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A MEMS-based sensing device is used to measure the normal and tangential stress fields

at the base of a rough elastomer film in contact with a smooth glass cylinder in steady

sliding. This geometry allows for a direct comparison between the stress profiles

measured along the sliding direction and the predictions of an original exact

bidimensional model of friction. The latter assumes Amontons’ friction law, which

implies that in steady sliding the interfacial tangential stress is equal to the normal

stress times a pressure-independent dynamic friction coefficient md , but makes no

further assumption on the normal stress field. Discrepancy between the measured and

calculated profiles is less than 14% over the range of loads explored. Comparison with a

test model, based on the classical assumption that the normal stress field is unchanged

upon tangential loading, shows that the exact model better reproduces the experimental

profiles at high loads. However, significant deviations remain that are not accounted for

by either calculations. In that regard, the relevance of two other assumptions made in

the calculations, namely (i) the smoothness of the interface and (ii) the pressure-

independence of md is briefly discussed.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The sliding contact between non-conforming elastic bodies is a classical problem in contact mechanics (Cattaneo, 1938;
Mindlin, 1949; Johnson, 1985; Hills and Nowell, 1994). Knowledge of the surface and subsurface stress fields in such
systems is central to solid friction, seismology, biomechanics or mechanical engineering. Typical applications include hard
disk drives (e.g. Talke, 1995), tribological coatings (e.g. Holmberg et al., 1998), train wheels on rails (e.g. Guagliano and Pau,
2007), human joints (e.g. Barbour et al., 1997) and tactile perception (e.g. Howe and Cutkosky, 1993; Scheibert et al., 2009).

Theoretically, calculations of the contact stress field in the quasi-static steady sliding regime have been performed for
both homogeneous (Poritsky, 1950; Bufler, 1959; Hamilton and Goodman, 1966; Hamilton, 1983) and layered elastic half-
spaces (King and O’Sullivan, 1987; Nowell and Hills, 1988; Shi and Ramalingam, 2001), for cylindrical (Poritsky, 1950;
Bufler, 1959; Hamilton and Goodman, 1966; King and O’Sullivan, 1987; Nowell and Hills, 1988), circular (Hamilton and
Goodman, 1966; Hamilton, 1983) or elliptical (Shi and Ramalingam, 2001) contacts. These calculations assume a locally
valid Amontons’ friction law, stating that everywhere within the sliding contact region, the interfacial tangential stress
q ¼ mdp with p being the interfacial normal stress and md the dynamic friction coefficient. Up to now, no quantitative
comparison between such calculations and experimental stress fields has been performed. The present work first aims at
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filling this lack, by taking advantage of a recently proposed experimental method (Scheibert, 2008; Scheibert et al., 2008b,
2009), which allows for direct measurements of the stress field at the rigid base of a frictional elastomer film.

For such a layered system, no exact stress calculation in a steady sliding contact has neither been provided up to now. All
previous works indeed rely on the classical Goodman’s assumption which states that the normal displacements at the
interface due to tangential stress are negligible (Goodman, 1962). This implies in particular that the interfacial pressure
field is unaltered when a macroscopic tangential load is applied. For a contact between elastic half-spaces, such a normal/
tangential decoupling occurs only if (i) both materials are identical, (ii) both are incompressible or (iii) one of the both is
perfectly rigid while the other is incompressible (Bufler, 1959; Dundurs and Bogy, 1969). For layered systems, Goodman’s
assumption is never strictly true. However, it is expected to be increasingly valid (i) the higher the Poisson’s ratio
(Kuznetsov, 1978), (ii) the lower the ratio of the contact size a over the film thickness h or (iii) the lower the friction
coefficient. Rigorously, one has to keep in mind that Goodman’s assumption does not have any physical ground since it does
not impose the continuity of the normal displacements between the two solids in contact. The present work presents an
exact stress analysis which, for a single linear elastic incompressible layer (film) under plane strain conditions, goes beyond
the classical description by relaxing Goodman’s assumption.

In Section 2, we describe the experimental setup along with the calibration of the apparatus. In Section 3, we present
both the normal and tangential stress profile measurements at the base of the elastomer film obtained with a cylinder-on-
plane contact in steady sliding. In Section 4, we present the exact model for the quasi-static steady sliding of a rigid circular
frictional indentor against the film. In Section 5, the results of this exact calculation are compared to that of a semi-
analytical test model implemented with Goodman’s assumption. The measurements are directly compared to both models
and discussed.

2. Setup and calibration

Local contact stress measurements are performed with a micro-electro mechanical system (MEMS) force sensor
embedded at the rigid base of an elastomer film (Fig. 1). The MEMS’ sensitive part (Fig. 1, inset) consists of a rigid cylindrical
post (diameter 550mm, length 475mm) attached to a suspended circular silicon membrane (radius 1 mm, thickness
100mm, 330mm below the MEMS top surface). When a force is applied to the post, the resulting (small) deformations of the
membrane are measured via four couples of piezo-resistive gauges embedded in it and forming a Wheatstone bridge (see
inset of Fig. 1). The MEMS thus allows to measure simultaneously the applied stress along three orthogonal directions,
averaged over the MEMS’s millimetric extension, in a way that will be determined through calibration.
P V

Elastomer film
Loading

cantilevers

Cylindrical glass indentor
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z
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Fig. 1. Sketch of the experimental setup. A cylindrical glass lens (radius of curvature 129.2 mm) to which is glued a glass cover slide is driven along the x

direction against a rough, nominally flat PDMS elastomer film (uniform thickness h ¼ 2 mm, lateral dimensions 50� 50 mm) at a constant prescribed

normal load P and a constant velocity V using a linear DC servo-motor (LTA-HS, Newport). The local normal and tangential stress at the rigid base of the

film, respectively szz and sxz , are measured by a MEMS force sensor, whose sensitive part is shown in the lower inset (left hand), along with a sketch (right

hand) showing the piezo-resistive gauges implementation within the silicon membrane. P and the tangential load Q applied on the film are measured

through the extension of two orthogonal loading cantilevers (normal stiffness 64175 N m�1, tangential stiffness 51 1007700 N m�1) by capacitive

position sensors (respectively, MCC30 and MCC5, FOGALE nanotech).
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In the present experiments, the MEMS sensor is located at the rigid base of a rough, nominally flat elastomer film of
uniform thickness h ¼ 2 mm (�4 times larger than the post’s diameter) and lateral dimensions 50� 50 mm. The elastomer
is a cross-linked Poly(DiMethylSiloxane) (PDMS, Sylgard 184, Dow Corning) of Young’s modulus E ¼ 2:270:1 MPa and
Poisson’s ratio n ¼ 0:5 (Mark, 1999). The ratio of its loss over storage moduli, measured in a parallel plate rheometer,
remains lower than �0:1 for frequencies smaller than 1 kHz (Scheibert, 2008). In this range the PDMS elastomer can thus
be considered as purely elastic. The film is obtained by pouring the cross-linker/PDMS liquid mix directly on the sensitive
part of the MEMS (cylindrical post and membrane) so that the resulting elastic film is in intimate contact with the MEMS
sensitive part. The parallelepipedic mold used in this process is topped with a Poly(MethylMethAcrylate) plate roughened
by abrasion with an aqueous solution of silicon carbide powder (mean diameter of the grains 37mm). After curing at room
temperature for at least 48 h and demolding, the resulting rms surface roughness is measured with an interferential optical
profilometer (M3D, FOGALE Nanotech) to be 1:8270:10mm. This roughness is sufficient to avoid any measurable pull-off
force against smooth glass indentors, as discussed in Fuller and Tabor (1975). When the film is put in contact against an
indentor, the normal and tangential loads applied, P and Q respectively, are measured through the extension of two
orthogonal loading cantilevers (normal stiffness 64175 N m�1, tangential stiffness 51 1007700 N m�1) by capacitive
position sensors (respectively, MCC30 and MCC5, FOGALE nanotech).

The stress sensing device (MEMS with its PDMS film) has been calibrated in an earlier work (Scheibert et al., 2008b), for
the normal stress only. The method is recalled here and extended to the tangential stress. The surface of the film is indented
with a rigid cylindrical rod of diameter 500mm, under a normal load P. With this flat punch indentor, all sensor outputs are
found to be linear with P. By successively varying the position of this rod along the x direction, and assuming homogeneity
of the surface properties of the film, the radial profiles of the normal and tangential output voltages, respectively UzzðxÞ and
UxzðxÞ, are constructed point by point. These profiles are then compared to the results of finite element calculations
(software Castem 2007) for the stress szz and sxz at the base of a smooth axi-symmetrical elastic film (with the same elastic
moduli and thickness as in the experiment) perfectly adhering to its rigid base and submitted to a prescribed normal
displacement over a central circular area of diameter 500mm. For frictionless conditions, these numerical results could have
been obtained semi-analytically by using the model developed in Fretigny and Chateauminois (2007) but finite element
calculations have been preferred because they allowed for variable boundary conditions. As expected for contact regions of
dimensions smaller than the film thickness, the stress calculated at the base of the film are found to be insensitive to the
frictional boundary conditions.

The vertical dimensions of the MEMS being smaller than the thickness of the elastomer film, one can ignore the stress
field modifications induced by the MEMS 3D structure and consider that the base of the film is a plane. We can then relate
the measured output voltage U to the stress field at the base of the film s by writing down that

Uazðx; yÞ ¼ AazGaz � sazðx; yÞ ð1Þ

where a ¼ x or z. Azz and Axz are conversion constants (units of mV/Pa), Gzz and Gxz are normalized apparatus functions and
� is a convolution product. Note that we use the sign convention that szz is positive for compressive loading. Eq. (1)
implicitly assumes decoupling between the MEMS outputs. This has been checked to be true for the bare sensor by
submitting it to either a uniform pressure or a pure tangential load applied directly on the silicon cylindrical post. When
the MEMS is embedded in the elastomer film, this remains true for the normal output, as checked by applying a uniform
pressure at the surface of the film. The analogous check for the tangential output is not possible because any tangential
stress applied on the film surface results in tangential stress as well as normal stress gradients at its base, which cannot be
measured separately since they induce the same deformation mode of the MEMS silicon membrane. One can still use
Eq. (1) in the limit of contact configurations involving small pressure gradients. This is the case when one uses indentors
with large radius of curvature such as the cylinders considered in the rest of this study. In this limit, the tangential output is
likely to be insensitive to normal stress since the silicon sensor is much stiffer than the elastomer.

In Fourier space, Eq. (1) becomes

AazGazðx; yÞ ¼ F�1 F fUazgðfx; fyÞ

F fsazgðfx; fyÞ

� �
ðx; yÞ ð2Þ

where F is the bidimensional spatial Fourier transform, F�1 its inverse, and fx, fy are the spatial frequencies in the x, y

directions, respectively. The Uzzðx; yÞ, Uxzðx; yÞ, szzðx; yÞ and sxzðx; yÞ fields are built from the corresponding profiles along the
x-axis, assuming axi-symmetry, and then transformed using a fast Fourier transform (FFT) algorithm. The rapid decay of
F fszzg and F fsxzgwith increasing spatial frequency yields a divergence of the ratio in Eq. (2). To circumvent this difficulty, a
white noise of amplitude 10 times weaker than the weakest relevant spectral component is added to both terms of the ratio
before applying the FFT. The result is found to be insensitive to the particular amplitude of this white noise. Azz and Axz are
determined so that the integrals of Gzz and Gxz are equal to 1. The integrals of both Uxz and sxz being zero, Gxz is determined
up to an additive constant, which was taken such that Gxz vanishes far from the MEMS location.

Both Gzz and Gxz exhibit a bell shape with a typical width of the order of 600mm, comparable to the lateral dimension of
the sensitive part of the MEMS (Fig. 2). For subsequent calculations, Gzz is approximated by a gaussian of standard deviation
561mm (Fig. 2(a)). The shape of Gxz is more complex and is therefore approximated by a gaussian of standard deviation
688mm decorated by a rectangular foot of lateral extent 2.7 mm and amplitude 4.1% of the maximum amplitude of Gxz
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(Fig. 2(b)). We checked that a simple gaussian approximation of Gxz was not sufficient to reproduce the measured Uxz

profile when convoluted with sxz.
To validate this calibration procedure, the stress profiles SzzðxÞ ¼ UzzðxÞ=Azz and SxzðxÞ ¼ UxzðxÞ=Axz in the x direction for

cylinder-on-plane contacts under a pure normal load are measured point by point in the same way as for the rod
indentation. Note that the sign convention for Szz is the same as for szz. The indentor is a glass cover slide (thickness
150mm, y dimension L ¼ 8 mm) glued with a very thin film of cyanoacrylate onto the cylindrical part of a plano-convex
cylindrical glass lens of radius of curvature 129.2 mm (Fig. 1). The contact length in the y direction is therefore 8 mm, a
dimension which is large enough to create locally, at its center, a y invariant stress state, but small enough to make the
contact insensitive to flatness imperfections at the scale of the elastomeric film lateral size. Both the glass and the PDMS
surfaces are passivated using a vapor-phase silanization procedure which reduces and homogenizes the surface energy
(Chaudhury and Whitesides, 1991). Each contact is formed using the following loading sequence. The indentor is pressed
against the PDMS film up to the prescribed load P within 2% relative error. Due to the associated tangential displacement of
the extremity of the normal cantilever, a significant tangential load Q is induced. From this position, the contact is renewed
by manual separation which results in a much smaller but finite Q. To correct for this residual load, the indentor is
displaced a few micrometers tangentially down to Q ¼ 0. Finite element calculations using the same geometrical and
loading conditions are performed with both zero and infinite static friction coefficients ms in order to provide limiting
boundary conditions. The calculated stress profiles szzðxÞ and sxzðxÞ at the base of the elastic film are then convoluted by the
apparatus functions Gzz and Gxz to allow for comparison with the corresponding experimental measurements. The value
Azz ¼ 19:00 mV=bar obtained by deconvolution allows for the pressure profile measurements to lie between the ms ¼ 0 and
1 limiting calculated profiles, in the whole load range further used in this work (Fig. 3(a)). An equally good agreement is
obtained for the tangential stress profiles with Axz ¼ 7:95 mV=bar, a value 7% higher than the one determined by
deconvolution3 (Fig. 3(b)). We checked that Gyz ¼ Gxz and Ayz ¼ Axz. These apparatus functions are assumed to remain valid
for contacts in the steady sliding regime.4
3. Steady sliding measurements

The steady sliding experiments are carried out as follows. Prior to sliding, contacts are prepared under normal load only,
ranging from 0.34 to 2.75 N, using the loading sequence described in Section 2. The cylindrical indentor is then translated
tangentially over 20 mm along the positive x direction at constant velocity V between 0:2 and 2 mm s�1. Reproducibility is
such that Q ðtÞ differs from less than 1% between two successive experiments (same P and V). The signals display a short
transient followed by a steady sliding regime for which both Q ðtÞ and PðtÞ exhibit uncorrelated fluctuations of relative
amplitude smaller than 4%. This observation indicates that the surface properties can be considered as homogeneous
3 This difference is very likely due to the above mentioned fact that the MEMS’ tangential output is sensitive to pressure gradients over the size of the

sensor. These gradients are estimated to represent less than 6% of the tangential output for the rod indentation situation used to determine Axz. For the

large cylinder-on-plane contacts under normal loading that are considered in this calibration, the normal stress gradients vanish with increasing normal

load. They represent at most 4% of the tangential output over the whole range of P used here.
4 In steady sliding, the normal stress gradients represent a decreasing proportion of the tangential output with increasing normal load, less than 16%

for P ¼ 0:34 N, less than 9% for P ¼ 0:69 N, down to less than 4% beyond P ¼ 2:40 N.
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throughout the explored area. It allows us to derive the stress profiles along the sliding direction directly from the MEMS
signals through the relation SazðxÞ ¼ UazðVtÞ=Aaz (with a ¼ x, y and z).

Fig. 4 shows the measured steady sliding stress field for all three components Szz, Sxz and Syz at P ¼ 1:72 N and
V ¼ 0:4 mm s�1. They have been constructed from the interpolation of 19 profiles along x at different locations with respect
to the MEMS, with 0.5 mm steps along the y-axis. Each profile is made of 10 000 data points, one every 2mm. The line x ¼ 0
corresponds to the center of the cylinder-on-plane stress profile measured under normal load, while the axis y ¼ 0
corresponds to the symmetry line of the steady-state stress field. These fields are to a good approximation y invariant over a
width of a few millimeters (shaded region in Fig. 4) comparable to the extension of the MEMS field of integration. This
observation allows us to consider that the x profiles at y ¼ 0 provide an experimental realization of a two-dimensional
(i.e. y invariant) cylinder-on-plane friction experiment. In the following we will focus on these profiles and compare them
with calculated stress profiles under plane strain conditions. For a given P, the profiles obtained with a sliding velocity V

in the range 0:2oVo2:0 mm s�1 are almost undistinguishable. Thus, in the following, only the profiles obtained with
V ¼ 1:0 mm s�1 are shown.

Fig. 5 shows the measured stress profiles SzzðxÞ and SxzðxÞ for four different normal loads. For both components, the
profiles exhibit a similar shape with a maximum at the leading edge of the moving indentor whose amplitude increases
with P. The tangential component is positive throughout the contact, whereas the normal component exhibits a negative
minimum at the trailing edge.
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4. Exact model

To allow for a direct quantitative comparison with the previous experimental stress profiles we have developed the
following bidimensional exact model (Fig. 6). A linear incompressible elastic film, of thickness h and Young’s modulus E, is
loaded under plane strain conditions by a rigid circular body of radius R moving at a constant velocity V. We postulate
quasi-static motion, i.e. the characteristic time h=c for sound waves of velocity c to travel across the film is assumed to be
smaller than the characteristic time a=V associated with the indentor motion, so that the elastic film is at equilibrium at all
times. The problem is made dimensionless by expressing the coordinates (x; z), displacements uiðx; zÞ and stress sijðx; zÞ in
units of h, h2=2R and Eh=6R, respectively.

The constitutive equations for the elastic film can be written as

sij ¼ �Sdij þ
@ui

@xj
þ
@uj

@xi
ð3Þ

where S is the pressure. The equilibrium equations in the film and the condition of incompressibility are

rS ¼ D~u ð4Þ

r � ~u ¼ 0 ð5Þ

We specify the following boundary conditions:

uxðx;0Þ ¼ uzðx;0Þ ¼ 0 ð6Þ

sxzðx;1Þ þ mdszzðx;1Þ ¼ 0 ð7Þ

szzðx;1Þ ¼ 0 for jxj4a ð8Þ

uzðx;1Þ ¼ �uðxÞ for jxjoa ð9Þ

where z ¼ 0 and 1 correspond to the locations of the base and the surface of the elastic film, respectively. Eq. (6) accounts
for the perfect adhesion of the film to its rigid base, Eq. (7) corresponds to Amontons’ law of friction with a dynamic friction
coefficient md, Eq. (8) insures that the surface of the film is traction-free outside the contact zone and Eq. (9) defines the
normal displacement induced by the indentor over the contact zone of width 2a. For a circular rigid indentor the normal
displacement has a parabolic profile given by

uðxÞ ¼
1

a
� ðx� x0Þ

2
ð10Þ

where x0 represents the asymmetry of the steady sliding contact and a ¼ h2=2Rd with d being the normal displacement
of the indentor. Both x0 and a are selected by the system for a given width of the contact zone area a and friction
coefficient md.

As suggested by the strip geometry and the boundary conditions, the resolution involves the use of Fourier sine and
cosine transforms (Adda-Bedia and Ben Amar, 2001). Any spatial distribution function Dðx; yÞ of the problem (displacement,
strain or stress) may be decomposed into

Dðx; yÞ ¼

Z 1
0

DðcÞðk; yÞcoskx dkþ

Z 1
0

DðsÞðk; yÞsinkx dk ð11Þ



ARTICLE IN PRESS

z = 0

z = hx = -ah x = +ah

σxz = 0, σzz = 0 σxz = 0, σzz = 0

σxz = μdσzz,

 uz = -u (x)

z

x

x = -ah x = +ah

z

x

Elastic layer

ux = 0, uz = 0

Fig. 6. Sketch of the system considered in the exact model. An elastic film is perfectly adhering on its rigid base (z ¼ 0). At its surface (z ¼ h) it is stress

free outside of the contact region ðjxjoahÞ, with a being a result of the calculation. Within the contact region, the normal displacements uz are prescribed

and in steady sliding sxz ¼ mdszz is assumed everywhere at the interface, md being the dynamic friction coefficient.

J. Scheibert et al. / J. Mech. Phys. Solids 57 (2009) 1921–1933 1927
Substituting this representation into the bulk equations (3)–(5) and the boundary conditions (6)–(9) and exploiting the
parity properties of the sine and cosine functions, lead to the following equations:

Z 1
0

sðcÞzz ðk;1Þcoskx dk ¼ 0; jxj4a ð12Þ

Z 1
0

sðsÞzz ðk;1Þsinkx dk ¼ 0; jxj4a ð13Þ

and

Z 1
0
½F0ðkÞsðcÞzz ðk;1Þ þ mdF1ðkÞsðsÞzz ðk;1Þ�

coskx

2k
dk ¼ �

1

2
½uðxÞ þ uð�xÞ�; jxjoa ð14Þ

Z 1
0
½�mdF1ðkÞsðcÞzz ðk;1Þ þ F0ðkÞsðsÞzz ðk;1Þ�

sinkx

2k
dk ¼ �

1

2
½uðxÞ � uð�xÞ�; jxjoa ð15Þ

where

F0ðkÞ ¼
sinhð2kÞ � 2k

coshð2kÞ þ 1þ 2k2
ð16Þ

F1ðkÞ ¼
2k2

coshð2kÞ þ 1þ 2k2
ð17Þ

The conditions (12), (13) are identically satisfied by

sðcÞzz ðk;1Þ ¼

Z a

0
fðtÞJ0ðktÞdt ð18Þ

sðsÞzz ðk;1Þ ¼

Z a

0
tcðtÞJ1ðktÞdt ð19Þ

irrespective of fðtÞ and cðtÞ, with J0ðxÞ and J1ðxÞ being the Bessel functions of the first kind. The functions fðtÞ and cðtÞ now
become the unknowns in the problem.

In two-dimensional contact problems, the indentation depth is undeterminate, which requires differentiating the
boundary conditions (14)–(15) with respect to x before replacement into the representation (18)–(19). One then classically
gets a set of coupled integral equations (see e.g. Spence, 1975; Gladwell, 1980), that are here of Abel type which fix the
functions fðtÞ and cðtÞ. Inverting this set of equations using the Abel transform yields

fðxÞ þ
Z a

0
M00ðx; tÞfðtÞdt þ md

Z a

0
M10ðx; tÞcðtÞdt ¼ �4x ð20Þ

cðxÞ þ md

Z a

0
M01ðx; tÞfðtÞdt �

Z a

0
M11ðx; tÞcðtÞ dt ¼ 0 ð21Þ

where Mijðx; tÞ ¼ ð�1Þjx1�jti
R1

0 kðFji�jjðkÞ � dijÞJiðktÞJjðkxÞdk. Eqs. (20) and (21) are independent of the parameters x0 and a
which allows to solve them once the constant md and a are fixed. This simplifies the numerical scheme. Then, x0 and a are
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fixed a posteriori by using Eq. (14) and the derivative of Eq. (15) with respect to x at, say x ¼ 0. This leads to the following
equations:

4x0 ¼ md

Z a

0
fðtÞ

Z 1
0

F1ðkÞJ0ðktÞdk dt �

Z a

0
tcðtÞ

Z 1
0

F0ðkÞJ1ðktÞdk dt ð22Þ

1

a ¼ x2
0 �

Z a

0
fðtÞ

Z 1
0

F0ðkÞ

2k
J0ðktÞdk dt � md

Z a

0
tcðtÞ

Z 1
0

F1ðkÞ

2k
J1ðktÞdk dt ð23Þ

The displacement and stress fields can be easily expressed as functions of fðxÞ, cðxÞ, x0 and a and thus can also be
calculated numerically. The lineic normal load PL applied to the film surface can then be calculated using the following
expression:

PL ¼ �

Z a

�a
szzðx;1Þdx ¼ �p

Z a

0
fðtÞdt ð24Þ

Using the constitutive equations and providing simple algebraic transformations the normal stress szzðx;0Þ and the
tangential stress sxzðx;0Þ at the rigid base are given by

szzðx;0Þ ¼

Z a

0
½Z1ðx; tÞ þ mdZ3ðx; tÞ�fðtÞdt �

Z a

0
½mdZ2ðx; tÞ � Z4ðx; tÞ�tcðtÞdt ð25Þ

sxzðx;0Þ ¼ �

Z a

0
½mdZ5ðx; tÞ þ Z3ðx; tÞ�fðtÞdt þ

Z a

0
½Z2ðx; tÞ � mdZ6ðx; tÞ�tcðtÞ dt ð26Þ

where the kernels Ziðx; tÞ are explicitly

Z1ðx; tÞ ¼

Z 1
0

AðkÞcosðkxÞJ0ðktÞ dk ð27Þ

Z2ðx; tÞ ¼

Z 1
0

BðkÞcosðkxÞJ1ðktÞdk ð28Þ

Z3ðx; tÞ ¼

Z 1
0

BðkÞsinðkxÞJ0ðktÞdk ð29Þ

Z4ðx; tÞ ¼

Z 1
0

AðkÞsinðkxÞJ1ðktÞdk ð30Þ

Z5ðx; tÞ ¼

Z 1
0

CðkÞcosðkxÞJ0ðktÞ dk ð31Þ

Z6ðx; tÞ ¼

Z 1
0

CðkÞsinðkxÞJ1ðktÞdk ð32Þ

with AðkÞ, BðkÞ and CðkÞ being

AðkÞ ¼
2ðcoshðkÞ þ ksinhðkÞÞ

coshð2kÞ þ 1þ 2k2
ð33Þ

BðkÞ ¼
2kcoshðkÞ

coshð2kÞ þ 1þ 2k2
ð34Þ

CðkÞ ¼
2ðcoshðkÞ � ksinhðkÞÞ

coshð2kÞ þ 1þ 2k2
ð35Þ

In practice, the input parameters of the model are chosen to be md and PL, and the resulting normal and tangential stress
profiles at the base of the film are derived.

5. Discussion

We recall here that the calculation presented in the previous section is the first one relaxing Goodman’s assumption for
the frictional steady sliding of a layered material. In order to assess the impact of this increment on the mechanical
description of such contacts, we directly compare, for various combinations of the input parameters md and PL, the stress
profiles obtained from both our exact calculation and an additional calculation derived along the same lines as the exact
one but with Goodman’s assumption. The latter test model, referred to as Goodman’s model is detailed in Appendix A.

Fig. 7 shows the normal stress profiles ss
zz ¼ szzðx;1Þ at the surface of the film. For each normal stress profile, the

corresponding tangential stress is obtained by multiplying the former by the friction coefficient md, i.e. ss
xz ¼ mdss

zz

following Amontons’ law—see Eq. (7). As expected, for md ¼ 0, the exact calculation matches Goodman’s result and yields
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Fig. 7. Normal stress profiles ss
zz ¼ szzðx;1Þ at the surface of the film, calculated with the exact model (solid lines) or with Goodman’s model (dashed

lines). (a) md increases from 0.3 to 3.0 with steps of 0.3 for the same lineic normal load PL ¼ 200 N m�1. For all cases, the contact radius is 2:3670:03 mm.

(b) PL increases from 20 to 380 Pa m�1 with steps of 40 Pa m�1 for the same friction coefficient md ¼ 2:0. For the exact model, contact widths are 2.60, 3.40,

3.88, 4.24, 4.52, 4.80, 5.02, 5.24, 5.44 and 5.62 mm, respectively. For Goodman’s model, contact widths are 2.68, 3.52, 4.00, 4.36, 4.66, 4.90, 5.12, 5.32, 5.52

and 5.68 mm, respectively. For all these graphs, the following parameters were used: E ¼ 2:2 MPa, R ¼ 130 mm, h ¼ 2 mm.
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film with the exact model (solid lines) or with Goodman’s model (dashed lines). md increases from 0 to 3.0 with steps of 0.6 for the same lineic normal

load PL ¼ 200 N m�1. The contacts widths are equal to that given in the legend of Fig. 7(a). The following parameters were used: E ¼ 2:2 MPa, R ¼ 130 mm,

h ¼ 2 mm.
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symmetric fields with an integral (area below the curve) equal to PL. For increasing md at constant PL, the profiles maintain
their integral while becoming increasingly asymmetric, with a growing maximum shifting towards the leading edge of the
moving indentor. A similar behavior for the envelope is observed for an increasing PL at constant md. Interestingly,
Goodman’s model deviates significantly from the exact one, even in the favorable situation considered here where the
material is incompressible and the film is relatively thick.

Fig. 8 shows both the normal and tangential stress profiles, szzðx;0Þ and sxzðx;0Þ, at the base of the film, where the stress
s is actually measured. s is related to ss at the free surface of the film through a convolution with the Green function for an
elastic membrane of thickness h. Since the latter has a typical width Ch, s cannot exhibit spatial modulations over length
scales smaller than h ¼ 2 mm. The spatial resolution of the MEMS (C1 mm) is therefore sufficient to probe the stress field s
at the base of the elastic film. For md ¼ 0, the normal stress profile is symmetric with an integral equal to PL, whereas the
tangential stress profile is antisymmetric with a vanishing integral. For a given lineic load PL, an increasing md qualitatively
results in growing additional contributions to the profiles, anti-symmetric for the normal stress and symmetric for the
tangential stress. The integral of the normal stress profile remains equal to PL while the integral of the tangential stress
profile becomes mdPL. Similar features are observed in Fig. 9, which shows szzðx;0Þ and sxzðx;0Þ for an increasing lineic load
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PL and a given friction coefficient md. Goodman’s model yields qualitatively similar results but with growing errors for
increasing PL or md. In particular, Goodman’s model underestimates the amplitude of the maxima of both stress
components at positive x and overestimates the amplitude of both the negative part of the normal stress and the dip in the
tangential profiles at negative x.

The measured stress profiles SzzðxÞ and SxzðxÞ along y ¼ 0 can be now quantitatively compared to the stress profiles szzðxÞ

and sxzðxÞ calculated at the base of the elastic film and convoluted with the apparatus functions Gzz and Gxz determined in
Section 2. In the limit of a bidimensional geometry, the input parameters used in the calculation—namely the applied lineic
load PL and the dynamic friction coefficient md—should ideally be deduced from the macroscopic measurements of P (the
normal load) and Q (the tangential load) by using P=L and Q=P, respectively, with L being the contact length. This approach
yields inconsistent stress profiles for two reasons. First, with our finite sized punch experimental system, the contribution
of edge effects to the total normal load P is not negligible. For a given x, the interfacial pressure has a minimum around
y ¼ 0, so that P=L over-estimates the effective lineic load at the location of the measured profile. Second, the measured
macroscopic friction coefficient Q=P turns out to be a decreasing function of P (and thus of the local pressure), assuming
values from 1:570:1 at P ¼ 0:34 N down to 1:3670:04 at P ¼ 2:75 N, which are typical for PDMS on glass steady sliding
contacts (see e.g. Galliano et al., 2003; Wu-Bavouzet et al., 2007). These averaged values under-estimate the effective
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friction coefficient at the location of the measured profile since the pressure has a minimum around y ¼ 0. To circumvent
this difficulty, we extracted PL and md from the measured stress profiles as PL ¼

R1
�1

Szz dx and md ¼
R1
�1

Sxz dx=
R1
�1

Szz dx.
With such definitions, PL is found to increase from 20 to 220 N m�1 and md to decrease from 2.6 to 2.0 when P varies from
0.34 to 2:75 N.

Fig. 10 shows the measured profiles together with the predicted stress profiles convoluted with the apparatus functions,
for both our exact model and Goodman’s model. The two calculations predict profiles in reasonable agreement with the
experimental ones. In particular, they account for both the negative part of SzzðxÞ and the dip of SxzðxÞ at negative x. In order
to quantify the deviations between the experimental and calculated profiles, we compute the quantity

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ðEi � CiÞ
2=
P

i E2
i

q
, where Ei are the experimental data points and Ci are the calculated ones. For the tangential

stress, both models yield similar values of w ¼ 1171%, with no clear load dependance. For the normal stress profiles, the
exact model yields an almost constant w ¼ 1173% over the range of normal loads P explored. For Goodman’s model,
w increases with the load, between 12% and 28 %, indicating a decreasingly good fit to the experimental data with increasing P.
The exact model is therefore the one that follows most closely the evolution of the experimental profiles with increasing
normal load (Fig. 10), which is consistent with the fact that Goodman’s assumption is expected to fail as the ratio of contact
size a to film thickness h becomes large.

Although the exact model accounts for the data better, non-negligible robust deviations are observed for which we do
not have any definitive explanation. Two central assumptions used in both models are, however, amenable to refinement
and may explain the observed deviations. First, the interface is assumed to be molecularly smooth, whereas the surface of
the elastomer exhibits a micrometric roughness. The resulting multicontact interface is thus expected to exhibit finite
compressive and shear compliances. This feature has been shown to modify, with respect to smooth contacts, both the
stress (Greenwood and Tripp, 1967; Scheibert et al., 2008b; Chateauminois and Fretigny, 2008) and displacement
(Scheibert et al., 2008a) fields. These effects are expected to induce vanishing corrections at increasingly high loads. The
second questionable assumption is the existence of a single pressure-independent friction coefficient. This is clearly at odds
with the observed decrease of Q=P as a function of P. Such a behavior is usually attributed to the finite adhesion energy of
the interface (e.g. Carbone and Mangialardi, 2004), and is sensitive to the geometrical properties of the film roughness.

6. Conclusion

This work provides the first spatially resolved direct measurement of the stress field at a sliding contact. The choice of a
cylinder-on-plane geometry has allowed us to quantitatively compare the profiles measured at the center line of the
contact with bidimensional calculations. An exact model was developed to predict the stress field at the sliding contact
assuming linear elasticity and a locally valid Amontons’ friction law, but without the classical Goodman’s assumption on
the normal displacements. This model correctly captures the measured stress profiles with typical deviations of less than
14%. In the range of loads explored experimentally, this calculation does not differ drastically from the classical calculation
involving Goodman’s assumption. However, the present model is expected to provide significant improvements over
Goodman’s model as the thickness of the film is further reduced or as the load is further increased. In these cases,
Goodman’s assumption becomes increasingly inaccurate.

Robust deviations between the experiments and the model have been briefly discussed along two lines, namely
the finite compliance of the multicontact interface and the pressure-dependence of the friction coefficient. However,
the cylinder-on-plane experiment described here, which was specifically designed to allow for a comparison with
bidimensional models, is not best suited to study such fine effects. As discussed, the resulting edge effects do not allow one
to use well-controlled or measured macroscopic quantities, e.g. P and Q, as input parameters in the models. This could be
done for instance with a sphere-on-plane geometry, but it would require for comparison a more complex three-
dimensional stress analysis. Work in this direction is in progress.

Appendix A. Goodman’s model

The calculation scheme involves first solving the exact model described in Section 4, but with md ¼ 0, to obtain the
corresponding interfacial (symmetric) pressure field p0ðxÞ. The second step is to solve the same constitutive equations for
the following new boundary conditions:

uxðx;0Þ ¼ uzðx;0Þ ¼ 0 ðA:1Þ

sxzðx;1Þ þ mdszzðx;1Þ ¼ 0 ðA:2Þ

szzðx;1Þ ¼ 0 for jxj4a ðA:3Þ

szzðx;1Þ ¼ �p0ðxÞ for jxjoa ðA:4Þ

where z ¼ 0 and 1 correspond to the locations of the base and the surface of the elastic film, respectively, and p0ðxÞ is the
pressure field that results from the first step. Eq. (A.1) accounts for the perfect adhesion of the film to its rigid base, Eq. (12)
corresponds to Amontons’ law of friction with a dynamic friction coefficient md and Eq. (A.3) insures that the surface of the
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film is traction-free outside the contact zone of width 2a. Eq. (A.4) corresponds to Goodman’s assumption which implies
that the interfacial normal stress field is not affected by frictional stress, and so p0ðxÞ from the previous step is used.

The Fourier transform of Eqs. (A.3) and (A.4) yieldsZ 1
0

sðcÞzz ðkÞcoskx dk ¼ 0 for jxj4a ðA:5Þ

Z 1
0

sðcÞzz ðkÞcoskx dk ¼ �p0ðxÞ for jxjoa ðA:6Þ

Eq. (A.5) is identically satisfied by

sðcÞzz ðkÞ ¼

Z a

0
FðtÞJ0ðktÞdt ðA:7Þ

where J0ðxÞ is the Bessel function of the first kind. By replacing (A.7) into Eq. (A.6) we get the following integral equations
that determine the function FðtÞ:Z a

x

FðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2
p dt ¼ �p0ðxÞ 	

Z a

x

fðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2
p dt; jxjoa ðA:8Þ

where f is the function defined in Eq. (18) (see Section 4) obtained for the particular case where md ¼ 0. The solution for
FðxÞ is readily given by FðxÞ ¼ fðxÞ.

The normal stress szzðx;0Þ and the tangential stress sxzðx;0Þ at the rigid base are then given by

szzðx;0Þ ¼

Z a

0
½Z1ðx; tÞ þ mdZ3ðx; tÞ�fðtÞdt ðA:9Þ

sxzðx;0Þ ¼ �

Z a

0
½mdZ5ðx; tÞ þ Z3ðx; tÞ�fðtÞdt ðA:10Þ

where the kernels Ziðx; tÞ and AðkÞ, BðkÞ and CðkÞ are given by Eqs. (27)–(35).
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