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UMR 5513, F-69134 Ecully, France
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True contact between randomly rough solids consists of myriad individual microjunctions. While their
total area controls the adhesive friction force of the interface, other macroscopic features, including
viscoelastic friction, wear, stiffness, and electric resistance, also strongly depend on the size and shape of
individual microjunctions. We show that, in rough elastomer contacts, the shape of microjunctions
significantly varies as a function of the shear force applied to the interface. This process leads to a growth of
anisotropy of the overall contact interface, which saturates in the macroscopic sliding regime. We show that
smooth sphere-plane contacts have the same shear-induced anisotropic behavior as individual micro-
junctions, with a common scaling law over 4 orders of magnitude in the initial area. We discuss the physical
origin of the observations in light of a fracture-based adhesive contact mechanics model, described in the
companion article, which captures the smooth sphere-plane measurements. Our results shed light on a
generic, overlooked source of anisotropy in rough elastic contacts, not taken into account in current rough
contact mechanics models.
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Real contact between rough solids occurs only in
randomly distributed small regions of the interface (micro-
junctions) [1,2]. The adhesion component of the friction
force is proportional to the total area of all microjunctions
[3–8]. In contrast, many other macroscopic contact proper-
ties (e.g., electric and heat resistance [9,10], normal and
shear stiffnesses [11], wear [12], and viscoelastic friction
[13]) also depend on the details of the real contact
morphology, including the number, size, spatial distribu-
tion, and shape of individual microjunctions. In this
context, it is clear that any phenomenon affecting the real
contact morphology of an interface will also affect all of its
above-mentioned physical properties.
The real contact morphology of rough interfaces depends

both on loading (e.g., pressure and contact time [14] and
sliding velocity [15]) and system parameters (e.g., adhesion
between the solids [16] and the spectral contents of the
surface roughness [13,17–19]). One of the important
descriptors of morphology is the degree of anisotropy of
the interface. Rough contact anisotropy may occur for
various reasons: anisotropic roughness [20], anisotropic
bulk material behavior, or viscoelasticity in the gross
sliding regime [15]. The very same reasons also yield
anisotropic contact shapes at the interface between smooth
axisymmetric bodies, for instance, in sphere-plane geom-
etry [21–24], thus suggesting common physical origins.

Interestingly, in such smooth sphere-plane contacts,
another source of anisotropy has been observed: an initially
circular contact becomes less and less axisymmetric as it is
increasingly sheared [7,25–29]. It is thus natural to hypoth-
esize that a similar growth of anisotropy may also occur in
multicontact interfaces under shear. Such a behavior would
imply that many transport, mechanical, or tribological
properties of a rough contact are not intrinsic features of
the interface but are actually dynamical quantities that
evolve with the amount of shear applied. In order to test this
hypothesis, we further analyze an extensive series of
experiments performed on various elastomeric multicon-
tacts, in which the evolution of the morphology of the real
contact is monitored optically as the shear force is increased
from pure normal contact to gross sliding. All experimental
details can be found in Ref. [7], while the main points are
summarized here.
We make centimeter-sized contact [Fig. 1(a)] between a

flat, smooth bare glass slider and a flat, rough cross-linked
polydimethylsiloxane (PDMS) block (rms roughness
26 μm; see a typical power spectrum density in the
Supplemental Material [30]), under constant normal force
P in the range 0.98–6.40 N [i.e., a ratio p=E� in the range
0.0006–0.0043, with p being the average pressure applied,
E� ¼ E=ð1 − ν2Þ, and E and ν being the Young’s modulus
and Poisson’s ratio of the PDMS, respectively]. We
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optionally coat the glass surface, either with grafted PDMS
chains or with a layer of cross-linked PDMS, to change
its adhesive and frictional properties. We drive the slider
horizontally towards macrosopic sliding, at constant veloc-
ity V in the range 0.05–1 mm=s, while we monitor the
tangential force Q. Simultaneously, we image in situ the
contact and access highly contrasted pictures, which we
efficiently binarize using automatic thresholding [30],
enabling identification of each microjunction [the white
spots in Fig. 1(b)]. In the following, we present data
only for PDMS-glass interfaces: PDMS–crosslinked-
PDMS interfaces behave similarly, despite a slight initial
anisotropy, while PDMS–grafted-PDMS interfaces show
negligible evolution under shear due to low frictional
strength [7]. Also, we observed only a weak effect of V,
so we will show results only for V ¼ 0.1 mm=s.
To assess whether the degree of anisotropy of our rough

contacts changes under shear, we compute, for each
binarized image, its normalized autocorrelation function,
a typical example of which is shown in Fig. 1(b) (inset). We
then fit this function (see the caption of Fig. 1) to extract
two correlation lengths, Lk and L⊥, in the directions
parallel and orthogonal to shear loading, respectively.
Figure 1(c) shows a typical concurrent evolution of the
correlation lengths and the tangential force Q as the
interface is driven from its initial state (pure normal force)
to macroscopic sliding. We find that, for Q ¼ 0, Lk and L⊥
are roughly equal (less than a 5% difference) for all normal
forces, showing that the contact is initially isotropic. As
soon as Q increases, Lk is found to significantly decrease,

typically by 10%–15%, while L⊥ varies much less. Both
correlation lengths stabilize after Q has reached the static
friction peak value, Qs, and the interface has entered a
macroscopic sliding regime. We quantify contact
anisotropy by the ratio Lk=L⊥, shown as a function of
the tangential force Q in Fig. 1(d). We find that Lk=L⊥
decreases by ∼7%–12%, with larger decays for smaller
normal forces. Those results validate our initial hypothesis
(rough contacts undergo a growing anisotropy under
increasing shear) with, at the onset of sliding, a signifi-
cantly reduced characteristic length scale of the real contact
along the loading direction.
What is the microscopic origin of this growing

anisotropy? To answer this question, we track the individ-
ual microjunctions along the shearing experiments
(tracking performed as in Ref. [7]) and extract the time
evolution of their area and shape and the location of their
center of mass. For each tracked microjunction i, we define
its mean size ai from its area Ai: ai ¼

ffiffiffiffiffiffiffiffiffiffi

Ai=π
p

. We first find
that, for all experiments, the values of Lk and L⊥ match the
mean size of individual microjunctions at the interface
[Fig. 2(a)]. This suggests that the observed growth of
macroscopic anisotropy reflects a change in shape of each
individual microjunction, rather than an anisotropic modi-
fication of their spatial organisation along the contact plane.
Indeed, in the latter case, the characteristic length scales
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FIG. 1. (a) Sketch of the experimental setup. (b) Typical
binarized image of a multicontact. P ¼ 6.40 N. (Inset) Normal-
ized autocorrelation function of the image shown in the main
panel. The correlation lengths Lk and L⊥ are obtained through

fitting with e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2=Lk2þy2=L⊥2
p

[30]. (c) Concurrent time evolutions
ofQ, Lk, and L⊥ for the interface of (b). ∘, static friction peakQs;
error bar, 95% confidence interval. (d) Evolution of Lk=L⊥ vs Q
for various normal forces.
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FIG. 2. (a) Macroscopic correlation lengths along the directions
parallel (empty circle) and orthogonal (empty triangle) to shear,
for Q ¼ 0 (blue) and Q ¼ Qs (red), vs average microjunction
size, for various P. Error bar, 95% confidence interval. (b) Filled
circle, microjunction size vs norm of its excursion from the initial
real contact pattern for the experiments of (a); Square, data
barycenter for each P; solid line, equality line. (c) Typical
microjunction image. Solid red (dashed blue) line, contour for
Q ¼ 0 (Q ¼ Qs); red ellipse, equivalent ellipse showing lki, l⊥i,
and θi. (d) Relative change of lki vs relative change of l⊥i for
individual microjunctions in the experiments of (a) and (b).
Square, data barycenter, as in (b); solid line, equality line.
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measured would have been larger, reflecting the size of
possible clusters of microjunctions.
To check this hypothesis, we measure jδi − δ̄j, the

displacement of microjunction i with respect to the average
motion of all microjunctions, δ̄, at the onset of sliding
(when Q ¼ Qs). Note that δ̄ varies from about 50 to
150 μm when the normal force is increased from about
1 to 6.4 N. jδi − δ̄j quantifies how much the initial pattern
of microjunctions along the interface has been modified
upon shearing. Figure 2(b) represents ai as a function of
jδi − δ̄j for all tracked microjunctions in all experiments.
The large majority of the points are above the equality line,
meaning that the microjunctions move with respect to their
initial neighborhood by less than their own size. Such an
observation indicates that the microjunction pattern form-
ing the real contact is virtually unaffected by shear. Hence,
we conclude that the evolution of the correlation length of
the real contact does not originate from the relative
displacement of microjunctions. This is in contrast to the
anisotropy observed in simulations of frictionless rough
viscoelastic contacts [34].
To demonstrate that the anisotropic changes in macro-

scopic correlation lengths originate from an anisotropic
change in the shape of the individual microjunctions, we
extract the time evolution of their equivalent ellipse [the
ellipse having the same central second moments as
the microjunction; see Fig. 2(c) and the Supplemental
Material [30]]. We define their characteristic dimensions
lki and l⊥i as the lengths of the cords passing through the
ellipse center along the directions parallel and orthogonal to
shear, respectively (note that, due to the angle θi between
the major axis of the ellipse and the shear direction, lki and
l⊥i are different from the major and minor axis lengths of
the ellipse). Figure 2(d) shows, for all experiments,
the average relative variation in lki, ðlk0i − lksiÞ=lk0i,
as a function of the average relative variation in l⊥i,
ðl⊥0i − l⊥siÞ=l⊥0i between the initial state (subscript 0)
and that reached when Q ¼ Qs (subscript s). The positive
values of both average relative changes show that, under
shear, microjunctions tend to shrink in both directions. The
fact that those average points actually lie well above the
equality line (by a typical factor of 2 to 3), indicates that
most of the microjunctions have a larger change along than
orthogonal to the shear direction. Those results are fully
consistent with the observed differential changes in Lk and
L⊥, indicating that the macroscopic growth of anisotropy
essentially originates from a gradual shear-induced shape
change of all of the individual microjunctions.
Understanding the shear-induced anisotropy of rough

contacts thus amounts to understanding the shape-changing
behavior of individual microjunctions. While this shape
change is expected to be related to the local tangential force
that is applied to a microjunction, the latter force is not a
measurable quantity, which impairs direct investigation of
the local relationship between aspect ratio and shear force.

In order to get some insight on this relationship, we analyze
complementary experiments on smooth PDMS-sphere–
glass-plane contacts (see Ref. [7] for experimental details).
The assumption is that those contacts are good proxies for
individual microjunctions, with the advantage that the
tangential force applied to them can be accurately mea-
sured. Figure 3(a) shows the evolution of the contact
morphology of such a smooth sphere-plane contact under
shear. The contact initially has a circular shape, which
progressively changes as the shear force grows, to an
ellipselike shape oriented orthogonal to the shear direction.
This is in qualitative agreement with our observations on
individual microjunctions.
Figure 3(b) further shows the evolution of the contact

sizes along (orthogonal to) the loading direction, lk (l⊥),
as functions of the tangential forceQ. For all normal forces,
l⊥ shows only small variations, while the larger variations
of lk are well captured by an empirical quadratic function
of the form (the dotted lines)

lkðQÞ ¼ lk0 − ξQ2; ð1Þ

with the fitting parameter ξ being a priori dependent on all
system parameters other thanQ. One of the parameters that
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FIG. 3. (a) Segmented images of a smooth sphere-plane contact
(P ¼ 1.10 N, radius of curvature R ¼ 9.42 mm) for Q ¼ 0 and
Qs. (Right) Definition of lk and l⊥. (b) Evolution of lk (∘) and
l⊥ (△) vs Q, for smooth sphere-plane contacts, for various
normal forces. Dotted lines, fits of the form of Eq. (1). (c) Size-
reduction parameter ξ vs A0. Disks, smooth sphere-plane con-
tacts. R ¼ 7.0, 9.42, or 24.0 mm. Gray crosses, raw data for
microjunctions within multicontacts; squares, average of raw data
divided into 21 classes; error bars, standard deviation within each
class; solid line, guide for the eye, slope −2.
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we could both change and monitor systematically is the
initial area of the contact, A0. Figure 3(c) (disks) shows the
evolution of ξ as a function of A0 for all experiments on
smooth sphere-plane contacts. We find that ξðA0Þ is well
captured by a power law ξ ∼ A0

δ with δ ≃ −2.
We now come back to rough contacts and assume that

each microjunction behaves according to Eq. (1):
lkiðqiÞ ¼ lk0i − ξiq2i , with qi being the tangential force
on microjunction i. Following Ref. [7], we further assume
that, at the onset of macroscopic sliding (index s), i.e.,
when Ai ¼ Asi, then qi ¼ qsi ¼ σAsi, with σ ¼ 0.23 MPa
being the frictional shear strength of the rough
PDMS-glass interface. We can thus estimate ξi as ξi ¼
½ðlk0i − lksiÞ=ðσ2Asi

2Þ�. In practice, lk0i and lksi (A0i and
Asi) are estimated as the initial and final values of a sigmoid
fitted onto the time evolution of li (Ai). The resulting
values of ξi are plotted as a function of A0i as squares in
Fig. 3(c). Strikingly, the microjunction data align with the
smooth sphere-plane contact data (disks). This suggests a
common behavior, for the growth rate of anisotropy under
shear, over about 4 orders of magnitude in A0, from
micrometer-scaled microjunctions within multicontacts to
millimeter-scaled sphere-plane contacts. We thus expect the
same physical origin for the behaviors observed at both
ends of the scale range. In this context, understanding the
shear-induced anisotropy of smooth sphere-plane contacts
appears to be the first step to unravel the anisotropy of
sheared rough contacts.
From an empirical standpoint, let us compare the law

identified here for the growth of anisotropy of smooth
sphere-plane contacts [Eq. (1)] to that found for the
concurrent reduction of the contact area, A. In Ref. [7],
we found that A ¼ A0 − αQ2, with α ∼ A0

γ and γ ≃ −3=2.
Both laws are reminiscent of the ones found above for lk
and ξ, respectively. In order to relate the two sets of
observations, we first note that for sphere-plane contacts,
l⊥ remains roughly unchanged under shear, thus sug-
gesting that l⊥ ≃ l⊥0 at all times. Further assuming that the
contact takes an elliptic shape, the contact area can thus
be written as A ¼ ðπ=4Þlkl⊥ ≃ ðπ=4Þlkl⊥0. Replacing A
in the area reduction law, dividing by ðπ=4Þl⊥0, and
remembering that lk0 ¼ l⊥0 ¼ 2

ffiffiffiffiffiffiffiffiffiffi

A0=π
p

, we obtain lk ¼
lk0 − ð2α= ffiffiffiffiffiffiffiffi

πA0

p ÞQ2. The latter expression shows both that
(i) the area reduction law and the anisotropy growth law
[Eq. (1)] are fully compatible and (ii) ξ ¼ ð2α= ffiffiffiffiffiffiffiffi

πA0

p Þ, thus
explaining why the exponents δ ≃ −2 and γ ≃ −3=2 are
found to be related by δ ¼ γ − 1=2. In this respect, the
present results on shear-induced anisotropy are in good
agreement with previous results on contact area reduction
under shear in the same systems [7]. They further suggest
that the evolution of the area of real contact, A, and thus
the value of the static friction force (which is proportional
to A), are actually collateral effects of the shear-induced
growth of anisotropy described here.

A physics-based model of our experiments on smooth
sphere-plane contacts can be found in the companion article
[35], which introduces the first fracture-based contact
mechanics model accounting for shear-induced anisotropy
in adhesive contacts. Once calibrated on one among the
present experiments, that model allows us to quantitatively
capture the evolution of the contact shape in all other
experiments without any more adjustable parameter. In the
model of Ref. [35], a vanishing work of adhesion between
the contacting surfaces corresponds to an absence of
evolution of the contact shape under shear, which suggests
that adhesion is likely responsible for the experimentally
observed shear-induced anisotropy.
One interesting aspect of the model of Ref. [35] is that it

can be used not only on initially circular contacts, like those
relevant for the present sphere-plane experiments, but also
on initially elliptic contacts with a major axis either parallel
or perpendicular to the shear loading direction. The model
predicts that when shear is applied along the major axis, the
ellipse’s eccentricity will tend to decrease, while it will
increase when shear is orthogonal to the major axis [35].
Those observations are consistent with the fact that lk
decreases more than l⊥ varies under shear. Are those
results relevant to rough interfaces, in which microjunc-
tions have a broad distribution of shapes? To test this, we
come back to the equivalent ellipse for each microjunction,
already used in Fig. 2. We consider all 514 tracked
microjunctions with an initial area larger than 2×10−9m2

in the contact under P ¼ 6.40 N. We then calculate
Spearman rank correlation coefficient [36] between
(i) the set of absolute values of the initial angles, jθij
[Fig. 3(c)], between the shear direction and the major axis
of all microjunctions, and (ii) the corresponding set of
relative changes in eccentricities between Q ¼ 0 and
Q ¼ Qs. We find a correlation coefficient of −0.36 with
a p value of less than 10−16, which indicates a significant
anticorrelation between both quantities. In other words,
angles θi close to 0° (�90°) statistically correspond to
decreasing (increasing) eccentricity under shear, in agree-
ment with the theoretical results.
Overall, our results demonstrate that macroscopic rough

elastic contacts can develop significant anisotropy under
shear, although the topographies and material properties
are isotropic. Such anisotropy develops as soon as shear is
applied, well before macroscopic sliding. It originates from
a shape change of each microjunction within the interface,
presumably due to the existence of adhesive stresses at the
interface. Note that, as already discussed in Ref. [7],
viscoelasticity is not a likely candidate mechanism because
it cannot be responsible for the sustained anisotropy
observed in steady sliding, when strains in the elastomer
are no longer time dependent. We emphasize that the
anisotropy that we describe is essentially reversible, in the
sense that separating the two solids and performing again
a shear experiment will lead to the exact same behavior.
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This is in strong contrast to the persistent contact
anisotropy induced either by wear (e.g., asymmetric scars
left in the contact zone [37]) or by shear-driven structural
changes in the materials (e.g., in fault rocks [38] and in
metals [39]), which would act as anisotropy sources in a
subsequent sheared contact. Our results pave the way for
possible control of the many physical properties affected by
contact anisotropy (see the introduction) through applica-
tion of controlled shear forces on the interface.
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