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Role of friction-induced torque in stick-slip motion
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Abstract – We present a minimal quasistatic 1D model describing the kinematics of the transition
from static friction to stick-slip motion of a linear elastic block on a rigid plane. We show how
the kinematics of both the precursors to frictional sliding and the periodic stick-slip motion are
controlled by the amount of friction-induced torque at the interface. Our model provides a general
framework to understand and relate a series of recent experimental observations, in particular
the nucleation location of micro-slip instabilities and the build-up of an asymmetric field of real
contact area.

Copyright c© EPLA, 2010

Interfacial friction [1–4] plays a major role in seismol-
ogy [5], biology [2,6] and nanomechanics [4]. The frictional
behavior of a contact interface is controlled by the shear
strength field σc(x), with x the position in the interface.
As the shear force is increased, a slip region nucleates at
the first point where the shear stress reaches the shear
strength and grows through the propagation of a micro-
slip front. Macroscopic sliding starts only after the entire
interface has slipped. This general picture has provided
the basis for friction models for decades [7–13]. Recently,
transitions from static to kinetic friction received renewed
interest due to experiments that allow the local dynam-
ics of frictional interfaces to be directly measured (see,
e.g., [14–17]). Depending on the contact configuration,
different kinds of transitions are observed.
For contacts between bodies having different shapes

(e.g., a sphere on a plane) the transition is smooth. As the
shear force is increased, micro-slip occurs immediately at
the periphery of the contact where the pressure vanishes,
and the slip zone quasistatically invades the higher-
pressure central region [16,17]. For multicontacts (contacts
between rough solids), this behavior was predicted decades
ago by Cattaneo and Mindlin using Amontons’ law of
friction (σc(x) = µp(x), where p is the pressure and µ is
the friction coefficient), as follows. The distribution of
pressure p(x) and shear stress σ(x) for a non-slipping
interface is first calculated. In an annular region at the
contact’s periphery, σ(x)>σc(x), showing that slip must
take place. Such knowledge of the geometry of the slip
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region allows the stress field for partial slip conditions to
be calculated [18]. In the following, we will apply a similar
procedure to planar contacts.
For planar contacts, σc(x) is expected to be essen-
tially homogeneous and micro-slip nucleation should occur
at random locations due to unavoidable heterogeneities.
Surprisingly, in most experiments, and whatever the way
the normal and shear loads are applied, micro-slip starts
at the trailing edge of the contact and propagates dynam-
ically towards the leading edge [15,19–24]. Recent experi-
ments on multicontact interfaces also show that the onset
of sliding is preceded by a series of precursors of increasing
length, which arrest before reaching the interface’s leading
edge [21,23,24]. These precursors have also been observed
indirectly in microstructured contacts [22].
Two aspects of these findings triggered an active debate.

One concerns the dynamics of the three types of micro-
slip fronts observed in [15,21,23]. This variety has recently
been reproduced in a 1D spring-block model in which the
interface obeys a complex dynamics described by arrays of
springs having a distribution of detachment force thresh-
olds and a constant delay time for reattachement [13]. This
first aspect will not be further addressed here.
The second aspect, which is the main focus of this

letter, concerns the kinematics of the precursors, i.e. how
their triggering force, number and length are selected.
Precursors are always found to nucleate near the trail-
ing edge. They are accompanied by the growth of an
asymmetric field of real contact area, with a minimum
near the trailing edge, which is retained during macro-
scopic motion [21,23]. Conversely, changing the way the
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Fig. 1: (Colour on-line) Sketch of the system geometry (see text
for details) for X = 0 (dashed line) and X �= 0 (solid line).

shear [21,23] or normal [24] load is applied modifies
the series of precursors. To date, no general descrip-
tion includes all these kinematic features. However, these
observations strongly indicate that precursors are highly
dependent on how both the pressure and shear stress are
distributed at the interface.
Experiments on planar contacts can be sorted into

two groups according to the choice of macroscopic load-
ing: the slider is either pushed from its trailing edge
side [15,21,23,24] or driven from its top by a rigid body
[19,20,22]. In the first configuration, it has been suggested
that slip must nucleate at the trailing edge because push-
ing dramatically increases the shear stress in its vicin-
ity [13,23]. In the second configuration, the shear stress is
expected to be distributed homogeneously over the inter-
face, and the reason why nucleation also occurs at the
trailing edge is still unclear. In the following, we will
focus on this second, top-driven, configuration because the
description of the stresses is much simpler than for the first
(which would in particular include the contact stress field
around the pushing point).
In this letter, we present a minimal 1D quasistatic

model for a sheared planar frictional interface. It involves
a stress analysis which is inspired by that of Cattaneo
and Mindlin. By accounting for the first time explicitly for
the torque that arises whenever the tangential force is not
applied exactly in the plane of the interface, we reproduce
most of the above-mentioned kinematic observations. This
provides a comprehensive picture of the kinematics of the
transition from static friction to periodic stick-slip motion,
including precursors.

Model. – We consider the setup sketched in fig. 1. A
frictional interface is formed by pressing a linear elastic
block (Young’s modulusE, thickness t, width w and length
L, perfectly bonded to a rigid plate) on a horizontal plane.
The normal load N , applied symmetrically with respect
to the contact center, induces no tilt of the plate. The
tangential displacement of the plate, X, is prescribed at a
heightH with respect to the frictional interface, giving rise
to a friction force F . We assume Amontons’ rigid-plastic
law of friction, with a static friction coefficient µs and a
kinetic friction coefficient µd <µs. We therefore neglect
any effect of the tangential stiffness of the multicontact
interface, which would induce deviations to Amontons in
contacts where stick and slip regions coexist [25]. We also
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Fig. 2: Calculated stress fields p̃(x̃) (open symbols), and σ̃(x̃)
(full symbols) for F = 0 (circles), 0.41N (squares) and 0.82N
(diamonds). Stresses are made non-dimensional by dividing
them by the average pressure. For clarity, only 1 data point out
of 9 is plotted. These fields are compared to the fields assumed
in the model (dashed lines).

neglect state and rate effects [3]. We place the origin of
x at the center of the contact, which extends between
±L2 . The problem is made dimensionless by expressing
coordinates in units of L, forces in units of µsN and
stresses in units of µsN

wL
. Dimensionless quantities bear a

tilde. All physical quantities can be expressed in terms
of only two dimensionless control parameters: r= µd

µs
and

g= 6µd
H
L
.

In order to guide our assumptions about the stress
distributions we first performed simple, plane strain,
finite element calculations (software Castem 2007) on the
configuration sketched in fig. 1. The boundary conditions
are the following: no displacement is allowed at the contact
interface; the linear elastic block (L= 40 cm, t= 2mm,
E = 2 · 103 Pa, Poisson’s ratio 0.4) is perfectly bonded to
the rigid plate (E = 2 · 1015 Pa, Poisson’s ratio 0.4); the
normal displacement of the rigid plate is prescribed at the
center of its top surface; the tangential displacement of
the rigid plate is prescribed on a point of its left side at a
heigth H = 4 cm. We used a regular mesh size of 1mm and
QUA4 elements. Figure 2 shows the pressure and shear
stress fields over the contact interface for normal loading
only and for two different shear forces applied. For F = 0,
the shear stress is zero and the pressure field is a constant.
For F �= 0, the shear stress increases homogeneously over
the whole contact, whereas the pressure develops an
asymmetry which, to a very good approximation, is linear
with x. We find deviations at both contact extremities due
to edge effects, which are significant over distances ∼ t for
the pressure and ∼ 3t for the shear stress. Based on these
preliminary calculations, we develop the following model.
We neglect any edge effect like, e.g., a divergence of

the stresses at the border of the punch-like contact [18],

54001-p2



Role of friction-induced torque in stick-slip motion

0
-1/2 1/2 -1/2 1/2x1

(a) (b)

0

stress

x

0

F = 0

x

F = F1
µs p(x)

µd p(x)

µs p(x)
µd p(x)

stress

F1
c

-1/2 1/2

(c)

0

x

F = F2
µs p(x)

µd p(x)

stress

F2
c

x2

1

r

~

~ ~

~ ~

~~ ~

~ ~ ~ ~

~ ~

~
~ ~

~
~

~ ~
~ ~

~ ~

~
~ ~

~
~

Fig. 3: Stress fields µsp̃(x̃) (solid line), µdp̃(x̃) (dashed line) and σ̃(x̃) (dotted line). (a) F̃ = 0: all fields are homogeneous and
σ̃(x̃) = 0. (b) F̃ = F̃ 1: µsp̃= σ̃= F̃

c

1 at x̃=−1/2 (black disk). Propagation stops at x̃1 (open disk) where µdp̃= σ̃= F̃
c

1. Vertical
arrows show the stress relaxation on the segment [−1/2; x̃1]. The grey surface represents the relaxed force F̃

∗

1. (c) Same as (b)
but for F̃ = F̃ 2.

an assumption that is increasingly valid as t/L decreases.
These edge effects would be symmetric with respect to
x̃= 0 and hence could not account alone for the observed
asymmetry. Under these conditions, for F̃ = 0 the pressure
field p̃(x̃) = 1

µs
is therefore constant (fig. 3(a)). Moreover,

between two micro-slip events, the tangential displacement
of the top surface of the block is homogeneous, so that the
shear stress field σ̃(x̃) increases homogeneously (fig. 3(b)).
For F̃ �= 0, a torque FH is applied at the interface,
which can only be balanced by an asymmetry of the
pressure field. The elastic block is confined between two
rigid planes, one of which (the plate) undergoes a slight
tilt. This yields a linear spatial distribution for the normal
compression, which is assumed to translate into a linear
pressure field p̃(x̃, F̃ ) = 1

µs
+ 2 g
µd
F̃ x̃, which agrees very well

with the one calculated above (see fig. 2). This assumption
is increasingly valid with decreasing t/L, and would
increasingly break for an increasing compliance of the
driving plate. We assume that this linear form remains
true even after micro-slips, i.e. the pressure field, just like
the torque, depends only on the total friction force F̃ and
not on the distribution of shear stress over the contact.
This is similar to the classical Goodman assumption in
contact mechanics [18,26], which is here increasingly valid
with decreasing t/L.
At a certain force F̃ = F̃ 1 the local static slip threshold

σ̃(x̃) = µsp̃(x̃, F̃ ) is reached for the first time at the trailing
edge x̃=− 12 (if g > 0), where the pressure is minimum
(black disk in fig. 3(b)), and we find that

F̃ 1 =
1

1+ g/r
. (1)

A micro-slip front nucleates at the trailing edge, turn-
ing the problem into the one of an interfacial shear
crack. This crack is unstable in the sense of the Griffith
energetic criterion (see appendix) over virtually all x̃
such that σ̃(x̃)∈ [µdp̃;µsp̃]. The micro-slip front therefore

propagates towards the leading edge. By assuming that
the friction force relaxation associated with the micro-slip
occurs only after propagation is over, we find that the
front arrests at point x̃1 such that σ̃(x̃1) = µdp̃(x̃1, F̃ 1)
(open disk in fig. 3(b)).
In all the slipped region, the shear stress drops to

µdp̃(x̃, F̃ 1) (arrows in fig. 3(b)) so that the shear stress
field is now σ̃(x̃) = r+2 gF̃ 1x̃, for x̃∈ [−1/2; x̃1] and
σ̃(x̃) = F̃ 1, elsewhere. We therefore neglect the extension
∼ t over which the slope discontinuity of the shear stress
at x̃1 is regularized. The relaxed friction force F̃

∗

1 is the
integral of this relaxed shear stress field (grey area in
fig. 3(b)). The subsequent evolution for increasing F̃ is
a series of micro-slip events following the same scenario
(see fig. 3(c) for a sketch of the second event).
We now derive the iteration formulae for the successive

values of F̃ i for such precursors, the corresponding arrest
positions x̃i and the relaxed forces F̃

∗

i . We introduce the
elastic force F c =KX, where K is the effective stiffness
of the elastic block. F c is the tangential force that would
have been required to move the rigid plate in the absence of
partial relaxations related to the micro-slip events. Before
macroscopic motion, F̃ c reduces to σ̃(x̃= 1/2) (see fig. 3).
The value F̃ ci at the onset of the i-th precursor is

F̃ ci = F̃ i+
i−1
∑

j=1

(F̃ j − F̃
∗

j ) (F̃ c1 = F̃ 1). (2)

The arrest point for the i-th event is then given by
µdp̃(x̃i, F̃ i) = F̃

c
i (see fig. 3(b) and (c)), yielding

x̃i = (F̃
c
i − r)/2F̃ ig. (3)

Knowing F̃ i, F̃
c
i and x̃i, the relaxed force F̃

∗

i is derived
by integrating the shear stress field just after the precur-
sor. One shows graphically (fig. 3, grey areas) that

F̃ ∗i = F̃
c
i −
1

2
(x̃i+1/2)

[

F̃ ci − r
(

1− gF̃ i/r
)]

. (4)

54001-p3



J. Scheibert and D. K. Dysthe

0 0.5 1 1.5
0.6

0.7

0.8

0.9

1

F
 c

r = 0.9
g = 0.35

stick−
slip

precursors

x
1

r

−0.5 0.50

 ~

 ~

 ~
F

Fig. 4: (Colour on-line) Red: loading curve F̃ (F̃ c) (r= 0.9,
g= 0.35). Black: ideal elastic loading. Blue horizontal lines:
extension of the successive precursors along the contact.

We finally calculate the force at the next event. The
static threshold is always reached first at x̃=− 12 . Then

F̃ i+1 verifies µdp̃(−
1
2 , F̃ i)+ F̃ i+1− F̃

∗

i = µsp̃(−
1
2 , F̃ i+1),

yielding

F̃ i+1 =
1− r+ F̃ ∗i + gF̃ i

1+ g/r
. (5)

The evolution of the system can be solved iteratively with
eq. (1) as the starting point. At each step, F̃ ∗i , F̃ i+1, F̃

c
i+1

and x̃i+1 are computed successively. This procedure has
to be slightly modified as soon as x̃n+1 > 1/2, i.e. when
the (n+1)-th event first reaches the leading edge after
n precursors. At this point, the shear stress relaxes to
σ̃(x̃) = µdp̃(x̃) everywhere, i.e. F̃

∗

n+1 = r. The subsequent
evolution is then obtained by simply replacing eq. (3) by
x̃i = 1/2 and eq. (4) by F̃

∗

i = r in the iteration.

Results. – Figure 4 shows how the friction force F̃ typi-
cally evolves with the elastic force F̃ c (which is propor-
tional to the prescribed displacement X). This loading
curve exhibits an initial elastic regime at low forces. It
is followed by a series of n relaxations corresponding
to n precursors of increasing length. The system then
enters a macroscopic stick-slip motion regime (each slip
event involves the whole interface), in which the relaxed
force is always r. Stick-slip progressively becomes periodic,
reaching a maximum friction force of F̃max =

1
1+ g

r
(1−r)

(calculated by imposing F̃ i+1 = F̃ i in eq. (5)).
In practice, the two control parameters can only be

varied in the range 0< r < 1 (r > 1 is not physical because
µs >µd) and 0< g < 1 ( p̃ > 0 everywhere in the contact
in the absence of adhesive forces, which translates into
the condition that, for all F̃ < F̃max, p̃(−1/2, F̃ )> 0,
yielding r− gF̃max > 0 and eventually g < 1). Figure 5
shows the number of precursors n over the whole accessible
parameter space. n increases with both r and g. In
particular, the larger the torque, the more precursors.
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Fig. 5: (Colour on-line) Number of precursors as a function of
r and g.

Below the line g= (1− r)/2, the extension of the first
precursor x̃1 is longer than the contact size, so that no
precursor is observed. In particular, no precursor can occur
at a torque-free interface (H = 0, i.e. g= 0).

Discussion. – We built a minimal model accounting
for the rich kinematics of the transition from static
to kinetic friction. The key ingredient is the increasing
asymmetry induced by the growing tangential force, as
soon as the latter is not applied exactly in the plane
of the contact interface. We emphasize that this effect
is different in essence from any time-invariant pressure
asymmetry that would be due to an asymmetric normal
loading, like in [24]. Our strongest assumption is that
the micro-slip front is so fast that the associated force
relaxation occurs only after its arrest. This is a hidden
assumption about the propagation dynamics, which is
otherwise explicitly beyond the scope of this quasistatic
model. In this respect, our model is a crude description of
a real frictional interface. Yet, we believe that it captures
important generic aspects of sheared frictional interfaces.
An important component of the present model is the
build-up of a friction-induced torque. We emphasize that
in typical situations, a significant torque corresponds only
to a very slight tilt angle. For instance, for small defor-
mations F/wLE < 10−3, a force applied at the bottom of
the rigid plate H = t and an aspect ratio t/L< 10−1 yield
α< 1.2 · 10−4 rad. The asymmetry of the contact is there-
fore very difficult to avoid experimentally.
Even for an initially homogeneous interface, tangential

loading produces an increasing contact pressure asymme-
try. In practice, the tangential force is usually applied
above the interface (H > 0), making the pressure lower
at the trailing edge. Under these conditions, any friction
law that prescribes a monotonic increase in shear strength
with increasing local pressure implies that the lowest
shear strength is at the trailing edge. In practice most
friction laws belong to this category. Here, we considered
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the classical Amontons’ law, which is known to be valid
for macroscopic multicontact interfaces [1,27]. The smooth
glass-on-gel interfaces used in [19,20], although a very
different system, also obey a pressure-increasing shear
strength law, which is a modified version of Amontons’
law including adhesive forces. The pressure dependence
of shear strength of the microstructured contacts stud-
ied in [22] was not reported but we speculate that it also
follows an increasing trend. Our model therefore success-
fully explains why micro-slip fronts always occur at the
trailing edge in both systems [19,20,22], which are top-
driven.
In the side-pushed multicontacts studied in [21,23,24],

we also expect the torque to decrease the pressure at the
trailing edge. This is confirmed by measurements of the
distribution of real contact area just after the successive
precursors and after each slip in the periodic stick-slip
regime [21,23]. In a multicontact interface, the real contact
area is well-known to be proportional to the applied
contact pressure [27,28]. Our model is therefore consistent
with their observation of a real contact area asymmetry
which increases with F , and which is retained and stable
in the macroscopic stick-slip regime, with a minimum near
the trailing edge. We emphasize that further quantitative
comparison between our model and the measurements for
the number and length of the precursors in [21,23,24] is
not possible because the two loading systems are very
different. In particular, we believe that the huge shear
stress increase near the pushing point will likely play the
primary role in reducing the shear strength at the trailing
edge, and dominate the torque effect. We also emphasize
that, even in top-driven systems [19,20,22], quantitative
comparison would require knowledge of the effective height
H of the applied friction force, which is seldom provided
in the literature. We therefore urge authors to provide, in
the future, all the details about the loading configuration
that are necessary to assess the level of torque, like in [29]
where H = 0.
An implication of the fact that micro-slip very gener-

ically nucleates at the trailing edge of a contact implies
that the interface will be in a compressed state as soon
as the first precursor occurs. This strongly suggests
that the results of Bennewitz et al. [22], which measure
such compression, are valid over a much broader range
of systems than their microstructured PDMS on glass
interface.
Other results of the model are of general interest

for frictional systems. First, they suggest that, from a
kinematic point of view, macroscopic stick-slip is not
different from the preceding precursors, the latter being
merely defined by their limited extent over the interface.
Second, we show that Fmax/N is always smaller than
µs, i.e. the macroscopic friction coefficient is always
lower than the local friction coefficient, which governs the
onset of the micro-slip instability. The macroscopic friction
coefficient is moreover dependent on g, i.e. on the details
of the loading system, suggesting that care has to be taken

when a friction coefficient is measured using a macroscopic
experiment.
To conclude, we have shown that in virtually all friction

experiments, slip will occur at an asymmetrically loaded
interface due to a friction-induced torque. In particular,
the pressure is minimum near the trailing edge, where
all micro-slip instabilities nucleate. In top-driven systems,
like the one studied here, the kinematics of the transition
from static to stick-slip friction is then dominated by this
macroscopic, system-dependent, asymmetry rather than
by small scale heterogeneities of the shear strength. This
is in striking contrast with most friction models, which
assume a homogeneously loaded interface bearing a rela-
tively small disorder (see, e.g., [7–9,13]). In this respect,
the present work provides a framework for the extension
of these models to take into account a macroscopic shear
strength asymmetry.
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Appendix

Here we show, using an energetic criterion, that a crack tip
at the frictional interface is unstable at virtually all points
x satisfying the following stress criterion σ(x)>µdp(x).
We apply the Griffith energetic criterion which states that
an existing crack will propagate if G(x)> Γc(x), where
G(x) is the energy release rate at point x and Γc(x) is
the facture energy at point x. To do this, one needs to
regularize Amontons’ law of friction by describing how
the shear stress drops from µs to µd. The easiest way,
which is classically used in dynamic crack simulations (see,
e.g., [5,30]), is to assume a linear slip weakening: σ drops
linearly from µsp to µdp over a critical weakening distance

Dc. Then Γc(x) =
(µs−µd)Dc

2 p(x).
When slip occurs at x, the shear stress is relaxed by

the amount (µ(x)−µd)p(x), where µ(x) = σ(x)/p(x). The
amplitude of the corresponding slip is δ(x) = t(µ(x)−

µd)
p(x)
E
. Neglecting the variation of stress during the first

slip over the (microscopic) length Dc, the stress during all
the slip is µdp(x). Therefore G(x)≃ µd(µ(x)−µd)

t
E
p2(x).

The condition G> Γc therefore reads

µ(x)−µd �
E

p(x)

Dc
t

µs−µd
2µd

. (A.1)

Dc and t being, respectively, a microscopic and a
macroscopic length scale, Dc/t≪ 1. This means that the
crack will stop only for very low values of µ(x)−µd. We
therefore consider that a precursor practically propagates
until the point where σ(x) = µdp(x).
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Debrégeas G., Science, 323 (2009) 1503.

[7] Burridge R. and Knopoff L., Bull. Seismol. Soc. Am.,
57 (1967) 341.

[8] Carlson J. M. and Langer J. S., Phys. Rev. Lett., 62
(1989) 2632.

[9] Olami Z., Feder H. J. S. and Christensen K., Phys.
Rev. Lett., 68 (1992) 1244.

[10] Kanamori H. and Brodsky E. E., Rep. Prog. Phys., 67
(2004) 1429.

[11] Brener E. A., Malinin S. V. and Marchenko V. I.,
Eur. Phys. J. E, 17 (2005) 101.

[12] Brochard-Wyart F. and de Gennes P. G., Eur. Phys.
J. E, 23 (2007) 439.

[13] Braun O. M., Barel I. and Urbakh M., Phys. Rev.
Lett., 103 (2009) 194301.

[14] Rosakis A. J., Samudrala O. and Coker D., Science,
284 (1999) 1337.

[15] Rubinstein S. M., Cohen G. and Fineberg J., Nature,
430 (2004) 1005.

[16] Scheibert J., Debrégeas G. and Prevost A.,
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