fy
uniformly on the top blocks; apart from this we use the same
nonfrictional boundary conditions as in ref. 1. The unique equi-
librium is found through damped relaxation of typical duration
10 ms. After relaxation, we check that no spring is stretched beyond
its strength and introduce the driving spring starting from zero
applied driving force Fr. Then Fr, which acts on the block on the
left side of the slider situated at height 4 above the interface,
through the driving spring, increases as the driving point moves
to the right with speed V.

In the simplified model used for Fig. 3D, we disregard the
microscopic state by using a single friction spring per block.
Taking parameters from the microscopic reference model de-
scribed in the main text (Model Description), each block’s spring
now has a strength tihres =pPi =Nsfinres- The stiffness k; of
a block’s friction spring equals the combined stiffness of the
springs per block in the reference model. The force on block i
from its friction spring is fr; =k;(x; —x;), where x;, is the attach-
ment point of the spring to the track. Upon breaking, the spring
becomes a slipping spring and its behavior starts to differ from
that of the springs in the microscopic model. We impose a slow
slip by letting x;; move with a velocity Vjow slip spring TOT @ time
Llow slip spring = {r. This process competes with the dynamic fric-
tion law where the spring trails the block with x;; adjusted in
every time step to ensure |fr;| <pupi, so that the spring at-
tachment point moves with the highest of vgow slip spring and vy,
the speed of the block in the x direction. When the block motion
reverses (v changes sign), the spring returns to the pinned state,
but x;; continues to move at Vo slip spring Until a time Zgow slip spring
later than when the spring was broken.

The systematic studies leading to Figs. 3 C (Inset , green) and
D and 4D were done with different normal forces and different
initialization from the other simulations. The normal force bound-
ary conditions on the top and bottom were exchanged: This
simplifies the analysis by setting a constant normal force p; = Fx /Ny
on all blocks i at the interface. To maintain stability against global
rotation, the top blocks interacted with an elastic ceiling with the
same properties as the elastic foundation used in ref. 1 and the
other simulations presented here.

To obtain an initial state with a prescribed interfacial shear
stress profile we turned the interface springs off during the ini-
tialization. In their place we added to each bottom block the force
corresponding to the shear stress to be prescribed. We also in-
troduced the driving spring, but let I’ =0. During relaxation, the
sample moved along the x axis until the force in the driving
spring balanced the net force from the interfacial shear stress.
To get rid of oscillations more efficiently, we added damping
forces —a(¥;) on the blocks’ motion. After relaxation, the extra
forces and the extra damping were turned off and the interfacial
springs were introduced, with their attachment points x; chosen
such that the net force on each block was unchanged and the
desired distribution of spring forces, ¢(fr), appeared. We then
waited a few time steps to ensure that the transition from pre- to

Tremborg et al. www.pnas.org/cgi/content/short/1321752111

postrelaxation involved no force discontinuities. Next, instead of
driving the system with }” # 0 until rupture is triggered, we started
fronts by simultaneously depinning all springs for all blocks to the
left of Xirigger- The shear stress in the triggering region has a strong
influence on the rupture fronts; to compare results between
simulations, we used a constant value Zyjgger-

SI Equations
Estimate of v,y sip from Model Parameters. Here we provide the
arguments behind the slow slip speed estimate used in Fig. 3C, Inset.

The mechanism for slow slip in our model is the force drop
when slipping junctions relax and repin at zero force. To de-
termine the slip speed (block motion per unit time) associated
with the relaxation of junctions, we identify the net slip caused
by this change and the time over which the change happens. To do
this, we assume that each time a junction relaxes, the block moves
forward just enough to return to the force it was bearing just
before relaxation. Thus, the force reduction —fgj, in the junction
is matched by an equivalent net force increase in the junctions
that are already pinned and in the coupling to the neighboring
blocks. The effective stiffness of these interface and bulk terms
depends on the fraction of junctions that are pinned and on the
motion of the neighboring blocks, respectively.

A careful look at the motion of blocks during their slow slipping
regime proved that neighboring blocks move essentially at the
same slow slip speed. This means that the force changes on a
block due to relative motion with respect to its neighbors remain
negligible. We can therefore assume in this calculation that the
only contribution to force restoring after junction relaxations is
due to the pinned interfacial junctions.

We now assume that all junctions start in the slipping state.
After the first junction relaxes and repins, the effective stiffness
of the interface is just the stiffness of this single junction, k;. The
force drop —fyi, must be compensated by stretching this (now
pinned) junction by moving the block a distance §; = fqj, /k;;. For
the second junction the force drop is again —fy;p, but the stiffness
of the interface has increased to 2k; and the required slip is
62 =fqip/ (2k;;). If no junction would reach its breaking threshold
fthres durlng the Whole relaxation process, then we would find
Xsiow slip = ZJ *Jeiip/ (ki) Because the k; are indepen-
dent of j, tlfns is just § fth/ kiy ,ll/n with n as the dummy
index. For N; =100 used in the model, the sum evaluates to 5.2.
However, for finres/fsip =40/17 used in the model, some junc-
tions do break again before all slipping junctions relax. The force
drop associated with the transition from pinned to slipping
state is fyip — finres, and acts in the same way as the force drop
when junctions leave the slipping state. Taking this into ac-
count and evaluating the return to the pinned state more
carefully, we find the net block slip to be 8.5fip,/kjj.

With the slipping time standard deviation &tg =0.37z used in
the model, the time for all of the junctions to return to the
pinned state is found to be close to 2(tg).

Combining these slip distance and slip time values, and defining
olip =Nsfstip and k; =Nk, we use

Tslip
Vsl lip, esti =42 . [Sl]
slow slip, estimate ki <tR>
Fig. 3C, Inset plots the slow slip speed measured in the simula-
tions against this estimate. The markers indicate when we have
varied zgi, (H), ki (), and (tz) (A). “@” uses our reference
parameters. The blue data are based on restarting event II. Because
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qip and k; enter in the elastic state of the slider, only (¢z) could
be varied for these simulations. The green data are for prepared
homogeneous interfaces, where parameters can be varied freely.
(When fqip is varied, finres is varied proportionally to keep the
fast-slow—fast nature of the rupture front. For the same reason,
when k; is varied, the prestress in the triggering region is also
varied slightly.)

When slow slip speed is measured in the simulations based
on event II (blue data in Fig. 3C, Inset), some deviation from
Vslow slip, estimate 18 Observed. There are several possible reasons for
such a deviation. First, the assumption of comoving neighbors is
only approximately correct (near the front tip, the neighbors to
the right are stuck until the rupture front passes them). The actual
motion of the neighbors also depends on the stress state and the
triggering of the event. Second, the assumption of force rebalancing
every time a junction changes state is probably too strong.

Scaling of v, gow With Vgou siip- The data collapse in Fig. 3D is
obtained by plotting the slow rupture speed v, gow against the
quantity Vyow stipkilo/ (zinres — 7°), Where vyow siip is the slow slip
speed, k; is the stiffness of the connection between a block and
the interface (a single spring in the simplified model and a
parallel connection in the reference microscopic model), [y is
a characteristic length, zires =Nifihres 1S the maximum shear
strength of a block, and 7° is the shear force in the propagation
region before the event is started. In this section we provide a
crude argument for this scaling.

When a region of initially homogeneous prestress is being
stressed further by block motion on the left, the decaying shear
force profile can be written on the form

o(x) =Af <x;x°> +2°, [S2]
0

where A is an amplitude and f() is a function that has magni-
tude 1 at x=x and decays over a characteristic length /, that
depends on the bulk to interfacial stiffness ratio k/k;. The function
f() is known in 1D (equation 46 in ref. 2). In 2D it can be measured
in an elastostatic model, but its exact form is not required for the
present argument.

In a static situation, z(x) is balanced by the friction forces in
the interfacial springs. Ignoring the width of the spring force
distribution, the block at x( is at its static friction threshold
when the force on it from its neighboring blocks is 7(xy) = T¢nres,
which gives A = (zynres — 7°). The next block to the right, at position
x=x( + dx, then has

(o + dv) =Af g + dx] + 2°. [S3]

Here we have used the short-hand notation fix] =f((x —xo)/lp).

As the front tip moves from the block at x; to the block at
Xo + dx, the force on this block from its neighbors increases to
7' (x0 + dx) = Tynres. 1t Will be useful to rewrite this as 7’ (xg + dx) =
Tthres = 7(X0) =Af xo] +7°. The change in force on the block at
X0+ dx is

AT(X() +dx) =T/(X()+dx) —’L'(X()-l-dx) [S4]

1. Tremborg J, Scheibert J, Amundsen DS, Thegersen K, Malthe-Serenssen A (2011)
Transition from static to kinetic friction: Insights from a 2D model. Phys Rev Lett
107(7):074301.
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=A(flxo] o + ). [S5]

Assuming the change in force from the block’s neighbors is bal-
anced by an equal change in the friction force on the block
allows us to relate the force change to a displacement of the
block, namely

AT(XQ + dx)

Au(xy+dr) = k~

[Se6]

In the next step we will need the displacement of the block at
Xo during the same time interval. As the blocks are at closely
spaced points in a deforming elastic medium we will assume
Au(xg) = Au(xo +dx)(1+O(dx)) = Au(xy + dx).

Now we make the approximation that after breaking, the blocks
move at a constant speed Vg slip- It follows that the time it takes
from when the block at xy breaks and until when the block at
Xo + dx breaks is

Au(xp)

Vslow slip

dt= [S7]

During this time the front tip has moved the distance dx from one
block to the next, and the front speed is

dx dx

Ve, slow = E = Vslow slipm [S8]

ki dx

= Vslow slij . S9
o lthhrL:s -0 fPCO] _f[xo +dx] (591

Here we recognize an approximation to the spatial derivative of
the unknown function f(), evaluated at x=x,. We will use the
chain rule to separate the nondimensional and dimensional parts
of this derivative, and therefore we define X (x) = (x —xo)/lp so
that f[x] =f (X (x)). With this notation,

df _df dx_df 1
de dX dv  dX [S10]

we arrive at

ki Iy

Tthres — 0 _df
dx
X=X

This argument provides a rationale for the linear relationship
observed in Fig. 3D, but with the function f() unknown we are
not able to predict the value of the coefficient of proportionality.
From the shear force profiles we estimate the decay length
lo="7 mm, a value shared between simulations because we keep
k/k; the same, and rescale Vyow siip With kilo/(zenres —79). Note
that in the model, Zihres = Nifinres = g With pg the threshold
force coefficient and p the normal force on the block, which
means that the normal force enters in the scaling.

[S11]

Ve, slow = Vslow slip

2. Amundsen DS, Scheibert J, Thegersen K, Tremborg J, Malthe-Sgrenssen A (2012) 1D
model of precursors to frictional stick-slip motion allowing for robust comparison
with experiments. Tribol Lett 45(2):357-369.
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stress z(x) is antisymmetric, due to Poisson expansion being restricted at the interface by friction. (B) The state just before event I. The application of Fr has
modified both the shear stress profile and the normal stress profile (due to the friction-induced torque arising when Fr is applied at a finite height h above

the interface).
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Fig. S2. A fast-slow event arising spontaneously in a simulation using the simplified friction law with a single interface spring per block. The parameter
Vslow slip spring = 1.5 mm /s (S/ Methods). (A) Spatiotemporal plot of the instantaneous friction to normal force ratio. (B) Rupture front speed v.. Block rupture is

Position along interface, z (m)

defined to occur when the interface spring depins. Front speed is measured as in Fig. 2.
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Fig. S3. Spatial distributions of prestress zo/p for prepared states of the interface. In the front triggering region on the left, the prestress is 7o = ((z0/p) —
(Fsiip/Tn))/ ((Finres/Tn) = (fsiip/Tn)) = 0.3 for all prepared states used in Figs. 3D and 4 C and D. In the front propagation region, the prestress is homogeneous
along the interface, at a value varied between prepared states, here 7, =0.2 (black) and 7o =0.3 (blue). After initialization, all springs in the triggering region
are depinned simultaneously. Initiating the events in this way, rather than by driving the system until rupture is triggered, ensures that the force drop/energy
release in the triggering region remains the same between simulations. The nondimensional form 7, of the prestress represents the ratio between (i) the stress
in excess of the stress obtained during sliding and (/i) the maximum dynamic stress drop that results from rupture. It is analogous to the so-called S classically
used in seismology and to the form defined in ref. 1.
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Fig. S4. Microscopic force distributions significantly affect rupture fronts. The data in Fig. 4 A and B repeated with spring force distributions shown in detail.
(A) Event Il shown as in Fig. 2. (B) Simulation behind A restarted at 1.054 s with a wider distribution ¢(fr) of shear forces results in a fast-only event. To isolate
the effect of ¢(f7) on front propagation from the influence of front initiation and stress state we leave the loading zone on the left unmodified (it is the same
in both Insets) so that the restarted event begins like the original. We also let the modified ¢(fr) have the same mean value as the original ¢(f7) for all blocks. Thus,
the stress state is the same and the only change is in the width of ¢. (Insets) For each block along the interface, a color-coded histogram of ¢(fr) at 1.054 s. The vertical
axis shows the force level in individual springs, which extends up to fies. The level fyes is shown by the upper white line; it is different for each block because it
varies with normal force. The lower white line corresponds to fr =0 N. Color denotes the fraction of springs found at each value of fr using an arbitrary bin width.
This means that (apart from normalization) each vertical slice in the Insets shows the same type of data as Fig. S5A. Offset data represents the fraction of slipping
springs at 1.054 s.
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Fig. S5. Dependence of effective static friction coefficient u&" = max/p on the distribution ¢ of forces in the interface springs. (A) Uniform and bell-shaped
initial distributions of various widths. The bell-shaped distributions are polynomials with roots at +a and the functional form ¢(&)=5/(4a)(1+3|¢/al)
(1—|¢/a|)?,£ € [-a,a). (B) Friction to normal force ratio vs. block displacement for a block having the spring force distributions in A (corresponding colors). Spring
relaxation during slip is excluded from the calculation, a valid assumption when the passage of the rupture front is quick compared with the mean slipping
time (tg). Markers are located at maxima, which define tmax/p. (C) Effective static friction coefficient vs. o, the standard deviation of ¢. Each marker takes its
abscissa from the data in A and its ordinate from B. Continuous and dashed lines connect markers corresponding to uniform and bell-shaped ¢, respectively.
They are used in Fig. 4C as reference lines for simulation data. For clarity, only a few of the ¢ that were used to determine the lines are shown on this figure.
The form ﬁfff is analogous to 7o introduced in Fig. S3, and represents the ratio of (/) the dynamic stress drop from the effective static friction level to the stress
obtained during sliding and (i) the maximum value this stress drop can attain.
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Fig. S6. Results from an alternative model with a different individual behavior of the interface springs, showing the robustness of our results against changes
in the interfacial law. (A) A spontaneously arising fast-slow-fast event, analogous to that in Fig. 2A. (B) Observed front type for prepared interfaces, analogous
to Fig. 4D. All data in this figure come from simulations with a model in which the slipping force f;, decreases linearly with time. This microscopic friction
law modifies the slow slip mechanism with respect to the reference microscopic model. Until depinning, the springs have the same behavior in both models.
Upon entering the slipping state, the force from each spring on the block immediately drops to the level fs‘fip =gy, as in the reference model. Then the slipping
force decays linearly in time with a decay rate depending on the slipping time and the force level at repinning frew; that is, fgi, =f5‘fip - (7‘50Iip — frew)ts/tr, With
t; measured from the time the spring entered the slipping state. The slipping time distribution is the same as in the reference model. The decay in the
friction coefficient enables a slow slip motion after the initial rapid slip, which allows this model to sustain slow fronts for a relatively wide range of initial
spring stretching configurations and stress states, as seen in B. The parameters used with this model are the same as in the reference model (Table S1), except
for kijj=+/54.1 GN/m?fy ;, u;=0.28 and the new parameter s, =0.7u,~ 0.2 used to determine frew = pinewn,jj-
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Table S1. Model parameters

Name Symbol Value
Slider, mm

Length, x L 140

Height, z H 75

Width, y B 6
No. of blocks Ny 57

N, 31

Slider mass, g M 75.6
Block mass m M/(NxN;)
Young'’s modulus, GPa E 3
Bulk spring modulus k 3BE/4
Bulk spring length i L/(Nx—1)=H/(N;-1)
Damping coefficient n Vv0.1km
Normal load, N Fn 1,920
Elastic foundation modulus k¢ k/2
Driving

Spring modulus, MN/m K 4

Height, mm h 5

Speed, mm/s v 0.4
Threshold force coefficient ts = Trhres/Tn 0.4
Slipping force coefficient sq =Tsip/ T 0.17
No. of interface springs per block N; 100
Interface spring stiffness ki \/39.2 GN/m2fy ;
Slipping time, ms

Mean tr 2

Standard deviation, ms Str 0.6
Triggering region width, mm Xtrigger 22.5
Triggering region prestress Ttrigger 0.3
Time step duration, s At 2%x1077
Extra damping coefficient a n/40

Parameters above the empty row (from slider length to driving speed inclusive) are used in the same way as in

ref. 1.
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