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In nature and experiments, a large variety of rupture speeds and front modes along frictional interfaces are
observed. Here, we introduce a minimal model for the rupture of homogeneously loaded interfaces with velocity
strengthening dynamic friction, containing only two dimensionless parameters; τ̄ , which governs the prestress,
and ᾱ, which is set by the interfacial viscosity. This model contains a large variety of front types, including
slow fronts, sub-Rayleigh fronts, supershear fronts, slip pulses, cracks, arresting fronts, and fronts that alternate
between arresting and propagating phases. Our results indicate that this wide range of front types is an inherent
property of frictional systems with velocity strengthening branches.
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I. INTRODUCTION

The onset of sliding of frictional contacts is often mediated
by the propagation of a slip front along its interface, in
natural, laboratory, and industrial situations [1–3]. Slip fronts
typically nucleate at the weakest and/or most loaded part
of the interface, propagate, and eventually either invade the
whole contact or arrest after breaking only a portion of the
interface.

This front propagation can be characterized by two main
features: front speed and front mode. Two main front modes
have been identified, both in earthquakes and in laboratory
experiments: cracks where the interface behind the front slips
until propagation ends [4–7] and slip pulses where the rup-
tured part of the interface rapidly heals and resticks during
propagation [7–11]. Propagation can occur at speeds differing
by orders of magnitude; at velocities close to but below
the Rayleigh wave speed (sub-Rayleigh), above the shear
wave speed (supershear), and at speeds orders of magnitude
smaller than the sound speeds (slow). In addition, quasistatic
fronts with a speed controlled by the external loading rate
[12] have been reported. For dynamic cracks (from slow to
supershear, through sub-Rayleigh), higher propagation speeds
are found for larger prestress of the interface [6] and for
larger dynamic stress drop [13]. Such observations are not
limited to experiments. In nature, earthquakes can propagate
at both seismic and aseismic velocities [14], which obey
different relations between seismic moment and earthquake
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duration [15]. Observations in nature also include periodic
pulsing of aseismic events [16].

When the propagation speed decreases to zero before a
front reaches the edge of an interface, the front is denoted
as arrested. Such fronts can be considered as precursors to
sliding if they precede fronts spanning a larger portion of the
interface [17]. The propagation length, like the propagation
speed, depends on both the interfacial prestress and dynamic
stress drop [18]. Overall, the combination of the front mode,
the range of its propagation speed and the information about
whether it has arrested constitutes what we call the front type.

The range of observed front types have already been suc-
cessfully reproduced by a variety of models. Arrested cracks
have been reproduced using quasistatic models [18–21], or
elastodynamic models in 1D [22,23] or 2D [24–28], assum-
ing either continuous [19,22–25,27] or discrete-microcontact-
based friction laws [26,28] or fracture concepts [18,21]. Slip
pulses have been reproduced using discrete [29] or contin-
uum models assuming a Coulomb [30], regularized Coulomb
[31–33], or state-and-rate [34,35] friction laws. Models of
cracks are ubiquitous, featuring supershear [24,36,37], sub-
Rayleigh [24–26,28,38], slow [26,28,39,40], or quasistatic
[26,41,42] fronts. Note that front speed has been shown to
depend on many features of the frictional system, including
slip history [25,28], interaction between different fault planes
[43], the shape of the high speed branch of the friction
law [44], and spatial heterogeneities in stress or constitutive
parameters [45–49].

In front of so many different models, the physical origin of
the observed richness in front types remains elusive. In this
paper we address the question of the single minimal model
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FIG. 1. System sketch. We solve the Burridge-Knopoff model in
the limit of soft tangential loading (small K and V ), for a prestressed
interface with Amontons-Coulomb friction with velocity strengthen-
ing dynamic friction. V is the driving velocity, K is the driving spring
constant, m is the block mass, pi is the normal force on block i, and
f f ,i is the friction force on block i. Assuming homogeneous stress at
the interface and soft tangential loading, this results in a system with
two dimensionless parameters as described by Eq. (1).

that would reproduce the observed richness. We show how a
simple friction model, reducible to only two nondimensional
parameters, contains a wide range of observed front types.
Our findings indicate that the richness of front types is an
inherent property of interfaces with velocity strengthening
dynamic friction, which is a generic feature of both dry [50]
and lubricated interfaces [51,52].

II. MODEL DESCRIPTION

We introduce a one-dimensional Burridge-Knopoff model
[53] for homogeneously loaded interfaces obeying Amontons-
Coulomb friction, where the dynamic friction coefficient is
velocity strengthening (Fig. 1). The dimensionless equation
of motion for sliding blocks is derived in Appendix A and can
be written as

¨̄ui − ūi−1 − ūi+1 + 2ūi + ᾱ ˙̄ui − τ̄ = 0, ∀i ∈ [1, N], (1)

where ū is the dimensionless displacement. τ̄ = τ/p−μk

μs−μk
is

the dimensionless prestress, where τ is the shear preload,
p is the normal load and μk and μs are the dynamic and
static friction coefficients, respectively. ᾱ = α√

km
, is the di-

mensionless viscosity, where α is the viscosity coefficient of
the interface, k is the spring constant between two blocks, and
m is the block mass. We select the dimensionless time t̄ and
the dimensionless block separation so that the dimensionless
speed of sound in the model is v̄s = 1. Boundary conditions
can be expressed using conditions on the artificial blocks 0
and N + 1. At the left boundary, we assume soft tangential
loading (small driving velocity V and small driving spring
stiffness K), which results in boundary conditions given by
a constant force on the leftmost block equal to its value
when that block reaches its static friction threshold; ū0 = ū1 +
1 − τ̄ . At the right boundary we keep block N + 1 fixed (note
that the simulations are stopped once the rupture front reaches
position N); ūN+1 = 0 (Appendix A).

The blocks are initialized in the stuck state and start to
move once the static friction threshold is reached, which in
dimensionless units can be written as

|ūi−1 + ūi+1 − 2ūi + τ̄ | � 1. (2)

Blocks restick if the velocity ˙̄u reaches zero.

The assumed friction law has a discontinuity at u̇ = 0,
because μs �= μk . Note that we investigated regularization of
the model using either a characteristic length scale or a char-
acteristic velocity scale (Appendix D). The overall qualitative
features of the model, in particular the various front types
produced and their occurrence as a function of ᾱ and τ̄ , are
the same as in the simple, unregularized model (Fig. 8).

Here, we study a velocity strengthening dynamic friction
force, which can be encountered for both lubricated [54] and
dry interfaces [50]. Note also that the combination of a ve-
locity weakening branch followed by a velocity strengthening
branch, like the one we will use as a velocity-regularized
friction law in Appendix D, is typical for Stribeck-like curves
[51,52].

We emphasize that the present model can be fully de-
scribed using only two dimensionless numbers: the dimen-
sionless viscosity, ᾱ, which defines the velocity strengthening
term and the prestress τ̄ , which indicates how close the inter-
face is to its static friction threshold in units of the frictional
drop (μs − μk )p.

The terminology of front speeds found in the literature are
usually given in terms of how they compare to the shear wave
speed; supershear, sub-Rayleigh speeds. As can be seen from
Appendix A, the one-dimensional spring-block model only
contains one wave speed. Here, we have chosen to adopt the
terms supershear and sub-Rayleigh to be consistent with the
terminology often encountered in the literature, even though
in our one-dimensional model we could have chosen the terms
supersonic and subsonic to highlight the existence of only one
wave speed.

III. RICHNESS OF SLIP AND RUPTURE

We have performed 4 × 104 simulations for τ̄ ∈ [10−3, 1)
and ᾱ ∈ [10−3, 10] to obtain the relationship between pre-
stress, viscosity, and front velocities shown in Fig. 2. To
reduce the computational cost we have performed 2 × 104 for
ᾱ ∈ [10−3, 0.5] with N = 5000 and 2 × 104 for ᾱ ∈ [0.5, 10]
with N = 100 (the transients in the large ᾱ regime require a
smaller propagation distance before steady state is reached).
The simulations were run until all blocks stopped or the front
reached the end (block N).

A. Front speed

For each simulation, we have measured the steady-state
velocity for fronts progagating through the entire interface
[colorscale in Fig. 2(a)]. To obtain steady-state front veloc-
ities, we measure the times of rupture of all blocks, and
extrapolate v̄c(1/x̄) linearly to 1

x̄ = 0 using the last 20% of
the blocks. For arresting fronts, we measure the propagation
length L̄p. The results are shown in Fig. 2, with corresponding
slip and velocity curves for the examples shown in Fig. 3. The
front velocities span a continuum from slow velocities for low
τ̄ and large ᾱ to supershear velocities at large τ̄ and low ᾱ.
The front velocity at ᾱ = 0 can be found analytically and is
given by [36]

v̄c(ᾱ = 0) = 1√
1 − τ̄ 2

. (3)
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FIG. 2. (a) Phase diagram in ᾱ and τ̄ of the steady-state front velocities. The dashed black line shows the line of unconditional propagation
given by Eq. (10) (derived in Appendix B). The solid black line shows the region where blocks are found to arrest, which is obtained
numerically. The limit of supershear velocities is found from setting v̄c > 1 in Eq. (6) and is marked with a solid yellow line. The region where
start-stop fronts are found is marked with a pink contour. The grayscale colormap shows the propagation length Lp of arresting fronts. Right:
examples of supershear cracks (I), unsteady rupture (II), slip pulse propagation (III), arresting fronts (IV), slow cracks (V), and sub-Rayleigh
cracks (VI).

To estimate the steady-state propagation speed in the limit
of large ᾱ, we start with the steady-state slip speed, which
can be obtained directly from Eq. (1). If the slip speed
is constant, then ¨̄ui = 0, and ūi−1 − ūi+1 + 2ūi ≈ 0, so that
Eq. (1) reduces to ᾱ ˙̄uss − τ̄ = 0, where the steady-state slip
speed is

˙̄uss = τ̄ /ᾱ. (4)

In the limit of large ᾱ and small τ̄ we expect the motion to be
quasistatic, and the propagation speed to be governed by the
steady-state slip speed. If block i has just ruptured, then the
displacement necessary to trigger the rupture of block i + 1
is 1 − τ̄ [ūi+1 = 0 and ūi = 0 in Eq. (2)]. The dimensionless
distance between the blocks is 1. At a speed of ˙̄uss = τ̄

ᾱ
it takes

a dimensionless time ᾱ
τ̄

(1 − τ̄ ) to travel the dimensionless
distance 1 − τ̄ , so that the front speed is

v̄c(ᾱ � 1, τ̄ � 1) ≈ τ̄

ᾱ(1 − τ̄ )
. (5)

In Fig. 4 we use Eqs. (3) and (5) and find that we obtain
a decent data collapse of the steady-state front velocities
when we plot v̄c(ᾱ = 0) against v̄c(ᾱ � 1, τ̄ � 1). From this
collapse we obtain an empirical approximation of the front
propagation velocity which is valid in both limits:

v̄c ≈ 1 − e− τ̄
ᾱ(1−τ̄ )

√
1 − τ̄ 2

. (6)

Inserting for the dimensional quantities in Eqs. (3) and (5),
we find the following dependencies on the density ρ:

vc(ᾱ = 0) ∝ 1√
ρ

, (7)

vc(ᾱ � 1, τ̄ � 1) = constant. (8)

From this we can immediately conclude that fast fronts are
dominated by inertia while slow fronts are not. We emphasize

that this separation between inertial and noninertial fronts
only apples to the end-member solutions of Eq. (6), and does
not apply for the intermediate front velocities (found for large
τ̄ and ᾱ in Fig. 2).

B. Front type

We observe that the model is able to produce a large variety
of front types. In addition to sub-Rayleigh, supershear, and
slow cracks, we observe slip pulse solutions, arresting fronts,
as well as rupture speeds that alternate between propagating
and arresting phases. Figure 2 contains boundaries of the
different front types, as well as examples of space-time devel-
opment of each front type. The corresponding local slip and
slip speed for the examples in Fig. 2 is shown in Fig. 3.

The sub-Rayleigh and supershear front velocities are
found in the limit of small ᾱ, or large ᾱ combined with
large τ̄ . The front velocities systematically increase with
increasing τ̄ . Examples of sub-Rayleigh and supershear prop-
agation is found in Figs. 2(b I) and 2(b VI), with correspond-
ing slip profiles found in Fig. 3 I and Fig. 3 VI. The slow fronts
are found in the limit of large ᾱ and small τ̄ . An example of
a slow front is shown in Fig. 2(b V) with the corresponding
slip profiles found in Fig. 3 V. For slow cracks, the discrete
nature of the Burridge-Knopoff model is visible at the front tip
as large variations in block velocity (Fig. 3 V), which causes
the striped pattern in Fig. 2 V. Even though the velocities
behind the front tip can be small, these fronts still behave as
cracks; i.e., the entire interface behind the front tip slips until
propagation ends.

We also observe a large region in (τ̄ , ᾱ) where steady-
state solutions do not exist (grayscale in Fig. 2). For these
arresting fronts we measured the propagation distance L̄p,
which increases with decreasing ᾱ. There is also a sharp
transition from fronts that stop within a small distance and the
slow regime where steady-state solutions exist close to ᾱ 
 1.
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FIG. 3. Local slip and slip speed for simulations corresponding
to Fig. 2 The color coding (from blue to brown, through green, red,
and orange) corresponds to increasing block index, and the lines are
separated by (I) 10 blocks, (II) 2 blocks, (III) 5 blocks, (IV) 1 block,
(V) 1 block, and (VI) 1 block. Black dashed lines show the steady-
state slip velocity τ̄ /ᾱ.

Slip pulse solutions in the Burridge-Knopoff model typ-
ically manifest as a series of slip bands, each a few blocks
wide, propagating at the same velocity. The steady-state slip
pulse-region is found for small ᾱ and small τ̄ , but the arresting
region also contains slip pulse solutions. An example of a slip
pulse is shown in Fig. 2(b III), with the corresponding slip
profiles in Fig. 3 III.

We also observe front propagation that alternates between
propagating and arresting phases, which we denote as start-
stop fronts. The mechanism behind this front type is as
follows: If a crack that is arresting is sufficiently long, then it
will always be able to restart as long as all blocks behind the
front are still sliding. If a block at the front of a propagating
crack arrests at position ū = (1 − τ̄ ) − ε̄, then the block in
front of it will carry a stress of 1 − ε̄, where 1 corresponds to

10-4 10-2 100 102 104
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10-2

10-1

100

101

FIG. 4. Rescaled steady-state propagation speed using Eqs. (3)
and (5). From the collapse we can determine an approximate solution
of the steady-state velocity for all τ̄ and ᾱ which is given by Eq. (6)
and plotted as a red line in the figure.

the static friction threshold. There is thus a possibility for a
force 2 − ε̄ to be carried by two arrested blocks at the front
tip. Restarting the propagation requires that there is sufficient
force available in the form of slow slip behind the front tip.
The available force can be written as l̄ τ̄ + (1 − τ̄ ) where
l̄ is the position of the front tip at the time of arrest. The
criterion for the existence of a start-stop front can be found
by balancing these two contributions; l̄ τ̄ + (1 − τ̄ ) � 2 − ε̄.
The criterion for the unconditional restart of a crack that has
arrested is found when ε̄ → 0, which corresponds to a stress
close to the static friction threshold on the two arrested blocks
in front of the crack. This can be written as a crack length l̄
that allows for the existence of start-stop fronts:

l̄ � 1

τ̄
+ 1. (9)

Note that this argument requires that the entire interface
behind the front tip is sliding, which means that slip pulses
will not be subject to this behavior. The start stop fronts
are marked with a pink contour (note that the pink contour
does not surround a single well defined region, but several
disconnected domains) in Fig. 2(a) and an example is shown
in Fig. 2(b II) with the corresponding slip profiles found in
Fig. 3 II, and the measured L̄p is taken as the propagation
length when the front stops for the first time (L̄p = l̄).

C. Phase diagram boundaries

In the following, we investigate the boundaries between the
different front types observed in Fig. 2(a).

First, we find the line of unconditional propagation in
Fig. 2 (dashed), which separates the slip pulse region from the
arresting region at small ᾱ and then divides the sub-Rayleigh
region for larger ᾱ. If a block at the front tip is able to
trigger the next block even though the block behind it has
stopped, then a propagating front will not be able to arrest.
Solving for this criterion in τ̄ and ᾱ gives a criterion τ̄uncond(ᾱ)
above which steady-state propagation will always occur. The
condition of the existence of such solution can be found
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FIG. 5. Left: Velocity oscillations for block 4000 as a function
of time with varying τ̄ and ᾱ = 0.01. Right: Amplitude of the
oscillations as a function of τ̄ with colors corresponding to the
data shown in the left panel. The transition from continuous sliding
behind the front to slip pulses is determined by the oscillation
amplitude compared to the steady-state slip speed τ̄ /ᾱ. Arresting
fronts are found if steady-state slip pulses cannot occur.

analytically (Appendix B) and is given as

τ̄uncond = 1

2
− 1

2
e
− πᾱ√

8−ᾱ2 . (10)

To obtain the arresting domain of the phase diagram,
we need to determine when blocks in the system are able
to reach zero velocity. This can occur during very short
transients or because a steady-state solution contains large
velocity fluctuations. We have not been able to determine
this criterion analytically, but it is straightforward to find the
criterion numerically. Blocks can either stop at the front tip
as in Fig. 3 IV, or because of velocity oscillations behind
the front, as demonstrated in Fig. 5. For a fixed ᾱ, varying
τ̄ systematically changes the amplitude of such oscillations,
which leads to a well defined criterion for the existence of
arresting blocks τ̄arrest(ᾱ). The procedure for determining the
criterion is as follows: We use a system of 100 blocks. For
a given ᾱ and τ̄ , we run a simulation and check whether
it contains blocks that start and then arrest before the front
reaches the end. We then use the bisection method for fixed ᾱ,
varying τ̄ to find the limiting τ̄arrest. This solution τ̄arrest(ᾱ) is
plotted as a solid black line in Fig. 2.

The two criteria τ̄uncond and τ̄arrest combined explains
both the region of the phase diagram where steady-state
slip pulse solutions exist and the location of the ar-
resting region. Steady-state slip pulses exist for τ̄ (ᾱ) ∈
[τ̄uncond(ᾱ), τ̄arrest(ᾱ)], where velocity oscillations can lead to
arresting blocks, but where propagation will continue even
if blocks behind the front arrest. The arresting region is
determined by τ̄ (ᾱ) ∈ [0, min{τ̄arrest(ᾱ), τ̄uncond(ᾱ)}].

D. Heterogeneous interfaces

The front-type phase diagram of Fig. 2(a) has been con-
structed from steady-state data. Here we investigate to what
extent it can be used to understand some features of fronts
propagating along heterogeneous interfaces. Figure 6 illus-
trates that transitions in ᾱ and τ̄ can act as barriers to prop-
agation, which can be understood from Fig. 2(a).

Changes in ᾱ can lead to arresting fronts if a front initiated
in a region of (τ̄ , ᾱ) corresponding to steady-state propagation
enters a region corresponding to the arresting regime. This
is demonstrated in the Fig. 6(b), where fast cracks entering
regions of smaller τ̄ arrest. In such cases, the criterion for
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FIG. 6. Spatial transitions in ᾱ and τ̄ can act as barriers to
propagation. (a) Step change in ᾱ for a front that starts out as a
slip pulse (dashed) and a crack (solid). If a slip pulse enters a region
where slip pulses are not possible as steady-state solutions, then the
front will arrest (abruptly within a few blocks, which is why the
dashed line is discontinued at x̄ ≈ 500), even though both regimes
in ᾱ allow for steady-state front propagation. If the front starts out
as a crack, then propagation continues as long as the region it enters
allows for steady-state propagation. (b) Step change in τ̄ so that the
front enters the arresting region of the phase diagram. In this case,
the front arrests through a series of start-stop events.

start-stop fronts in Eq. (9) may be satisfied in the arrest phase,
leading to multiple start-stop events before the motion stops
completely. This is visible as velocity fluctuations after x̄ =
500 in the bottom row of Fig. 6(b). As shown in Fig. 6(a)
(dashed lines), if a front is initiated in the slip-pulse regime
and then enters a region of larger ᾱ crossing τ̄uncond [Eq. (10)],
it will arrest even if the region of larger ᾱ corresponds
to slow rupture. In the simulations in Fig. 6(a), this arrest
occurs within a few blocks. This means that a propagating
front entering a region of different ᾱ can arrest even though
each value of ᾱ would allow for a steady-state propagation
on a homogeneous interface. For larger τ̄ where the entire
interface is sliding when the region of increased ᾱ is reached
[Fig. 6(a), solid lines], the front speed converges to a new
value corresponding to the values of τ̄ and ᾱ in that region
of the phase diagram.

IV. DISCUSSION

In this paper, we have demonstrated that a minimal
one-dimensional model of rupture along frictional inter-
faces, obeying Amontons-Coulomb friction with velocity-
strengthening dynamic friction, contains the main front types
observed in the physics and geophysics literature. This in-
cludes cracks, slip pulses and arresting fronts with steady-
state propagation speeds ranging from slow, to sub-Rayleigh
and supershear velocities. In addition to these steady-state
velocities, we observe fronts that alternate between arresting
and propagating phases. This model can be written in terms
of only two nondimensional parameters that determine the
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FIG. 7. Front velocities from two-dimensional simulations. v̄c

is given as the measured front velocity (measured as the average
front velocity between L/2 and L) over the shear wave speed of the
material. L̄p (grayscale) is the propagation length Lp over the system
height H . Start-stop fronts are marked with pink.

front type. Complexity and richness of frictional rupture has
been demonstrated to depend on different parameter ranges,
boundary conditions, as well as spatial heterogeneities in
stress constitutive parameters [45–49]. We emphasize that
the observed complexity and richness of frictional rupture in
this study occurs on interfaces that are homogeneous in both

frictional properties and loading. This highlights that the large
variation in modeled front types are likely generic features
of frictional interfaces with velocity strengthening dynamic
friction.

An important question is whether those results are ro-
bust against qualitative changes in the model; in particular
whether there are specific effects related to the discontinuity
of the friction law at vanishing slip speed. We have per-
formed two additional sets of simulations using regularized
friction laws; one with a velocity-weakening and one with a
slip-weakening regularization. The corresponding equations
of motion and the associated steady-state front-type phase
diagrams are presented in Appendix D. Comparison between
the phase diagram in Fig. 2(a) and the regularized models in
Fig. 8 indicates that most qualitative features are essentially
unchanged. While some differences may be noted (details in
Appendix D), the spatial organization of the various regions
in the phase diagram remains largely unchanged, showing that
the discontinuity of the friction law does not change our main
conclusions.

We have also performed a set of two-dimensional simula-
tions to address whether our results would be specific to the
1D nature of the system. We combine the bulk model of [24]
with the present friction law. The parameters used and the
results obtained are presented in Appendix C. The obtained
phase diagram (Fig. 7) is again similar to Fig. 2(a), which
demonstrates that our main conclusions are not artifacts of the
1D nature of the model.
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FIG. 8. Front velocities using regularized friction with (a) velocity regularization from Eq. (D1) (the red line corresponds to Eq. (D2)) and
(b) displacement regularization from Eq. (D3). Start-stop fronts are marked with pink. The grayscale colormap show the propagation length
Lp of arresting fronts. The solid and dashed lines are the same as in Fig. 2.
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The relative locations of the various regions in Fig. 2 are
consistent with experimental observations. At low ᾱ and τ̄ ,
the model predicts the existence of slip pulse solutions, in
agreement with the experimental observation that slip pulses
occur when the prestress is low compared to the static friction
threshold [10]. For ᾱ = 0, the model only predicts supershear
rupture [36]. For nonzero ᾱ, sub-Rayleigh and slow rupture
can occur. Supershear rupture can still occur if the prestress is
large. Overall, the propagation speed increases with increas-
ing prestress, which is consistent with experimental obser-
vations [6]. Slow fronts have also previously been reported
to depend strongly on velocity strengthening friction [38,44].
Here, slow propagation occurs at large ᾱ. Both the slip speed
and the slow propagation speed are directly controlled by the
velocity strengthening term ᾱ, leading to a slow propagation
speed inversely proportional to ᾱ.

In addition to steady-state rupture, the model predicts un-
steady rupture velocities, where a crack alternates periodically
between sub-Rayleigh speed and a transient arrest. Restarting
arrested cracks requires that sufficient slow slip occurs in the
broken part of the interface. Intermittent rupture then contin-
ues as long as the slow slip endures. A similar mechanism
was found to control the transition from fast to slow rupture
in a multi-asperity model [26], reproducing observations in
laboratory experiments [4]. We also speculate that the start-
stop regime found in this study may be an analog to observed
periodic pulsing of aseismic events [16].

In real systems, the prestress τ̄ can vary largely depending
on the boundary conditions. For side driven systems, the
stress at the interface after a rupture has passed is likely
to coincide with the dynamic friction level [23,24], which
corresponds to τ̄ ≈ 0. This assumption is consistent with
the observation in continuum rate-and-state models that the
velocity corresponding to the minimum friction force sets the
steady-state slip speed and thus the rupture velocity [39]. In
our simulations, this minimum is located at zero velocity.
However, the possibility of a prestress that can be larger than
the dynamic level leads to a large variety of possible rupture
speeds.

Several mechanisms can be responsible for varying stress
conditions on frictional interfaces. Romanet et al. [43] showed
that the interaction between two fault planes can lead to the
co-existence of sub-Rayleigh and slow rupture on the same
fault. Interactions between fault planes could lead to large
variations in the stress conditions of the fault planes prior to
rupture. This is consistent with our findings for large ᾱ, where
variations in τ̄ alone can lead to propagation speeds ranging
from slow, through sub-Rayleigh to supershear.

Heterogeneities of the interface can also be due to spatial
variations in the stress conditions or frictional properties. For
instance, viscous patches along frictional interfaces have been
shown to act as barriers to propagation because they can
inhibit fast slip [10]. Similarly, in our simulations, changes
in ᾱ and τ̄ along a frictional interface can cause rupture fronts
to continue with a different velocity, or arrest, depending on
whether the initial front propagates as a crack or a slip pulse,
and on the region of the phase-diagram that the new value of
ᾱ and τ̄ corresponds to.

Our simulations show a region where rupture fronts will
arrest, even when τ̄ > 0. At low τ̄ , this region causes a clear

separation between subshear and slow rupture regions. In
nature, observations show that fast and slow rupture obey
different scaling relations between seismic moment and earth-
quake duration [15]. There is currently an ongoing debate
about whether there should exist a continuum of scalings
between these two end members [15,55]. For prestress close
to the dynamic threshold where τ̄ ≈ 0, the arresting region
in τ̄ and ᾱ could inhibit observations of intermediate rupture
velocities, in turn causing observations of earthquake rupture
mainly in the fast and slow end members [56].

V. CONCLUSION

In this paper, we have demonstrated that a minimal model
of homogeneously loaded interfaces containing only two di-
mensionless parameters reproduces a wide range of observed
slip and rupture behavior. This includes arresting fronts, slip
pulses, unsteady rupture velocity, slow slip and rupture, fast
rupture and supershear rupture. Our results indicate that rich-
ness of frictional rupture is an inherent property of frictional
systems with velocity strengthening dynamic branches.
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APPENDIX A: EQUATIONS OF MOTION

The equation of motion for the one-dimensional Burridge-
Knopoff model with a viscous term αu̇i is

müi = k(ui+1 − ui ) + k(ui−1 − ui ) − αiu̇i − f f ,i, (A1)

where i is the block index, u is the displacement with respect
to the unstressed state of equally spaced blocks, m is the mass,
k is the spring constant, α is the viscosity coefficient, the
blocks are separated by a distance �x, and f f is the friction
force. f f obeys Amontons-Coulomb law of friction,

f f ,i

{= μk,i pi
u̇i
|u̇i| , sliding blocks,

∈ [−μs,i pi, μs,i pi], stuck blocks,
(A2)

where a block i begins to move when the static friction
threshold μs,i pi is reached. A sliding block arrests when u̇
reaches zero velocity.

Next, we introduce an initial shear prestress by changing
the positions, of the blocks. All blocks are initialized with po-
sitions ui(0). Any additional movement u′

i(t ) can be described
by

ui(t ) = ui(0) + u′
i(t ). (A3)

Combining Eqs. (A1) and (A3) yields

müi = k(u′
i+1 − u′

i ) + k(u′
i−1 − u′

i ) − αiu̇
′
i − f f ,i + τi, (A4)

where we have introduced the prestress

τi = k[ui+1(0) − 2ui(0) + ui−1(0)]. (A5)
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We then define the dimensionless variables ū = u′
U , t̄ = t

T and
x̄ = x

X so that

¨̄ui = kT 2

m
(ūi+1 − 2ūi + ūi−1) − αiT

m
˙̄ui − T 2

mU
( f f ,i + τi ),

(A6)
where the derivative is now taken with respect to t̄ . Selecting

T =
√

m

k
, U = μs,i pi − μk,i pi

k
, X = �x, (A7)

we obtain for sliding blocks

¨̄ui − ūi−1 − ūi+1 + 2ūi + ᾱi ˙̄ui − τ̄±
i = 0, (A8)

and for stuck blocks

˙̄ui = 0. (A9)

ᾱ and τ̄± are given by

ᾱi = αi√
km

, τ̄±
i = τi/pi ∓ μk,i

μs,i − μk,i
, (A10)

respectively, where ± corresponds to sign( ˙̄ui ). The static
friction threshold in dimensionless units is given by

|ūi−1 + ūi+1 − 2ūi + τ̄ | � 1, (A11)

and in dimensionless units, sliding blocks arrest once ˙̄ui

reaches zero velocity.
For most of this paper, we consider homogeneous inter-

faces (ᾱi = ᾱ, μk,i = μk , μs,i = μs) and homogeneous pre-
stress (τi = τ , pi = p). We also assume that the propagation
is in the positive direction. This means that we set ᾱi = ᾱ

and τ̄+
i = τ̄ , obtaining Eq. (1). Note that means that Eq. (1)

is only valid for both positive and negative velocities in the
special case when μk = 0. A small portion of the simulations
we perform (in the limit of small τ̄ and small ᾱ) contain
oscillations that allow for the static friction threshold to be
reached towards the left, which results in negative velocities.
These results are thus only strictly valid under the assumption
μk = 0. However, these oscillations occur (far) behind the
front tip, and we have checked that the choice of μk does not
affect the propagation speed. The detailed dynamics behind
the front could depend on μk. The constraint pμs � τ results
in the existence of steady-state propagation only when τ̄ ∈
[0, 1]. The choice of X also ensures that a dimensionless front
propagation speed of 1 corresponds to the velocity of sound
in the system

v̄s = �x

√
k

m

T

X
= 1. (A12)

Next, we set the boundary conditions and initial conditions.
We consider a system of N blocks that we initialize in the
stuck state. Block 1 ruptures when the friction force reaches
the static friction threshold. If the system is driven by a spring
with spring constant K driven at velocity V , then this corre-
sponds to adding a force on block 1, which in dimensionless
units becomes F̄driving = 1 − τ̄ + K̄V̄ t̄ , where K̄ = K p

μs−μk
and

t̄ = 0 is the time when the first block reaches the static friction
threshold. For soft tangential loading K̄V̄

t̄ � 1, this boundary
condition can be written as a criterion on the artificial block 0,
and is reduced to ū0 = 1 − τ̄ . The equations of motion are

solved using the Euler-Cromer method with a time-step of
dt̄ = 10−3. The source code is available in the repository
listed in reference [57].

In the Burridge-Knopoff model, we can define an equiva-
lent to an elastic modulus EBK = k�x

S , where S is the cross-
sectional area of the blocks. The mass density is defined as
ρ = m

�xS , which we make use of in the main text.

APPENDIX B: CRITERION FOR THE UNCONDITIONAL
EXISTENCE OF STEADY-STATE PROPAGATION

If a block at the front tip is able to trigger the next
block, even though the block behind it has stopped, then a
propagating front will not be able to arrest. This criterion
can be formulated as follows: The minimum criterion in
τ̄ (ᾱ) for the existence of a steady-state propagation is that a
block stops at exactly ū = (1 − τ̄ ), corresponding to the static
friction threshold of the next block, thus triggering it. This
assumptions translates to ūi−1 = 1 − τ̄ , ˙̄ui−1 = 0, ūi+1 = 0,
˙̄ui+1 = 0. From Eq. (1) we find

¨̄u(t̄ ) + ᾱ ˙̄u + 2ū − 1 = 0, (B1)

which has the solution

ū(t̄ ) = c1e
1
2 (−√

ᾱ2−8−ᾱ)t̄ + c2e
1
2 (

√
ᾱ2−8−ᾱ)t̄ + 1

2
. (B2)

From the assumptions ˙̄u(0) = 0 and ū(0) = 0 we find

ū(t̄ ) =
[

1

2
√

8 − ᾱ2
sin

(√
8 − ᾱ2

2
t̄

)

− 1

2
cos

(√
8 − ᾱ2

2
t̄

)]
e− ᾱ

2 t̄ + 1

2
, (B3)

where we have assumed that the system is underdamped (ᾱ �
2
√

2). From ū(t̄ ) = 1 − τ̄ we have

1√
8 − ᾱ2

sin

(√
8 − ᾱ2

2
t̄s

)
− cos

(√
8 − ᾱ2

2
t̄s

)

= (1 − 2τ̄ )e
ᾱ
2 t̄s , (B4)

where t̄s is the time at which the block position reaches 1 − τ̄ .
The requirement of zero velocity at t̄ = t̄s can be found from
˙̄u(t̄ = t̄s) = 0,

1√
8 − ᾱ2

2 sin

(√
8 − ᾱ2

2
t̄s

)
e− α

2 t̄s = 0, (B5)

where we are looking for the first nontrivial solution

t̄s = 2π√
8 − ᾱ2

. (B6)

Inserting for t̄s in Eq. (B4) we obtain

τ̄ = 1

2
− 1

2
e
− πᾱ√

8−ᾱ2 , (B7)

which gives us the line of unconditional propagation in the
phase diagram of τ̄ and ᾱ, as shown in Fig. 2.
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APPENDIX C: TWO-DIMENSIONAL SIMULATIONS

Here we address whether our results would be specific
to the 1D nature of the system. We performed a set of
simulations in 2D (one-dimensional frictional interface and a
two-dimensional bulk) with the spring-block model described
in Ref. [24]. We simulate a slider of dimensions (L, H ) =
(0.9, 0.015) m, with (600 × 10) blocks, where friction acts
on the bottom layer. We use friction coefficients μs = 0.4
and μk = 0.2, and a varying velocity strengthening term α.
We use a two-dimensional Young’s modulus EBK,2D = 3 GPa,
density ρ = 1300 kgm−3, width w = 0.006 m, with a bulk
damping coefficient of ν = √

0.1km. The spring constant k is
found from the relation k = 3wEBK,2D

4 as in Ref. [24]. To limit
wave reflections from the top surface, we use a damping term
ν = √

km at the top blocks. The normal force on the bottom
blocks is prescribed to 1 kN per block, and the system is
initialized with a prestress τ = τinit + (1 − τinit )e−3x/H , which
is set up by shifting the initial positions of the blocks. The
slider is pushed from all blocks on the left interface, which
is expected to result in a prestress that decays over a char-
acteristic length comparable to the system height and thus
provides a rationale for the choice of prestress distribution.
The system is solved using adaptive time-stepping and event
detection for the transition from static to dynamic friction. The
simulations are run until all blocks have ruptured or all blocks
have arrested.

Figure 7 shows the resulting front velocities, which confirm
that the qualitative behavior from the one-dimensional still
remains in two dimensions, and that the main conclusions are
not artifacts of the one-dimensional nature of the model.

APPENDIX D: REGULARIZATION OF
THE FRICTION LAW

An important question is whether the results from the main
text are robust against qualitative changes in the model. In
particular, one may ask whether there is any specific effect
related to the discontinuity of the friction law at vanishing
slip speed, when the frictional resistance on a block abruptly
drops from the static friction force to the dynamic friction
force. To answer the question, we performed two additional
sets of simulations, using regularized friction laws: one with
a velocity-weakening and one with a slip-weakening regular-
ization.

First, we introduce a velocity scale for the decay from static
to dynamic friction so that the equation of motion for sliding
blocks can be written as

¨̄ui − ūi−1 − ūi+1 + 2ūi + ᾱ ˙̄ui + ˙̄ui

| ˙̄ui|e− | ˙̄ui |
v̄0 − τ̄ = 0,

∀i ∈ [1, N], (D1)

where v̄0 is a characteristic velocity scale that we vary.
The resulting front velocities and propagation lengths are
shown in Fig. 8(a). The main effect of the velocity regular-
ization is that it introduces a minimum in the friction law
that gives a minimum τ̄min(ᾱ) that allows for steady-state
propagation. For this criterion, which is the main cause of
arresting in the large ᾱ regime, we can immediately set up the
expression

τ̄min(ᾱ) = v̄0ᾱ[1 − log(v̄0ᾱ)]. (D2)

This line is shown in red in Fig. 8. No steady state can exist
below this curve.

We also perform regularization with a displacement depen-
dent term, which results in the following equation of motion:

¨̄ui − ūi−1 − ūi+1 + 2ūi + ᾱ ˙̄ui+
˙̄ui

| ˙̄ui|e− �ūi
x̄0 − τ̄ = 0,

∀i ∈ [1, N], (D3)

where �ui is the displacement of block i since the last time
it ruptured. As can be seen in Fig. 8(b), the phase diagram
is essentially unaffected by the regularization for small x̄0.
For larger x̄0, the slip weakening regularization induces a
widening of the arresting region at small ᾱ values when the
characteristic slip distance is large. In those cases, the main
effect is to shrink the region where slip pulses are allowed,
making them more difficult to identify as a potential front type
in the model.

Comparison between the phase diagram of the main model
[Fig. 2(a)] and that of the regularized models (Fig. 8) indicates
that most qualitative features are essentially unchanged. In
particular, the spatial organisation of the various regions (front
types) in the phase diagrams are unchanged, showing that the
discontinuity of the friction law does not change our main
conclusions.
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