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Abstract Numerous geological observations evidence that inelastic deformation occurs during sills
and laccoliths emplacement. However, most models of sill and laccolith emplacement neglect inelastic
processes by assuming purely elastic deformation of the host rock. This assumption has never been tested
so that the role of inelastic deformation on the growth dynamics of magma intrusions remains poorly
understood. In this paper, we introduce the first analytical model of shallow sill and laccolith emplacement
that accounts for elastoplastic deformation of the host rock. It considers the intrusion’s overburden as a
thin elastic bending plate attached to an elastic-perfectly plastic foundation. We find that, for geologically
realistic values of the model parameters, the horizontal extent of the plastic zone lp is much smaller than the
radius of the intrusion a. By modeling the quasi-static growth of a sill, we find that the ratio lp∕a decreases

during propagation, as 1∕
√

a4ΔP, with ΔP the magma overpressure. The model also shows that the
extent of the plastic zone decreases with the intrusion’s depth, while it increases if the host rock is weaker.
Comparison between our elastoplastic model and existing purely elastic models shows that plasticity
can have a significant effect on intrusion propagation dynamics, with, e.g., up to a doubling of the
overpressure necessary for the sill to grow. Our results suggest that plasticity effects might be small
for large sills but conversely that they might be substantial for early sill propagation.

1. Introduction

Over the past few decades, geological field studies [Polteau et al., 2008; Galerne et al., 2011; Schofield et al.,
2012] and seismic reflection data [Hansen et al., 2004; Planke et al., 2005; Hansen et al., 2008; Polteau et al.,
2008; Galland et al., 2009; Galerne et al., 2011; Magee et al., 2014, 2016] have revealed the presence of volumi-
nous igneous complexes in sedimentary basins worldwide. Igneous intrusions in these basins exhibit various
shapes, from flat or saucer-shaped sills to laccoliths [Planke et al., 2005; Jackson et al., 2013]. It has been demon-
strated that intrusive rocks and processes have major impacts on the thermal and structural evolutions of
sedimentary basins [Petford and McCaffrey, 2003; Schutter, 2003]. Among others (1) sills provide heat that
locally maturates the organic matter in the surrounding sediments [Svensen et al., 2004; Rodriguez Monreal
et al., 2009; Aarnes et al., 2011], (2) sill emplacement may cause uplift and deformation of the host rock, form-
ing broad domes, or forced folds, of their overlaying strata [Jackson and Pollard, 1990; Trude et al., 2003; Hansen
and Cartwright, 2006; Jackson et al., 2013; Agirrezabala, 2015], and (3) damage induced by the emplacement of
magma produces fractures in the host rock that enhance fluid flow [Delaney and Pollard, 1981; Meriaux et al.,
1999; Chevallier et al., 2004; Senger et al., 2015].

Sills also represent significant parts of the plumbing systems of active volcanoes worldwide. Field studies
have highlighted the presence of sills and laccoliths in volcanic complexes [e.g., Pasquare and Tibaldi, 2007;
Burchardt, 2008]. Numerous geodetic surveys have also revealed the emplacement of sills, some of which
resulting in eruptions, among others, in the Galápagos Islands [e.g., Amelung et al., 2000], Eyjafjallajökull
volcano, Iceland [e.g., Pedersen and Sigmundsson, 2004, 2006; Sigmundsson et al., 2010], in the Afar region,
Ethiopia [e.g., Nobile et al., 2012; Pagli et al., 2012], and Piton de la Fournaise volcano, Réunion Island
[e.g., Chaput et al., 2014].

In sedimentary basins, existing theoretical and numerical models of sill and laccolith emplacement account
for elastic host rock only. Classical models, as well as very recent ones, consider the sill overburden as an
elastic thin plate clamped to a perfectly rigid basement [Pollard and Johnson, 1973; Jackson and Pollard, 1990;
Scaillet et al., 1995; Kerr and Pollard, 1998; Goulty and Schofield, 2008; Bunger and Cruden, 2011; Michaut, 2011;
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Michaut and Manga, 2014; Thorey and Michaut, 2014; Michaut et al., 2016], and assume intrusion propagation
to obey Linear Elastic Fracture Mechanics (LEFM) theory. Because these models are clamped, they only account
for deformation above the intrusion, which is not realistic [Galland and Scheibert, 2013, and references therein].
To overcome this limitation, a more advanced mathematical formulation considers a thin elastic plate on top
of a deformable elastic foundation [Kerr and Pollard, 1998; Galland and Scheibert, 2013]. The latter models
produce realistic elastic deformation of sills overburden (see discussion by Agirrezabala [2015]); however, they
are also limited to purely elastic propagation of the intrusions.

Rubin [1993] argues that the fracture toughness propagation criterion used in LEFM theory does not apply
for intrusions deeper than a few hundred meters (i.e., for most sills and laccoliths). In addition, recent geo-
logical and geophysical observations show that some inelastic deformation accommodates sill and laccolith
emplacement in sedimentary formations (Figure 1). At shallow levels, igneous sills often intrude into rocks
that deform inelastically, such as soft shale formations [e.g., Planke et al., 2005; Jackson et al., 2013; Spacapan
et al., 2016]. Pollard et al. [1975], Duffield et al. [1986], Schofield et al. [2012, 2014] and Spacapan et al. [2016]
provide field evidence that inelastic deformation in the vicinity of intrusion tips might play a significant role
in the emplacement of sills and dikes in soft rock formations. Such inelastic deformation involves, among
others, joints and microfractures [Delaney and Pollard, 1981] and brittle and ductile faulting [Pollard, 1973;
Pollard et al., 1975; Spacapan et al., 2016].

In active volcanoes, geodetic measurements are commonly interpreted using models that also consider
purely elastic host rock [e.g., Mogi, 1958; Okada, 1985; Sun, 1969; Fialko et al., 2001], even if evidence of inelastic
deformation are visible at the Earth surface. In addition, these models are static, i.e., they do not account
for intrusion propagation, although seismological measurements evidence distributed inelastic failure of the
host rock in the vicinity of propagating intrusions [Roman and Cashman, 2006; Daniels et al., 2012].

Despite such geological and geophysical evidences, inelastic deformation keeps being neglected in most
models of sill and laccolith emplacement. A classic argument to justify this assumption is that inelastic defor-
mations are restricted to zones that are very small compared to the size of the modeled intrusions, and so
these deformations are likely to have a negligible effect [e.g., Pollard and Johnson, 1973; Kerr and Pollard, 1998;
Bunger and Cruden, 2011]. This assumption, however, has not been tested, so that the real effect of inelas-
tic deformation on intrusion propagation is currently unknown. This leads to the following questions: What
is the relative contribution of inelastic versus elastic deformation of the host rock during sill and laccolith
emplacement? What is the size of the inelastic zone at the tips of sills and laccoliths? To address these
questions, in this paper, we develop and use a new elastoplastic theoretical model of sill and laccolith
emplacement. Here plasticity will be taken as a first, mathematically tractable, example of inelastic process.
Note that due to model assumptions discussed later on, we mostly focus on the emplacement of igneous
intrusions in undeformed sedimentary basins.

The paper is structured as follows. In section 2, we build on the classic clamped elastic model of Pollard and
Johnson [1973] and introduce a plastic zone at the intrusion’s tip. Unfortunately, this simple model cannot be
used to uniquely determine sill growth. Therefore, in section 3, we introduce a new elastoplastic model based
on the recent model of Galland and Scheibert [2013] and use it to predict how the plastic zone evolves as a sill
grows. In section 4, we discuss the geological implications of the model.

2. The Clamped Plastic Model
2.1. Model Equations
We consider the following system, sketched in Figure 2: an axisymmetric flat intrusion of radius a lying under
a linear elastic strata of thickness h, Young modulus E, Poisson ratio 𝜈, and mass density 𝜌. We assume that
the intrusion is shallow (a∕h> 5) so that the strata can be considered as a thin plate with a bending stiffness
D= Eh3

12(1−𝜈2)
. Above the intrusion (radial distance r<a), the plate is subjected to a radial pressure profile of the

form P=P0−(P0−Pa)(r∕a)n, in which P0 and Pa are the pressure values at the center (r=0) and periphery (r=a)
of the intrusion, respectively, and n is an exponent that controls the shape of the pressure field [see Figure 2d
of Galland and Scheibert, 2013].

Just outside the intrusion (r > a), there is an inelastic zone in which the stress borne by the interfacial material
equals its yield stress 𝜎Y . This is different from the purely elastic fracture assumed in the classical clamped
model, where the transition between the broken and nonbroken states of the interface layer is infinitely sharp.
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Figure 1. (a) Field orthorectified image and (b) interpreted drawing of outcrop exposing a sheet-like sill, magmatic
fingers, and the associated structures in the shale-carbonate host rock, Cuesta del Chihuido, Mendoza Province,
Argentina [Spacapan et al., 2016]. The box locates the (c) zoomed image and (d) associated interpreted drawing.
The outcrop shows that the sill tip is round or blunt and that substantial inelastic deformation (brittle faulting of the
carbonate layers and ductile flow of the shale layers) accommodates the emplacement and propagation of the sill.
Detailed descriptions of the structures and associated mechanisms can be found in Spacapan et al. [2016].

Here we define a zone of finite size that accommodates the progressive breaking process. Field observations
show that various inelastic deformation mechanisms are associated with igneous intrusion propagation: joints
and microfractures [Delaney and Pollard, 1981], brittle and ductile faulting [e.g., Pollard, 1973; Pollard et al.,
1975; Schofield et al., 2012; Spacapan et al., 2016], or secondary fluidization [Schofield et al., 2012; Jackson et al.,
2013]. It is challenging to account for each individual mechanism; therefore, we apply a generic perfectly
plastic rheological law in the inelastic zone, subsequently referred to as plastic zone. We define r = b as the
tip of the plastic zone, the length of which is thus lp = b − a. Note that b would be equal to a (lp = 0) in the
case of purely brittle behavior.

Outside the plastic zone, the plate is rigidly attached to the basement. At all points of the model, the plate is
also submitted to the lithostatic stress q0 =𝜌gh, with g being the gravitational acceleration. In the following,
we will define ΔP = P0 − q0 as the overpressure at the sill’s center. Note that the basement is considered to
be perfectly rigid. As sill expansion rates are much smaller than the speed of sound in the surrounding rocks
and magma, we can neglect any inertial effect so that the model becomes quasi-static.
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Figure 2. (a) Schematic drawing of the clamped plastic model. A plate of thickness h is attached to a rigid foundation
and is subject to the lithostatic stress q0 =𝜌gh. An axisymmetric sill of radius a applies a (possibly heterogeneous)
pressure distribution P(r) at the bottom of the plate and lifts it up. Between the tip of the sill (x=a) and the clamped
region (plastic zone tip; x=b), a cohesive crack tip of size b − a defines a plastic zone. The failure of the interface
along which the sill propagates is defined by a critical displacement 𝛿c . (b) Schematic diagram representing the
rigid-perfectly-plastic law used within the plastic zone illustrated in Figure 2a. Plasticity is here defined by a constant
stress value 𝜎Y , i.e., the yield stress of the interface between the rigid foundation and the overlying elastic plate, when
the plate displacement w is between w=0 (at x=b) and w=𝛿c (at x=a).

From thin plate theory, i.e., when the vertical displacements of the plate, w, remain small compared to the
plate thickness h, we can write the equilibrium equations of the system as

DΔ2w = q0 − P0 +
(

P0 − Pa

)
(r∕a)n, 0 ≤ r ≤ a, (1)

DΔ2w = q0 + 𝜎Y , a ≤ r ≤ b, (2)

where Δ2 is the bilaplacian operator. Note that positive displacements w are defined downward, meaning
that upward displacement of the plate would be negative.

In the following sections, we will refer to w1 and wp for the displacements upon the sill (0 < r < a) and upon
the plastic region (a < r < b), respectively. Equation (1), when taken in axisymmetric form with abscissa r, has
a general solution of the form [see Timoshenko and Woinowsky-Krieger, 1959, p. 54, equation (60)]:

w1 =
(

q0 − P0

)
r4

64D
+

C1r2

4
+ C2 + C9 ln

( r
b

)
+ C10r2 ln

( r
b

)
+

(
P0 − Pa

)
rn+4

Dan(n + 2)2(n + 4)2
. (3)

We set C9 =C10 =0 because the logarithms would lead to an unphysical displacement singularity at r=0. We
are left with only two unknown constants, C1 and C2.

For wp, we have to keep the contributions from the logarithms so that

wp =
(q0 + 𝜎Y )r4

64D
+

C3r2

4
+ C4 + C5 ln

( r
b

)
+ C6r2 ln

( r
b

)
. (4)

We are left with the following two equations, with C1 to C6 being six unknown constants:

w1 =
(q0 − P0)r4

64D
+

C1r2

4
+ C2 +

(P0 − Pa)rn+4

Dan(n + 2)2(n + 4)2
, 0 ≤ r ≤ a (5)

wp =
(q0 + 𝜎Y )r4

64D
+

C3r2

4
+ C4 + C5 ln

( r
b

)
+ C6r2 ln

( r
b

)
, a ≤ r ≤ b. (6)

SCHEIBERT ET AL. PLASTICITY DURING SILL EMPLACEMENT 926



Journal of Geophysical Research: Solid Earth 10.1002/2016JB013754

Six boundary conditions are required to uniquely determine the six unknown coefficients in equations (5)
and (6). Given that the plate is rigidly attached to the basement outside the plastic zone, the displacement
and the first derivative of the displacement at r = b must be 0, i.e.,

wp(b) = 0, (7)

w′
p(b) = 0, (8)

where the prime denotes derivation with respect to r.

Continuity of the displacement w and its three first derivatives with respect to r at r = a yields four boundary
conditions:

w1(a) = wp(a), (9)

w′
1(a) = w′

p(a), (10)

w′′
1 (a) = w′′

p (a), (11)

w′′′
1 (a) = w′′′

p (a). (12)

Substitution of equations (5) and (6) into equations (7) to (12) yields a linear system of six equations for the
coefficients C1 –C6. The system of equations is written out in full and solved in Appendix A. Note that we
provide, as supporting information, both a Mathematica notebook (2016JB013569-sm01) with the analytical
solutions for C1 –C6 and a Matlab code (2016JB013569-sm02) which calculates C1 –C6 for any set of parameters
(h, E, 𝜈, 𝜌, 𝜎Y , Pa, n, a, b, and P0). Also note that for the rest of section 2, we will consider the particular case of
a constant pressure distribution, Pa = P0.

2.2. Model Behavior
We calculate a radial uplift profile,−w(r) (the minus sign is due to our orientation convention for w and ensures
that uplift is counted positively), of the deforming plate of thickness h, using our clamped model with plastic
zone, and compare it to the purely elastic clamped model of Pollard and Johnson [1973] using a set of geo-
logically realistic parameters (Figure 3). The uplift calculated with our model is everywhere larger than that
calculated with the model of Pollard and Johnson [1973] with the sill radius rsill = a (Figure 3). Conversely,
the uplift calculated with our model is everywhere smaller than that calculated with the model of Pollard and
Johnson [1973] with the sill radius rsill = b (Figure 3). This bracketing of our model can be readily understood
by considering the uplift within the interval a < r < b for the three models (Figure 3, right). In the plastic zone,
the plate is allowed to deform somehow so that the uplift is higher than for the Pollard and Johnson [1973]
model with rsill = a, for which the uplift vanishes by definition beyond r = a. The difference with the Pollard
and Johnson [1973] model with rsill = b is due to the fact that the magma pressure P0 pushes the strata upward
within the interval a < r < b, whereas, in the same interval of the plastic model, plasticity is resisting uplift.

We want to quantify the effect of the size lp of the plastic zone, which is the unknown primary quantity of
interest in our model, on the system’s behavior. Following Galland and Scheibert [2013], we scale the maximum
uplift−wmax from our model by the maximum uplift from the clamped model a4ΔP

64D
[Pollard and Johnson, 1973].

We plot in Figure 4 the results as a function of the dimensionless parameter 𝜖 = lp∕a, which is the relative size
of the plastic zone with respect to the radius of the sill. The advantage of this scaling is that− 64Dwmax

a4ΔP
=1 when

𝜖 = 0. Figure 4 shows that, for small values of 𝜖, − 64Dwmax

a4ΔP
increases, until reaching a maximum, after which it

decreases. This decrease at large values of 𝜖 is not physically meaningful: it corresponds to large values of lp,
which would induce strong downward pulling of the strata and thus negative uplift. We found that requiring
the uplift to be everywhere positive happens to discard the 𝜖 values for which the curves in Figure 4 are
decreasing. Therefore, we only consider the model behavior for small values of 𝜖. This is consistent with field
observations suggesting that the sizes of plastic zones are much smaller than the radii of sills (i.e., 𝜖 is small).

Figure 4 shows that the obtained rescaled curves depend on P, q0, and 𝜎Y but not on a, E, and 𝜈. These
dependencies can be understood from the Taylor expansion of −wmax for small 𝜖, provided in Appendix B,
equation (B4). This expansion, truncated at third order (solid lines in Figure 4), is compared to the full model
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Figure 3. (left) Typical uplift profile −w(r) for the clamped model with plasticity (solid line). Model parameters
are the following: h = 1 km, E = 1010 Pa, 𝜈 = 0.35, 𝜌 = 2500 kg m−3, P0 = Pa = q0 + 105 Pa, 𝜎Y = 5.107 Pa,
a = 5 km, and b = 5.1 km. It is compared with two profiles calculated from the Pollard and Johnson [1973] model
(wPJ(r) =

q0−P0
64D

(r2 − r2
sill
)2), with the sill radius being either rsill = a (dashed line) or rsill = b (dash-dotted line). (right)

Same curves, zoomed in on the plastic zone (between a and b).

(dashed and dash-dotted lines in Figure 4). The truncated expansion seems to agree perfectly with the full
model over the relevant range of 𝜖 values. It is interesting to note that the yield stress 𝜎Y does not appear in
the expansion before the third order (equation (B4)). As a matter of fact, the Taylor expansion of −wmax trun-
cated at second order appears as a seemingly straight line in Figure 4 (dotted line), which shows that the third
order is necessary to predict the correct shape of the evolution of the rescaled maximum uplift as a function
of 𝜖. Thus, the third-order term is required to capture not only the effect of 𝜎Y but also the individual effects
of P0 and q0, when they are not combined into ΔP. As expected intuitively, an increase of 𝜎Y or q0 decreases
the maximum uplift, whereas an increase of P0 increases it.

Figure 4. Rescaled maximum uplift − 64Dwmax
ΔPa4 as a function of the

rescaled length of the plastic zone 𝜖 = lp

a
= b−a

a
. Solid lines:

results of the clamped plastic model. Only values of 𝜖 such that the
uplift is everywhere positive on r < b are shown. Dotted line:
Taylor expansions of the model result − 64Dwmax

ΔPa4 for small 𝜖 (see
Appendix B, equation (B4)), truncated at second order. Dashed and
dash-dotted lines: Taylor expansions (equation (B4)), truncated at
third order. Red: ΔP = 106 Pa. Black: ΔP = 105 Pa. For each value of
ΔP, four values of 𝜎Y are used. From top to bottom: 𝜎Y = 10i Pa,
with i from 5 to 8. Other model parameters are the following:
h = 1 km, E = 1010 Pa, 𝜈 = 0.35, 𝜌 = 2500 kg m−3, and a = 5 km.

2.3. Size of the Plastic Zone
Given that most theoretical models of sill
and laccolith emplacement are purely elas-
tic, none of them is able to predict the size
of a plastic zone at intrusion tips. In order to
derive a simple expression of the size of the
plastic zone, we use the Taylor expansion of
the uplift at the intrusion tip (w1(a)) for small
𝜖 (equation (B6)) and combine it with a classic
propagation criterion, w1(a) = 𝛿c, based on
a critical vertical displacement 𝛿c commonly
used with cohesive zone formulations [see,
e.g., Dugdale, 1960; Barenblatt, 1962; Chen
et al., 2009]:

𝛿c ≈
a4𝜖2

(
q0 − P0

)
16D

+
3a4𝜖3

(
q0 − P0

)
48D

+
a4𝜖4

(
7P0 + 8𝜎Y + q0

)
64D

.

(13)

This critical displacement (here 𝛿c < 0) is
a material property and imposes a physical
boundary condition w1(a) = 𝛿c at r = a,
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which is valid at the onset of propagation. Keeping only the second-order term of 𝜖 in equation (13), the latter
equation leads to a simple approximate expression of the dimensionless size of the plastic zone 𝜖 as a function
of the model parameters and 𝛿c:

𝜖 ≈
√

16𝛿cD

a4ΔP
. (14)

This simple expression shows that the size 𝜖 of the plastic zone scales as 1∕a2: the longer the sill, the smaller
the plastic zone. This suggests that the growth of a sill is accompanied by a decrease in the size of the plastic
zone. Equation (14) also highlights that 𝜖 scales as 1∕

√
ΔP, meaning that the plastic zone also shrinks when

the overpressure increases. Conversely, equation (14) shows that 𝜖 scales as
√
𝛿c and

√
D, which suggests that

the plastic zone is larger when the critical displacement for failure 𝛿c increases and when the overburden is
very stiff and/or when the intrusion is deep.

2.4. Ill Posedness of Sill Propagation
Equation (14) gives a simple relationship between the size of the plastic zone 𝜖, the propagation criterion
𝛿c, and the variable model parameters a and ΔP. However, in reality, during the propagation of a sill these
parameters are interdependent and not prescribed a priori [Murdoch, 2002; Galland et al., 2009; Rivalta, 2010;
Galland and Scheibert, 2013]. Therefore, constraining the dynamics of the plastic zone during sill propagation
requires a mathematical formulation to predict the coupled dynamics of a and ΔP in addition to that of 𝜖.

The models of Murdoch [2002], Bunger and Cruden [2011], Michaut [2011], and Galland and Scheibert [2013]
show that the use of relevant boundary conditions is necessary to calculate the evolution of the radius of, and
the overpressure inside, a growing sill. Typical boundary conditions used are (1) a propagation criterion and
(2) the time evolution of the volume V of the sill [Bunger and Cruden, 2011; Galland and Scheibert, 2013].

In our model with a plastic zone, as mentioned above, the propagation criterion is a critical displacement at
the intrusion tip, i.e.,

𝛿c = w1(a) =
(q0 − P0)a4

64D
+

C1a2

4
+ C2, (15)

using equation (B5).

Integrating the uplift over the projected area of the sill, the volume V of the sill is easily calculated in cylindrical
coordinates [Galland and Scheibert, 2013]:

V = −2𝜋∫
a

0
rw1(r)dr = −2𝜋

(
(q0 − P0)a6

384D
+

C1a4

16
+

C2a2

2

)
. (16)

In equations (15) and (16), C1 and C2 are complicated functions ofΔP, a, and b; hence, V and 𝛿c are also nontriv-
ial functions ofΔP, a, and b. Thus, the mathematical problem has only two equations (equations (15) and (16))
for three unknowns (a, b, and ΔP) and therefore has no unique solution. Consequently, the clamped model
with a plastic zone cannot be used to calculate the dynamics of the plastic zone during the growth of a sill,
as already discussed by Kerr and Pollard [1998] and Galland and Scheibert [2013]. In the following section, we
demonstrate that introducing an elastic foundation, as described by Kerr and Pollard [1998] and Galland and
Scheibert [2013], is sufficient to solve the dynamics of the plastic zone at the tip of a growing sill.

3. The Model With Elastoplastic Foundation
3.1. Model Formulation
We consider again the same system as described in section 2 but with one key difference (Figure 5): Instead
of clamping the plate onto the rigid basement at r > b, we now assume that the plate is lying over an
elastic-perfectly plastic foundation of elastic modulus k and of yield stress 𝜎Y . The new equilibrium equations
of the system are

DΔ2w = q0 − P0 + (P0 − Pa)(r∕a)n, 0 ≤ r ≤ a, (17)

DΔ2w = q0 + 𝜎Y , a ≤ r ≤ b, (18)

DΔ2w + kw = q0, r ≥ b, (19)
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Figure 5. (a) Schematic drawing of the elastoplastic model developed in this paper (modified after Galland and
Scheibert [2013]). A plate of thickness h is attached to an elastic foundation of stiffness k and is subject to the lithostatic
stress q0. The sill is axisymmetric with radius a, and a (possibly heterogeneous) pressure distribution P(r) is applied at
the bottom of the plate and lifts it up. Similarly to the model of Galland and Scheibert [2013], displacement is allowed
outside the intrusion due to the elastic foundation. Here a plastic zone is confined between (1) the location of
plasticity initiation, defined from a critical displacement 𝛿0 = 𝜎Y

k
, and (2) the material crack tip, defined from a critical

displacement 𝛿c dictating the failure limit of the host rock. (b) Schematic diagram representing the elastic-perfectly
plastic law outside the intrusion. For small displacement w < 𝛿0, deformation is elastic and governed by the stiffness
of the elastic foundation. Displacements 𝛿0 < w < 𝛿c , define the plastic zone, in which the stress is at a constant value,
i.e., at yield stress 𝜎Y . For displacements w >𝛿c , the host rock has failed and is replaced by the overpressurized magma.

(plasticity of the foundation occurs between a and b). Again, positive displacements w are defined downward
so that upward displacement of the plate is counted negatively.

In the case a = b this model reduces to the previous model by Galland and Scheibert [2013]. In order to check
if the present model is relevant, one may use the previous model of Galland and Scheibert [2013] to calculate
w(a): if −w(a)> 𝜎Y

k
, then plasticity occurs, and b> a and the current model has to be used; otherwise, the

model of Galland and Scheibert [2013] is sufficient.

In the following sections, we will refer to w1, wp, and w2 for the displacements upon the sill (0 < r < a), upon
the plastic region (a < r < b) and outside the plastic region (b < r), respectively. Equation (17), when taken in
axisymmetric form with abscissa r, has a general solution of the form [see Timoshenko and Woinowsky-Krieger,
1959, p. 54, equation (60)]:

w1 =
(q0 − P0)r4

64D
+

C1r2

4
+ C2 + C9 ln

( r
a

)
+ C10r2 ln

( r
a

)
+

(P0 − Pa)rn+4

Dan(n + 2)2(n + 4)2
(20)

We set C9 = C10 = 0 because the logarithms would lead to a displacement singularity at r = 0. We are left
with only two unknown constants C1 and C2.

For wp, we have to keep the contributions from the logarithms so that

wp =
(q0 + 𝜎Y )r4

64D
+

C3r2

4
+ C4 + C5 ln

( r
a

)
+ C6r2 ln

( r
a

)
. (21)

Note that the constant in the denominator within the logarithms can be chosen arbitrarily. For convenience,
we use one of the length scales in the model, a.

The general solution of equation (19), when the right-hand side is 0, and when taken in axisymmetric form, is
provided by [see Timoshenko and Woinowsky-Krieger, 1959, p. 266, equation (h)]

w2 = C7kei0(x) + C8ker0(x) + C11ber0(x) + C12bei0(x), (22)

with x = r
le

; le = 4
√

D
k

; and ber𝜈 , bei𝜈 , ker𝜈 , and kei𝜈 are Kelvin functions [Timoshenko and Woinowsky-Krieger,
1959]. We can set C11 and C12 to 0 because limr→∞ ber0(r) =∞ and limr→∞ bei0(r) =∞, which would yield
unphysical infinite displacements far from the sill. Equation (19) also has a constant solution, w0 =q0∕k, which
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must be added to equation (22) to obtain the complete solution. Note that this term corresponds to the effect
of the weight of the plate on the elastic foundation [Galland and Scheibert, 2013].

We are left with the following three equations, with C1 to C8 being eight unknown coefficients:

w1 =
(q0 − P0)r4

64D
+

C1r2

4
+ C2 +

(P0 − Pa)rn+4

Dan(n + 2)2(n + 4)2
, 0 ≤ r ≤ a, (23)

wp =
(q0 + 𝜎Y )r4

64D
+

C3r2

4
+ C4 + C5 ln

( r
a

)
+ C6r2 ln

( r
a

)
, a ≤ r ≤ b, (24)

w2 = C7kei0

(
r
le

)
+ C8ker0

(
r
le

)
+

q0

k
, r ≥ b. (25)

To solve for the unknown coefficients, we need eight equations, which we obtain by requiring continuity of
the displacement w and its three first derivatives with respect to r at r=a and at r=b:

w1(a) = wp(a), (26)

w′
1(a) = w′

p(a), (27)

w′′
1 (a) = w′′

p (a), (28)

w′′′
1 (a) = w′′′

p (a) (29)

wp(b) = w2(b), (30)

w′
p(b) = w′

2(b), (31)

w′′
p (b) = w′′

2 (b), (32)

w′′′
p (b) = w′′′

2 (b). (33)

Inserting equations (23)–(25) in (26)–(33), one obtains a set of eight linear equations for the coefficients
C1 –C8, which may be expressed in matrix vector form and solved by matrix inversion, as detailed in
Appendix C. The analytical solutions for the coefficients are complicated but can be found in the Mathematica
notebook (2016JB013569-sm01) provided as supporting information.

Replacing the values of C1 to C8 in equations (23)–(25) provides the radial profile of vertical displacement
induced by a sill for any set of system parameters (h, E, 𝜈, 𝜌, k, Pa,𝜎Y , and n) and for any set of control parameters
(a, b, and P0) (Figure 6). Note that we provide as supporting information a Matlab code (2016JB013569-sm03)
which calculates C1 −C8 for any set of parameters. Also, note that for the rest of section 3, we will consider the
particular case of a constant pressure distribution, Pa =P0.

We emphasize that there are four length scales in the model: h, le, a, and lp =b − a. The thickness h of the

elastic strata is a parameter related to the geometry of the intrusion. The elastic length le = 4
√

D
k

is an intrinsic
length scale of the model, which represents the lateral distance, beyond the plastic zone periphery, over which
significant displacements are found [Galland and Scheibert, 2013]. Note that h is involved in the value of le,
via D.

Our model is based on equations (17)–(19), which are only valid when a∕h ≫ 1. In the following, we will
therefore only consider values of a such that a∕h>5, with 5 being an arbitrarily chosen limit for the validity
of the thin plate formulation, already used by, e.g., Pollard and Johnson [1973], Bunger and Cruden [2011], and
Galland and Scheibert [2013].
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Figure 6. (left) Typical uplift profiles −wi(r) for the elastoplastic model (solid lines). Model parameters are the following:
h = 1 km, E = 1010 Pa, 𝜈 = 0.35, 𝜌 = 2500 kg m−3, P0 = Pa = q0 + 5.105 Pa, 𝜎Y = 106 Pa, a = 5 km, and b = 5.1 km,
k = 10i Pa m−1 with i from 7 to 10 (from top to bottom, respectively). These profiles are compared with the
corresponding clamped plastic profile, displayed with a dashed line. (right) The same curves, zoomed in at the vicinity of
the plastic zone (a < r < b).

Note that before the intrusion forms, the weight of the plate already pushes down on the elastic foundation
so that there is already a homogeneous displacement w0 =

q0

k
. We will consider this equilibrium state as the

initial condition when the intrusion starts forming. Consequently, in order to calculate the displacement due
to the intrusion, one needs to calculate the differential displacement wi =w−w0 =w−w(r→∞). For practical
reasons, in the figures of the next sections, we plot the uplift induced by the emplacement of the intrusion, i.e.,
−wi (again, the minus sign is due to our orientation convention and ensures that uplift is counted positively).

The parameter k has to be interpreted as the vertical stiffness of the weak layer along which the sill prop-
agates. An extensive discussion of its physical meaning and relationship with the mechanical properties of
the weak layer, as well as the range of geologically relevant values of k are provided in Galland and Scheibert
[2013]. Those values were obtained considering weak layers of minimal thickness 1 m. Here, based on
field observations showing thicknesses down to 10 cm, we will allow for k up to 1010 Pa m−1. In practice,

Figure 7. Rescaled maximum uplift in the full elastoplastic model,
as a function of the rescaled approximate maximum uplift given
by equation (D3). Squares are data points for the following sets of
parameters: h = 1 km; E = 1010 Pa; 𝜈 = 0.35; 𝜌 = 2500 kg m−3;
a = 5 km; P0 = Pa = q0 + 105 or 106 Pa; 𝜎Y = 10i Pa with i = 5,
6, or 7; and k = 10i Pa m−1 with i from 7 to 10. For each set of
parameters, b takes 9 values such that the maximum uplift is never
negative. Solid gray line: line of slope 1 passing through the origin.

the smallest values of k can, in the cur-
rent model, lead to unrealistic negative uplift
when the yield stress 𝜎Y is large. As a conse-
quence, we restricted ourselves to the range
k ∈ [107 − 1010] Pa m−1.

3.2. Model Behavior
In this section, we investigate the behavior
of the elastoplastic model and compare it
to the clamped plastic model described in
section 2. Figure 6 shows, for geologically
realistic parameters, typical radial uplift pro-
files for the elastoplastic model. As described
by Galland and Scheibert [2013], the uplift
decreases as the stiffness of the elastic foun-
dation increases, and the profiles converge
toward the one predicted by the clamped
plastic model when the stiffness approaches
infinity. The uplift outside the plastic zone
is now nonzero, which is expected with an
elastic foundation: similarly to the model of
Galland and Scheibert [2013], it shows a posi-
tive uplift close to the sill’s tip and a negative
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Figure 8. Plots of (a) the radius (a) of the sill, (b) the magma overpressure (ΔP), and (c) the size of the plastic zone (𝜖), as
a function of the volume V of a sill during its propagation, for various values of h, k, and 𝜎Y . Model parameters used are
the following: h = 0.5 km (blue), h = 1 km (red), h = 2 km (black), h = 5 km (green), k = 107 Pa m−1 (thinnest line),
k = 108 Pa m−1 (second thinnest line), k = 109 Pa m−1 (second thickest line), k = 1010 Pa m−1 (thickest line), 𝜎Y = 105 Pa
(dash-dotted line), 𝜎Y = 106 Pa (dashed line), and 𝜎Y = 107 Pa (solid line). Here 𝛿c = 5𝛿0, where 𝛿0 = −𝜎Y∕k.

rebound at larger distances (Figure 6, right). Note that here the uplift at the sill’s tip (r = a) is controlled not
only by the compliance of the elastic foundation but also by the allowed plastic deformation.

Although the full analytic solution of the elastoplastic model is complex, we managed to find a simple approx-
imate analytical solution for the maximum uplift, −wi,max, which is given in equation (D3) in Appendix D.
The approximation consists in replacing the Kelvin functions in equation (22) by their asymptotic forms for
large values of their argument r∕le. Note that this approximation was previously used in Galland and Scheibert
[2013]. Figure 7 shows, for 216 different sets of geologically realistic parameters, that the prediction of the
approximate maximum uplift captures perfectly the behavior of the full model. Equation (D3) can thus be
used, for all practical purposes, as an excellent estimate of the maximum uplift (−wi,max) in the model as a
function of system and control parameters.

3.3. Modeling Sill Propagation
We adopt here a similar approach to that described by Galland and Scheibert [2013] and in section 2.4.
Instead of treating a, b, and ΔP as model input parameters, we define three boundary conditions in
order to calculate these three quantities during the propagation of a sill. In many laboratory models
[Murdoch, 2002; Bunger, 2005; Galland et al., 2009; Galland, 2012; Galland et al., 2014] and theoretical/
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Figure 9. Plots of 𝛼, defined as 𝜖 = 𝛼V− 1
4 and calculated from data plotted in Figure 8c, as functions of (a) the depth (h),

(b) the stiffness of the elastic foundation (k), and (c) the yield stress of the elastic foundation (𝜎Y ). Each curve of each plot
considers only one variable parameter. Model parameters vary as follows: h = 0.5 km (blue), h = 1 km (red), h = 2 km
(black), h = 5 km (green), k = 107 Pa m−1 (thinnest line), k = 108 Pa m−1 (second thinnest line), k = 109 Pa m−1 (second
thickest line), k = 1010 Pa m−1 (thickest line), 𝜎Y = 105 Pa (dash-dotted line), 𝜎Y = 106 Pa (dashed line), and 𝜎Y = 107 Pa
(solid line). Here 𝛿c = 5𝛿0, where 𝛿0 = −𝜎Y∕k.

numerical models [Murdoch, 2002; Malthe-Sørenssen et al., 2004; Bunger and Cruden, 2011; Galland and
Scheibert, 2013], the growth of a sill is imposed by a constant influx rate Q, such that the volume of the sill at
any time t is known as V(t) = Qt. The volume of the sill, given by V = −2𝜋∫ a

0 rwi(r)dr, can thus be used as a
boundary condition.

Figure 5 highlights that in our elastoplastic model, both sides of the plastic zone are imposed by a critical
displacement. The critical displacement 𝛿0 at the external tip of the plastic zone (r = b) marks the initiation of
plasticity after a critical elastic displacement of the elastic foundation. The formulation of our model is such
that 𝛿0 is a direct function of the stiffness k of the elastic foundation and the yield stress 𝜎Y , i.e., 𝛿0 = −𝜎Y∕k.
The critical displacement 𝛿c at the tip of the sill (r = a) marks the failure of the host rock. The volume boundary
condition and the two critical displacement boundary conditions write the following:

𝛿c = w1(a) =
(q0 − P0)a4

64D
+

C1a2

4
+ C2, (34)

𝛿0 = −𝜎Y∕k = wp(b) =
(q0 + 𝜎Y )b4

64D
+

C3b2

4
+ C4 + C5 ln

(b
a

)
+ C6b2 ln

(b
a

)
, (35)
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V(a, b,ΔP) = −2𝜋

(
(q0 − P0)a6

384D
+

C1a4

16
+

C2a2

2
−

q0a2

2k

)
, (36)

with C1 –C6 being complicated functions of ΔP, a, and b. Equations (34)–(36) define a system of three
equations with three unknowns, ΔP, a, and b, which means that for any values of 𝛿c, 𝜎Y∕k and V , it is possible
to calculate numerically a unique set of values of ΔP, a, and b.

If we consider a growing intrusion with volume increasing linearly in time as V(t) = Qt, and constant prop-
agation criteria 𝛿c and 𝛿0, it is possible to calculate the evolution of ΔP, a, and b as a function of time by
solving the system of equations (34)–(36), similarly to the analysis of Kerr and Pollard [1998] and Galland and
Scheibert [2013].

Figure 8 displays the evolutions of ΔP, a, and 𝜖 = (b − a)∕a during the propagation of sills for various com-
binations of depth h, foundation yield stress 𝜎Y , and foundation stiffness k. In log-log plots, the simulations
exhibit all the same scaling. For example, we can easily show that a ∝ V1∕4 (see Figure 8a) and ΔP ∝ V−1∕2

(see Figure 8b). These scaling relations are the same as those found by Murdoch [2002] in the clamped elas-
tic model and by Galland and Scheibert [2013] in an elastic model with an elastic foundation. Such similarity
likely results from the fact that in our simulations using geological values, a∕le ≪ 1, i.e., the behavior of the
system is dominated by the bending plate and not by the elastic foundation [Galland and Scheibert, 2013].
More interestingly, our results show that 𝜖 ∝ V−1∕4; i.e., the size of the plastic zone relative to the radius of
the sill decreases during the propagation of the sill. Note, however, that the absolute size of the plastic zone
is predicted to be constant (lp = 𝜖a ∼ V−1∕4V1∕4 ∼ constant), i.e., it does not depend on the radius of the
propagating sill.

Figure 8c shows that the values of 𝜖, for geologically relevant values of the model parameters, are all very
small, with lp being typically smaller than a∕100. This confirms that the horizontal extent of the plastic zone
is confined in the close vicinity of the intrusion’s tip. Figure 8c also shows that 𝜖 greatly vary when h, 𝜎Y and
k vary. Nevertheless, each curve of Figure 8c follows a function of the form 𝜖 = 𝛼V−1∕4. Here, comparing the
values of 𝛼 between the curves is equivalent to comparing the relative values of 𝜖. Figure 9 displays the values
of 𝛼 calculated from the data plotted in Figure 8c as functions of the variable parameters h, k and 𝜎Y . Each
curve of each graph of Figure 9 displays the dependency of 𝛼 with respect to one variable, the two others
being constant. Figure 9a shows that 𝛼 overall slightly decreases with increasing h, which shows that plastic
zones are smaller for deeper sills. This result suggests that confinement at depth limits the development of
plastic deformation. This conclusion, however, may lose validity for large values of𝜎Y (see Figure 9a). Figure 9b
shows a stronger dependency of 𝛼 with respect to k: the larger k, the smaller 𝛼. This is an intuitive result,
which suggests that a stiff elastoplastic foundation localizes the plastic deformation to a small plastic zone,
and conversely weak foundations enhance the development of a broad plastic zone. Finally, Figure 9c shows
that 𝛼 increases when the yield stress increases.

4. Interpretation and Discussion
4.1. Model Validity
The present model is a first attempt to include plasticity in analytic descriptions of sills and laccoliths. The
model was kept simple on purpose, to make the analytical and numerical solutions tractable while still reflect-
ing the overall features of the modeled systems. It exhibits the same limitations as most previous elastic
models [Bunger and Cruden, 2011; Michaut, 2011; Galland and Scheibert, 2013; Michaut and Manga, 2014;
Thorey and Michaut, 2014; Michaut et al., 2016], including linear elasticity of the deforming layer, the thin plate
approximation, a single strata of homogeneous thickness, rigidity of the basement, and axisymmetric intru-
sions. Field observations and geophysical data show that sills and laccoliths exhibit overall subcircular shapes
in planar view, even if they are never perfectly circular. Therefore, we consider our axisymmetric formulation
to be relevant for addressing the main aspects of natural intrusions. In sedimentary basins, sills and laccoliths
are dominantly emplaced in undeformed, flat-lying sedimentary layers. Therefore, we consider that homoge-
neous thickness of the overburden is a relevant assumption for intrusions in sedimentary basins. In contrast,
in active volcanoes, topography is rarely flat; therefore, our model might have less implications for intrusions
in such context.

A strong assumption of our model is the thin plate approximation, which implies that our model applies
in a strict sense only to shallow intrusions that fulfill the condition a> 5h. Pollard and Johnson [1973] first
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argued that a single bending plate above sills and laccoliths is not relevant, given that their overburden is
often made of stacks of sedimentary strata with different mechanical properties. They also argued that the
frictional stresses between layers is most presumably much smaller than the bending stresses, so that the lay-
ers can be assumed to slide almost freely on one another. In these conditions, instead of using a single plate
as thick as the intrusion’s overburden, it is possible to split the overburden in many thinner plates. Doing so,
the total stiffness D of the layer stack is the sum of the stiffnesses Di of all layers [Pollard and Johnson, 1973],
which is always smaller than D. Equivalently, the stiffness of a stack of layers of total thickness h has the same
stiffness as a single layer with a thickness smaller than h. To get a sense of the implications of the layering of
the bending stack of layers, let us consider a stack of N layers that have approximatively the same mechan-
ical properties and the same thickness hi = h∕N. The equivalent thickness of the stack, i.e., the thickness of
the single layer having the same bending stiffness, is he = N1∕3hi . If we consider an h =1000 m thick over-
burden made of N = 10 layers, this means that the equivalent thickness is about 200 m. In other words, the
stack of layers is equivalent to a single layer, with a thickness he five times smaller than the actual thickness h
of the stack. For N = 100, he becomes about 20 times smaller than the actual thickness. In summary, the thin
plate approximation is valid when a ≫ he, which considerably expands the domain of validity of our model,
including sills and laccoliths with a radius a possibly smaller than the depth h. Note that even when the lay-
ers are not identical, these conclusions remain qualitatively valid. They have been successfully applied to sills
in the literature, e.g., the Henry mountains in Pollard and Johnson [1973] and Koch et al. [1981] or the High
Himalaya in Scaillet et al. [1995].

The main difference between our model and former models is the introduction of a nonlinear behavior of
the interfacial layer which connects the basement and the bending strata. We have implemented the two
simplest plastic laws, namely rigid-perfectly plastic (section 2) and elastic-perfectly plastic (section 3). Both of
them correspond to known analytical solutions for the axisymmetric bending layer problem, within the plas-
tic zone. Any other behavior law based on a piecewise combination of constant and/or linear (with positive
stiffness) laws as a function of vertical displacement could be used. These include elastic-plastic laws with
strain hardening [Jaeger et al., 2009], as used in, e.g., Mazzini et al. [2009]. One would simply need to repeat the
same procedure described here, i.e., write down the general solution for each region, apply the correct bound-
ary conditions and solve the corresponding linear system of equations. Note that such nonlinear behavior
laws can also be interpreted in the framework of cohesive zone models in fracture mechanics [Dugdale, 1960;
Barenblatt, 1962], as previously noted by, e.g., Rubin [1993] and Chen et al. [2009].

We emphasize that the simple scaling of equation (14) is valid only for 𝜖 ≪ 1, i.e., when the plastic zone is
small with respect to the radius of the intrusion. Such scaling might be lost when 𝜖 becomes large. Note as
well that the values of a∕le in the propagation results calculated from the model with elastoplastic foundation
(Figure 8) range between 24 and 980. Galland and Scheibert [2013] showed that for such values of a∕le ≫ 1,
the behavior of the model with elastic foundation is dominated by the bending plate. The results and scaling
calculated from the model developed in this paper (Figure 8) are thus valid under both approximations 𝜖 ≪ 1
and a∕le ≫ 1, which are dominantly fulfilled in natural systems. Our model might exhibit much more complex
behavior if one or both approximations are not fulfilled (see, for example, the scaling of the model of Galland
and Scheibert [2013] for a∕le < 1). Unraveling the full behavior of our model in a systematic manner would
require extensive work, which extends beyond the scope of this paper.

In our model, like in all sill and laccolith models using the thin plate formulation [e.g., Pollard and Johnson,
1973; Kerr and Pollard, 1998; Murdoch, 2002; Bunger and Cruden, 2011; Galland and Scheibert, 2013], the over-
lying bending plate is considered purely elastic. Recent seismic [Hansen and Cartwright, 2006; Jackson et al.,
2013; Magee et al., 2013] and geological [Agirrezabala, 2015] observations, however, show that substantial
parts of deformation in sills’ and laccoliths’ overburden is accommodated by inelastic deformations (e.g., com-
paction and fluidization) in the bulk of the bending plate. Addressing such process would require further
developments of our model.

In our model, we defined a tensile propagation criterion, similarly to existing theoretical and numerical models
of sill and laccolith emplacement [Pollard and Johnson, 1973; Bunger and Cruden, 2011; Michaut, 2011; Galland
and Scheibert, 2013; Michaut and Manga, 2014; Thorey and Michaut, 2014; Michaut et al., 2016]. Note, however,
that geological observations evidence some compressional deformation accommodating the propagation of
sill and laccolith tips [Pollard, 1973; Rubin, 1993; Spacapan et al., 2016, and references therein]. Accounting for
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Figure 10. Relative difference of 𝛽 (defined as ΔP = 𝛽V− 1
2 and calculated from data plotted in Figure 8b) between the

elastoplastic (this work) and the purely elastic [Galland and Scheibert, 2013]) models, as a function of (a) the depth (h),
(b) the stiffness of the elastic foundation (k), and (c) the yield stress of the elastic foundation (𝜎Y ). Each curve of each
plot considers only one variable parameter. Model parameters vary as follows: h = 0.5 km (blue), h = 1 km (red),
h = 2 km (black), h = 5 km (green), k = 107 Pa m−1 (thinnest line), k = 108 Pa m−1 (second thinnest line),
k = 109 Pa m−1 (second thickest line), k = 1010 Pa m−1 (thickest line), 𝜎Y = 105 Pa (dash-dotted line), 𝜎Y = 106 Pa
(dashed line), and 𝜎Y = 107 Pa (solid line). Here 𝛿c = 5𝛿0, where 𝛿0 = −𝜎Y∕k.

this local compression in our model would require the definition of a new propagation criterion; however, to
our knowledge, such complex mechanical propagation criteria have not been discussed in the literature.

For sill propagation modeling purposes, we introduced a fracture criterion in terms of a critical vertical
displacement (𝛿c) of the bending layer with respect to its unstressed state. In the literature, this critical dis-
placement 𝛿c is related to the fracture energy Gc of the material (see, e.g., Scholz [2002, p.31] for a table of
Gc values for rocks): Gc is the area under the stress-displacement curve for the interfacial material (Figures 2b

and 5b). In our models, 𝛿c = Gc

𝜎Y
for the rigid-perfectly plastic case used in section 2 and 𝛿c =

Gc+
𝜎2

Y
2k

𝜎Y
for the

elastic-perfectly plastic case used in section 3.

4.2. Geological Implications
A first, key question that we can ask is whether the simple, appealing scaling for 𝜖 in equation (14) derived
from the clamped model (section 2) is also valid for the more advanced model with elastoplastic foundation
(section 3). To address this question, we replace a and ΔP in equation (14) by their respective scaling a ∝ V1∕4

and ΔP ∝ V−1∕2 observed during propagation within the elastoplastic model (Figures 8a and 8b). This yields
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𝜖 ∝ V−1∕4, which is indeed the propagation behavior observed in Figure 8c. The scaling of equation (14) can
therefore be considered as a fundamental scaling relation for the size of the plastic zone with respect to the
intrusion radius and magma overpressure, with a wide applicability. This result implies that the relative size
of the plastic zone, 𝜖, decreases with increasing radius of the intrusion. This conclusion is corroborated by
the field observations of Pollard et al. [1975], Duffield et al. [1986], Schofield et al. [2012, 2014], and Spacapan
et al. [2016], which provide evidence that plastic zones at the vicinity of the tips of small sills are sometimes
as large as the sills themselves. In particular, Spacapan et al. [2016] compare the extent of inelastic deforma-
tion at the tips of intrusions of distinct radii. These authors suggest that the relative size of the inelastic zone
decreases with the lengthening of the intrusions. Such conclusion is in very good agreement with the scaling
of equation (14) and our results displayed in Figure 8c. Unfortunately, since our model formulation is based
on the thin plate approximation, we cannot model arbitrarily small sills and thus the very first stages of sill
propagation. However, constraining the mechanics of early sill can be very helpful to constrain the dynamics
of sill initiation, as demonstrated by Kavanagh et al. [2015]. Those authors show that complex processes
occur at sill inception and early growth, suggesting that plasticity might be crucial during this early stage of
emplacement. Properly assessing the influence of plasticity on early sill propagation would require a different
model formulation, e.g., the thick plate formulation [see, e.g., Panc, 1975] or finite element modeling.

A second practically important question is whether the existence of inelastic processes at the tip really affect
the growth dynamics of the intrusion, irrespective of the actual size of the inelastic zone. To address this ques-
tion, we compared the propagation dynamics of the model with elastoplastic foundation (this work) with
that of the model with purely elastic foundation [Galland and Scheibert, 2013]. We already mentioned in the
description of Figure 8 that the scalings of the sill’s radius, a, and the overpressure, ΔP, with the intrusion’s
volume, V , are identical for both models. The only difference is thus in the value of the prefactors of these rela-
tionships. We therefore define 𝛽 as the prefactor in ΔP = 𝛽V−1∕2 for the elastoplastic model. 𝛽 is obtained by
fitting the data in Figure 8b. We define 𝛽e in the same way for the elastic model. Figure 10 shows how the rel-
ative difference, 𝛽−𝛽e

𝛽e
, between the two models, varies as a function of the model parameters h, k, and 𝜎Y . The

differences observed range from less than 1% to as large as 200%, meaning that the overpressure required to
propagate the sill can be up to twice the value in the case of a purely elastic behavior of the system. Those
large differences indicate that, depending on the conditions, the effect of the (although small) plastic zone
can have a major influence on the propagation dynamics of sills and laccoliths. More precisely, differences are
found larger for shallower intrusions (Figure 10a) or higher values of the yield stress of the interfacial layer
in which the intrusion grows (Figure 10c). Those results can be qualitatively understood by comparing the
lithostatic stress, which increases with h, and the plastic stress 𝜎Y : large h and/or small 𝜎Y correspond to neg-
ligible plastic stress compared to the lithostatic stress. This limit precisely corresponds to the purely elastic
model, and indeed, the differences tend to vanish. In contrast, the stiffness of the layer has negligible effect
on propagation (Figure 10b). Note that we have performed the same analysis on the prefactor 𝛾 of the rela-
tionship a = 𝛾V1∕4: the relative differences observed are found 1 order of magnitude smaller than those for
𝛽 , for all parameters explored. The maximum observed difference of about 20% indicates that the relation-
ship between the sill’s radius and its volume is rather insensitive to the presence of plastic deformations at the
intrusion’s tip.

5. Conclusions

In this paper we develop and use an elastoplastic theoretical model of sill and laccolith emplacement. As in
existing models, we use the formulation of a thin bending plate lying on a deformable elastic foundation. The
novelty of the present study is the introduction of a cohesive plastic zone at the tip of the intrusion. The main
results of our study are summarized below.

We first extended the classic clamped elastic model of Pollard and Johnson [1973] and derived a fully ana-
lytic model that includes a plastic zone at the intrusion’s tip. This model involves a new characteristic length:
the size of the plastic zone (lp). We define 𝜖 = lp∕a, with a the radius of the intrusion. The maximum uplift
calculated with this model increases when 𝜖 increases and/or when the yield stress in the plastic zone (𝜎Y )
decreases. The model is physically meaningful only for relatively small values of 𝜖, but this is the range that is
relevant for geological observations.

We derived a simple scaling relation for the relative size (𝜖) of the plastic zone from the extended clamped
model (equation (14)), which shows that 𝜖 scales (i) as 1∕a2, i.e., it is inversely proportional to the square of the
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intrusion’s radius (a), and (ii) as 1∕
√
ΔP, i.e., it is inversely proportional to the square root of the overpressure

within the intrusion.

We demonstrate that the clamped model with plastic zone is not suitable for modeling the dynamics of sill
propagation. We thus implemented an elastoplastic foundation, an extension of the models of Kerr and Pollard
[1998] and Galland and Scheibert [2013]. The predicted uplift is not significantly different from that predicted
with the model of Pollard and Johnson [1973]. The most interesting outcome of the model is rather its ability
to predict the evolution of the extent of the plastic zone during intrusion propagation. Using this latter model
together with a critical displacement-based propagation criterion, we show that 𝜖 scales with the sill’s vol-
ume as V−1∕4, i.e., the relative size of the plastic zone decreases during sill propagation. This conclusion was
obtained when both approximations 𝜖 ≪ 1 and a∕le ≫ 1 are fulfilled.

Our model shows that the development of a plastic zone is limited due to confinement (𝜖 decreases when h
increases), while it is enhanced when the host rock is more compliant (𝜖 decreases when k increases).

We show that the simple scaling relation of equation (14), derived from the clamped plastic model, is also
valid for the more advanced model with elastoplastic foundation. This scaling relation is thus a fundamental
characteristic of the plastic zone with respect to the intrusion radius (a) and magma overpressure (ΔP).

All in all, our novel elastoplastic model highlights that although the inelastic zone is probably negligibly small
for the large, shallow sills considered here, it can have a significant effect on their propagation dynamics. We
suggest that an interesting follow-up of this study would be to extend theoretical models beyond the thin
plate approximation to also unravel the dynamics of early sill emplacement.

Appendix A: Clamped Model

Here we rewrite equations (7)–(12) for the clamped plastic model, combine them in matrix form used to
calculate the solution for the six coefficients C1 to C6.

Using the expression of wp given in equation (6) and taken in r = b, equation (7) can be rewritten as

(q0 + 𝜎Y )b4

64D
+

C3b2

4
+ C4 = 0. (A1)

Using the derivative of equation (6) taken in r = b, equation (8) can be rewritten as

(q0 + 𝜎Y )b3

16D
+

C3b

2
+

C5

b
+ C6b = 0. (A2)

Using the expressions of w1 and wp given in equations (5) and (6) and taken in r = a, equation (9) can be
rewritten as

(q0 − P0)a4

64D
+

C1a2

4
+ C2 +

(P0 − Pa)a4

D(n + 2)2(n + 4)2
=

(q0 + 𝜎Y )a4

64D
+

C3a2

4
+ C4 + C5 ln

(a
b

)
+ C6a2 ln

(a
b

)
. (A3)

Using the first derivatives of equations (5) and (6) taken in r = a, equation (10) can be rewritten as

(q0 − P0)a3

16D
+

C1a

2
+

(P0 − Pa)a3

D(n + 2)2(n + 4)
=

(q0 + 𝜎Y )a3

16D
+

C3a

2
+

C5

a
+ C6a

(
1 + 2 ln

(a
b

))
. (A4)

Using the second derivatives of equations (5) and (6) taken in r = a, equation (11) can be rewritten as

3(q0 − P0)a2

16D
+

C1

2
+

(P0 − Pa)a2(n + 3)
D(n + 2)2(n + 4)

=
3(q0 + 𝜎Y )a2

16D
+

C3

2
−

C5

a2
+ C6

(
3 + 2 ln

(a
b

))
. (A5)

Using the third derivatives of equations (5) and (6) taken in r = a, equation (12) can be rewritten as

3(q0 − P0)a
8D

+
(P0 − Pa)a(n + 3)
D(n + 2)(n + 4)

=
3(q0 + 𝜎Y )a

8D
+

2C5

a3
+

2C6

a
. (A6)

These equations constitute a system of six coupled linear equations, which can be written matricially as

A.C = B, (A7)
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with

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 b2

4
1 0 0

0 0 b
2

0 1
b

b
a2

4
1 − a2

4
−1 − ln

(
a
b

)
−a2 ln

(
a
b

)
a
2

0 − a
2

0 − 1
a

−a
(

1 + 2 ln
(

a
b

))
1
2

0 − 1
2

0 1
a2 −

(
3 + 2 ln

(
a
b

))
0 0 0 0 − 2

a3 − 2
a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(q0+𝜎Y )b4

64D

−(q0+𝜎Y )b3

16D[
(P0+𝜎Y )

64
− (P0−Pa)

(n+2)2(n+4)2

]
a4

D[
(P0+𝜎Y )

16
− (P0−Pa)

(n+2)2(n+4)

]
a3

D[
3(P0+𝜎Y )

16
− (P0−Pa)(n+3)

(n+2)2(n+4)

]
a2

D[
3(P0+𝜎Y )

8
− (P0−Pa)(n+3)

(n+2)(n+4)

]
a
D

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

C1

C2

C3

C4

C5

C6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The solution vector C has an analytic solution which is given in the Mathematica notebook provided as
supporting information. When considering the pressure distribution as constant (P0 = Pa), the following
simplified expressions for the coefficients C1 − C6 can be obtained:

C1 =

(
𝜎Y + P0

)
a2

(
a2 − 4b2 ln

(
a
b

))
−
(

q0 + 𝜎Y

)
b4

8b2D
, (A8)

C2 =

(
𝜎Y + P0

) [
3a4 − 4a2b2 − 4a4 ln

(
a
b

)]
+
(

q0 + 𝜎Y

)
b4

64D
, (A9)

C3 =
(
𝜎Y + P0

)
a2

(
a2 + 2b2

)
−
(

q0 + 𝜎Y

)
b4

8b2D
, (A10)

C4 =
−2

(
𝜎Y + P0

)
a2

(
a2 + 2b2

)
+
(

q0 + 𝜎Y

)
b4

64D
, (A11)

C5 = −
(
𝜎Y + P0

)
a4

16D
, (A12)

C6 = −
(
𝜎Y + P0

)
a2

8D
. (A13)

These solutions allow us to obtain, for any set of system parameters (h, E, 𝜈, 𝜌, and 𝜎Y ) and for any control
parameters (a, b, and P0), the analytical expression of the radial profile of vertical displacement w(r) (see, e.g.,
Figure 3).
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We provide as supporting information a Matlab code (SGHClampedPlastic.m) which calculates C1 –C6 for any
set of parameters (h, E, 𝜈, 𝜌, 𝜎Y , Pa, n, a, b, and P0). We also provide the analytic expressions in a Mathematica
notebook.

Appendix B: Taylor Expansion of the Clamped Model

We obtain the series expansion of C1 and C2 with respect to 𝜖, for small 𝜖, by replacing the expression of
b = a (1 + 𝜖) in equations (A8) and (A9) and by combining the terms with the same power of 𝜖:

C1 =
a2

(
P0 − q0

)
8D

+
a2𝜖

(
P0 − q0

)
4D

+
a2𝜖2

(
P0 − q0

)
8D

−
a2𝜖3

(
P0 + 𝜎Y

)
3D

+
a2𝜖4

(
P0 + 𝜎Y

)
2D

+ O(𝜖5), (B1)

C2 =
a4

(
q0 − P0

)
64D

+
a4𝜖

(
q0 − P0

)
16D

+
3a4𝜖2

(
q0 − P0

)
32D

+
a4𝜖3

(
P0 + 3q0 + 4𝜎Y

)
48D

+
a4𝜖4

(
q0 − P0

)
64D

+O(𝜖5). (B2)

Setting r = 0 in equation (5) provides a straightforward expression of the maximum displacement wmax:

w1(0) = wmax = C2. (B3)

Combining equation (B3) with equation (B2) leads to an approximate expression of the maximum displace-
ment wmax as a function of the model parameters and 𝜖:

wmax ≈
a4

(
q0 − P0

)
64D

+
a4𝜖

(
q0 − P0

)
16D

+
3a4𝜖2

(
q0 − P0

)
32D

+
a4𝜖3

(
P0 + 3q0 + 4𝜎Y

)
48D

+
a4𝜖4

(
q0 − P0

)
64D

, (B4)

which, in dimensionless form, reads− 64Dwmax

ΔPa4 ≈ 1+4𝜖+6𝜖2− 4
3

[
1 + 4(q0+𝜎Y )

ΔP

]
𝜖3+𝜖4. This expression captures

the behaviors shown in Figure 4.

Similarly, setting r = a in equation (5) provides a straightforward expression of the displacement at the
intrusion tip (r = a):

w1(a) =
(q0 − P0)a4

64D
+

C1a2

4
+ C2. (B5)

Using the expressions of C1 and C2 from equations (B1) and (B2) in equations (B5), we derive an approximate
expression of the displacement at the tip of the intrusion (r = a):

w1(a) ≈
a4𝜖2(q0 − P0)

16D
+

3a4𝜖3(q0 − P0)
48D

+
a4𝜖4

(
7P0 + 8𝜎Y + q0

)
64D

. (B6)

Note that the effect of the yield stress 𝜎Y on w1(a) appears only at the fourth order of 𝜖.

Appendix C: Elastoplastic Model

Here we rewrite equations (26)–(33) for the elastoplastic model, combine them in matrix form used to
calculate the solution for the eight coefficients C1 to C8.

Using the expressions of w1 and wp in equations (23) and (24) and taken in r = a, equations (26) can be
rewritten as

(q0 − P0)a4

64D
+

C1a2

4
+ C2 +

(P0 − Pa)a4

D(n + 2)2(n + 4)2
=

(q0 + 𝜎Y )a4

64D
+

C3a2

4
+ C4. (C1)

Using the first derivatives of equations (23) and (24) taken in r = a, equation (27) can be rewritten as

(q0 − P0)a3

16D
+

C1a

2
+

(P0 − Pa)a3

D(n + 2)2(n + 4)
=

(q0 + 𝜎Y )a3

16D
+

C3a

2
+

C5

a
+ C6a. (C2)
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Using the second derivatives of equations (23) and (24) taken in r = a, equation (28) can be rewritten as

3(q0 − P0)a2

16D
+

C1

2
+

(P0 − Pa)a2(n + 3)
D(n + 2)2(n + 4)

=
3(q0 + 𝜎Y )a2

16D
+

C3

2
−

C5

a2
+ 3C6. (C3)

Using the third derivatives of equations (23) and (24) taken in r = a, equation (29) can be rewritten as

3(q0 − P0)a
8D

+
(P0 − Pa)a(n + 3)
D(n + 2)(n + 4)

=
3(q0 + 𝜎Y )a

8D
+

2C5

a3
+

2C6

a
. (C4)

Using the expressions of wp and w2 in equations (24) and (25) and taken in r = b, equation (30) can be
rewritten as

(q0 + 𝜎Y )b4

64D
+

C3b2

4
+ C4 + C5 ln

(b
a

)
+ C6b2 ln

(b
a

)
= C7kei0

(
b
le

)
+ C8ker0

(
b
le

)
+

q0

k
. (C5)

Using the first derivatives of equations (24) and (25) taken in r = b, equation (31) can be rewritten as

(q0 + 𝜎Y )b3

16D
+

C3b

2
+

C5

b
+ C6b

(
2 ln

(b
a

)
+ 1

)
=

C7√
2le

[
kei1

(
b
le

)
− ker1

(
b
le

)]
+

C8√
2le

[
kei1

(
b
le

)
+ ker1

(
b
le

)]
.

(C6)

Using the second derivatives of equations (24) and (25) taken in r = b, equation (32) can be rewritten as

3(q0 + 𝜎Y )b2

16D
+

C3

2
−

C5

b2
+C6

(
2 ln

(b
a

)
+ 3

)
=

C7

2l2
e

[
ker0

(
b
le

)
− ker2

(
b
le

)]
+

C8

2l2
e

[
kei2

(
b
le

)
− kei0

(
b
le

)]
.

(C7)

Using the third derivatives of equations (24) and (25) taken in r = b, equation (33) can be rewritten as

3(q0 + 𝜎Y )b
8D

+
2C5

b3
+

2C6

b
=

C7

4
√

2l3
e

[
3ker1

(
b
le

)
− ker3

(
b
le

)
+ 3kei1

(
b
le

)
− kei3

(
b
le

)]
+

C8

4
√

2l3
e

[
3ker1

(
b
le

)
− ker3

(
b
le

)
− 3kei1

(
b
le

)
+ kei3

(
b
le

)]
.

(C8)

These equations constitute a system of eight coupled linear equations, which can be written matricially as

A.C = B, (C9)

with

A=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a2

4
1 − a2

4
−1 0 0 0 0

a
2

0 − a
2

0 − 1
a

−a 0 0
1
2

0 − 1
2

0 1
a2 −3 0 0

0 0 0 0 − 2
a3 − 2

a
0 0

0 0 b2

4
1 ln

(
b
a

)
b2 ln

(
b
a

)
−kei0(

b
le
) −ker0(

b
le
)

0 0 b
2

0 1
b

b
(

2 ln
(

b
a

)
+ 1

)
−

kei1(
b
le
)−ker1(

b
le
)√

2le
−

kei1(
b
le
)+ker1(

b
le
)√

2le

0 0 1
2

0 − 1
b2 2 ln

(
b
a

)
+ 3 −

ker0(
b
le
)−ker2(

b
le
)

2l2e
−

kei2(
b
le
)−kei0(

b
le
)

2l2e

0 0 0 0 2
b3

2
b

−
3ker1(

b
le
)−ker3(

b
le
)+3kei1(

b
le
)−kei3(

b
le
)

4
√

2l3e
−

3ker1(
b
le
)−ker3(

b
le
)−3kei1(

b
le
)+kei3(

b
le
)

4
√

2l3e

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
(P0+𝜎Y )

64
− (P0−Pa)

(n+2)2(n+4)2

]
a4

D[
(P0+𝜎Y )

16
− (P0−Pa)

(n+2)2(n+4)

]
a3

D[
3(P0+𝜎Y )

16
− (P0−Pa)(n+3)

(n+2)2(n+4)

]
a2

D[
3(P0+𝜎Y )

8
− (P0−Pa)(n+3)

(n+2)(n+4)

]
a
D

q0

k
− (q0+𝜎Y )b4

64D

−(q0+𝜎Y )b3

16D

− 3(q0+𝜎Y )b2

16D

− 3(q0+𝜎Y )b
8D

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1

C2

C3

C4

C5

C6

C7

C8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We provide as supporting information a Matlab code (SGHElastoPlastic.m) which calculates C1 − C8 for any
set of parameters (h, E, 𝜈, 𝜌, 𝜎Y , k, Pa, n, a, b, and P0).

Appendix D: Approximate Expression for Maximum Uplift
in the Elastoplastic Model

For large values of the argument x, the asymptotic expressions of kei0 and kei0 are [see Timoshenko and
Woinowsky-Krieger, 1959, p. 266, equation (j)]:

ker0(x) ∼
√

𝜋

2x
e−x∕

√
2 cos

(
x√

2
+ 𝜋

8

)
(D1)

kei0(x) ∼ −
√

𝜋

2x
e−x∕

√
2 sin

(
x√

2
+ 𝜋

8

)
(D2)

Defining m = b

le

√
2

, the approximate analytical expression for the maximum uplift in the elastoplastic model,

wi,max is given by

−
64Dwi,max=

a4(P0 − q0)
=

4(P0 + 𝜎Y )
(q0 − P0)

log
(b

a

)
+

q0 + 𝜎Y

q0 − P0

b4
(

64m4 + 384m3 + 960m2 + 1440m + 945
)

a4 (64m4 + 128m3 + 64m2 − 15)
+

P0 + 𝜎Y

q0 − P0

a2
(

192m4 + 640m3 + 576m2 + 160m − 45
)
− 4b2

(
64m4 + 256m3 + 384m2 + 400m + 225

)
a2 (64m4 + 128m3 + 64m2 − 15)

(D3)
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