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A B S T R A C T

The most direct measurement of adhesion is the pull-off force, i.e. the tensile force necessary
to separate two solids in contact. For a given interface, it depends on various experimental
parameters, including separation speed, contact age and maximum loading force. Here, using
smooth contacts between elastomer spheres and rigid plates, we show that the pull-off force also
varies if the contact is sheared prior to separation. For shear displacements below a critical value
about 10% of that necessary to yield gross sliding, the pull-off force steadily decreases as shear
increases. For larger shear, the pull-off force remains constant, at a residual value 10%–15% of
its initial value. Combining force measurements and in situ imaging, we show how the unloading
path leading to contact separation is modified by the initial shear. In particular, we find that
the residual pull-off force prevails if the contact reaches full sliding during unloading. Based
on those observations, a first modeling attempt of the critical shear displacement is proposed,
involving a competition between jump instability and transition to sliding. Overall, those results
offer new insights into the interplay between adhesion and friction, provide new constraints on
adhesion measurements and challenge existing adhesive models. They will be useful wherever
soft contacts undergo both normal and shear stresses, including tire grip, soft robotics, haptics
and animal locomotion.

. Introduction

Adhesion is the phenomenon by which two solid surfaces tend to stick together, due to attractive inter-atomic or inter-molecular
orces (Maugis, 2000). At the continuum level, it is often quantified through the work of adhesion, 𝑤0, which is the reversible work
ecessary to bring a unit area of the interface from contact at equilibrium distance to infinite separation. Adhesion is prominent
n contacts involving soft materials, e.g. elastomers, gels and biomaterials, due to their combination of large surface energy and
ompliance. In related systems, including fingertips (Spinner et al., 2016), pressure-sensitive adhesives (Lakrout et al., 1999) and
icrocontact printing (Carlson et al., 2012), adhesion may manifest at macroscale, when measurable tensile normal forces have to

e overcome before separating the two solids. The maximum such tensile force is the so-called pull-off force. For smooth contacts
etween spheres, as described in the classical JKR or DMT models, the pull-off force is proportional to both 𝑤0 and the sphere
adius (Maugis, 2000; Barthel, 2008). For rough contacts, the pull-off force is often much reduced compared to the smooth case,
y an amount depending on the amplitude and spectral contents of the topography (Fuller and Tabor, 1975; Pickering et al., 2001;
astewka and Robbins, 2014; Vakis et al., 2018; Dalvi et al., 2019).

Beyond those intrinsic features of the contact interface, the pull-off force is also known to depend on the way the pull-off
est is performed. For instance, due to the viscoelastic nature of most soft materials, the pull-off force varies with the separation
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Fig. 1. Contact loading history and real contact images. Top line: sketch of the three phases of contact: loading, shearing and unloading (columns 1 to 3,
respectively). Bottom line: typical images of a standard-PDMS/glass contact, for each phase and for three different preliminary shear displacements, 𝛥𝑡 (value
indicated). 𝑃𝑖𝑛𝑖 ≃ 0.1 N. All images share the same pixel size. Column 1: at the end of the loading phase. Column 2: at the end of the shearing phase. Dashed
red circle: contour of the corresponding contact in column 1. Column 3: at two instants during unloading. Left sub-column: at normal indentation 61µm. Right
sub-column: last image before contact separation (corresponding normal indentation indicated).

speed (Violano et al., 2021). For rough contacts, it also depends on the maximum normal load prior to unloading (Dorogin et al.,
2017). In addition, it increases with the time spent in contact before separation (Pickering et al., 2001). In contrast, one implicit
feature of the protocols used for pull-off tests has remained essentially unquestioned: the fact that separation is performed on contacts
that have been prepared under a pure normal load. Hence, here, we address the question of what happens in a pull-off test when
the contact is shear-loaded prior to separation.

Recent experiments have provided related preliminary answers. First, after full sliding, the pull-off force of an elastomer contact
can be significantly reduced compared to that of an un-sheared contact (Peng et al., 2021). Second, the real contact area under
constant normal load decreases as soon as shear is applied to an elastomer interface (Waters and Guduru, 2010; Sahli et al., 2018;
Mergel et al., 2019), suggesting that the adhesive behavior of a soft contact is affected by the slightest shear. In this context, we
hypothesize that minute shear, well below that necessary to trigger full sliding, may already significantly reduce the pull-off force
of a soft contact. In order to test this assumption, in the following, we perform pull-off tests on elastomer contacts submitted to
increasing preliminary shear displacements, while all other system and protocol features are kept unchanged.

2. Methods

2.1. Principles of the experiments

As sketched in Fig. 1, we consider smooth dry contacts between a centimetric sphere made of PolyDiMethylSiloxane (PDMS)
elastomer and a glass plate. The contacts are submitted to three successive phases of motion: first, an indentation along the direction
normal to the plate (loading phase), reaching a normal load 𝑃𝑖𝑛𝑖; second, a continuous tangential displacement at a velocity 𝑉 =
0.01 mm/s, and of amplitude 𝛥𝑡 between 0 and about 1100 μm (shearing phase); third, a step-based, displacement-controlled
separation of the solids (unloading phase). During all phases, we monitor the evolutions of the normal and tangential forces, 𝑃
and 𝑄, and of the real contact, via in situ imaging.

2.2. Sample preparation

All PDMS samples are made of Sylgard 184. They are molded in a concave optical glass lens to produce smooth spherical
elastomer caps (curvature radius 𝑅 = 9.42mm) on top of a bulk (maximum thickness 7mm, lateral size 7mm fixed on a rigid sample
holder. For ‘‘standard-PDMS’’ (resp. ‘‘soft-PDMS’’) samples, the mixing mass ratio of base to curing agent is 10:1 (resp. 20:1). For
2
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Table 1
Material and interfacial parameters.

Fitting model Parameter Standard/glass Soft/glass Soft/PMMA

1. Maugis (1992) on 𝐴(𝑃 ) 𝐸 (MPa) 1.49 ± 0.01 0.58 ± 0.01 0.64 ± 0.01
(discharge with no preliminary shear) 𝑤0 (mJ/m2) 141 ± 2 252 ± 5 215 ± 2

𝜆 1.45 ± 0.03 1.23 ± 0.04 1.37 ± 0.02

2. Papangelo et al. (2020) on 𝐴(𝑄) (during preliminary shear) 𝛼𝑃𝑎𝑝 0.006 ± 0.002 0.011 ± 0.002 0.011 ± 0.002

3. Linear on 𝐴(𝑄) (during unloading after full sliding, at 𝛥𝑡 = 1mm) 𝜎𝑢𝑛𝑙𝑜𝑎𝑑 (MPa) 0.281 ± 0.001 0.203 ± 0.001 0.195 ± 0.001

4. Peng et al. (2021) on 𝑃𝑃𝑂 (pull-off force after full sliding) 𝛼𝑃𝑒𝑛𝑔 0.97 ± 0.16 1.00 ± 0.14 1.00 ± 0.18

both, the cross-linking protocol is that recommended and justified in Delplanque et al. (2022): 24 h at 25 ◦C, demolding, and 24 h
t 50 ◦C. The counter-surface is a smooth glass or PMMA plate, cleaned by wiping with ethanol and drying in ambient air during
min.

.3. Mechanical test

The experiments are performed in a clean room (temperature 20 ± 1◦C , humidity 50 ± 10%), using the setup described in
ig. 13 of Guibert et al. (2021). This opto-mechanical device enables studying the response of a soft contact interface submitted
o combined normal and tangential stimuli, by simultaneously measuring the six force/torque components applied to the contact
nd recording in situ images of the interface. The protocol follows the three steps sketched in Fig. 1. First, starting from the origin
f the vertical displacement (𝑧 = 0, defined as the altitude at which the PDMS sphere first snaps into contact with the plate),
he loading phase consists of a rapid normal displacement up to the indentation necessary to reach the target initial normal load
𝑖𝑛𝑖 (≃ 0.1, 0.2 or 0.4N) without overshooting. The corresponding vertical position is denoted as 𝑧𝑖𝑛𝑖. The contact is then left to
ge for 60 s, during which most of the viscoelastic relaxation occurs. Second, the shearing phase is performed (keeping 𝑧 = 𝑧𝑖𝑛𝑖)
t a constant velocity 10µm∕s over a distance 𝛥𝑡 in the following list: 11 equally spaced values between 0 and 100µm and 10
qually spaced values between 200 and 1100µm. The various shearings are performed in pseudo-random order to avoid possible
iases. Third, the unloading phase is performed through vertical steps (0.5µm amplitude, 1 s duration), from 𝑧𝑖𝑛𝑖 down to a negative
ltitude sufficient to separate the interface. Normal and tangential forces are acquired at 10Hz, so that each of the many vertical
teps during the unloading phase is recorded with 10 points.

.4. Contact imaging

Images of the real contact interface are taken as described in Sahli et al. (2018), using a high-resolution camera (Teledyne DALSA
enie Nano-GigE combined with a Qioptics optem fusion objective, 2.36µm/pixel): at a frame rate of 10 fps during shearing, and
single image at the end of each step during unloading. From the well-contrasted images (typical examples in Fig. 1), the contact

rea, 𝐴, can be measured by segmentation using simple thresholding. When the contact is unsheared (𝛥𝑡 = 0), the contact is at all
imes circular, and the contact radius, 𝑎, can be defined.

.5. Material and interfacial properties

The Young’s modulus 𝐸 of the elastomer, and the adhesion energy 𝑤0 and Tabor’s parameter 𝜆 of the interface are provided in
able 1. 𝜆 is defined in, e.g. (Maugis, 1992, 2000; Barthel, 2008), and quantifies the transition between the JKR (large 𝜆, typically
5) and DMT (small 𝜆, typically <0.1) limit models of adhesion. For each tribological pair (standard- or soft-PDMS against glass
r PMMA), 𝐸, 𝑤0 and 𝜆 are obtained by fitting Maugis’ model (Maugis, 1992) on the unloading data for 𝛥𝑡 = 0. In practice, we fit
3∕2∕

√

6𝜋𝑅2 as a function of 𝑃∕
√

6𝜋𝑎3 (as in e.g. Chaudhury et al., 1996; Waters and Guduru, 2010; Acito et al., 2023), where 𝑎
is the measured contact radius. We use for those fits all available data such that 𝑎 < 748µm for standard-PDMS/glass contacts, and
such that 𝑎 < 936µm for contacts involving soft-PDMS.

For completeness of the methods, we finish by describing how we determined the values of additional interfacial parameters (𝛼
nd 𝜎), that will be useful only in Section 3.4, where we perform a quantitative comparison between our experimental observations
nd a tentative model. The shear index, 𝛼, is estimated using two different models and by following the procedure proposed by their
espective authors. First, the model by Papangelo et al. (2020) is fitted on the 𝐴(𝑄) evolution during the shearing phase. 𝛼 (𝛼𝑃𝑎𝑝 in
able 1) and the initial contact area (before shearing) are fitted, while 𝐸 and 𝑤0 are fixed to the values in Table 1. In practice, for
ach interface and each 𝑃𝑖𝑛𝑖, we use the data for 𝛥𝑡 = 1.1mm at all times before 𝑄 reaches its maximum. The values (error bars) in
able 1 are the mean (standard deviation) over the three 𝑃𝑖𝑛𝑖.

Second, the model by Peng et al. (2021) is fitted on the value of the pull-off force obtained during the unloading phase after a
reliminary shear sufficient to reach full sliding. 𝛼 (𝛼𝑃𝑒𝑛𝑔 in Table 1) is fitted while 𝐸, 𝑤0, 𝜆 and the friction strength 𝜎 are fixed to
he values in Table 1. For each interface, we use all pull-off forces obtained for the three 𝑃𝑖𝑛𝑖 and 𝛥𝑡 > 90µm (to ensure full sliding
efore separation, see Section 3.2). The value of 𝜎 (𝜎𝑢𝑛𝑙𝑜𝑎𝑑 in Table 1) is estimated beforehands by fitting a linear relationship on
he 𝑄(𝐴) evolution during the unloading phase of the experiments at 𝛥𝑡 = 1mm and for all three 𝑃𝑖𝑛𝑖, each limited to the range
< 0.8 × 𝑚𝑎𝑥(𝑄).
In Table 1, the error bars on 𝛼𝑃𝑎𝑝 are standard deviations on the three values derived for the three 𝑃𝑖𝑛𝑖. All other error bars are

alf of the 95% confidence error of the fitted parameters.
3
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Fig. 2. The contact unloading path is a function of preliminary shear. Standard-PDMS/glass contacts. (A) Normal force, 𝑃 (average over the 10 points of each
step), as a function of normal indentation, 𝑧, for various preliminary shear displacement 𝛥𝑡 from 0 to 100µm (thick arrow). 𝑃𝑖𝑛𝑖 ≃ 0.4 N. Inset: full dataset. Main:
zoom on small 𝑃 . Solid (resp. open) disks indicate where the pull-off force 𝑃𝑃𝑂 (resp. separation force 𝑃𝑆𝑒𝑝) is measured. Thin arrows point to the first data
after contact separation. (B) 𝑃𝑃𝑂 (solid symbols) and 𝑃𝑆𝑒𝑝 (open symbols) as functions of 𝛥𝑡. Main: zoom on small 𝛥𝑡. Inset: full dataset. Squares/diamonds/disks
are for 𝑃𝑖𝑛𝑖 ≃ 0.1/0.2/0.4N. Error bars: standard deviation of the difference between the raw force signal during unloading and its trend (smoothed signal using
a moving interval of ±5 points). The solid vertical line indicates 𝛥𝑡,𝑐 (see text). The three dashed vertical lines indicate the shear displacement 𝛥𝑡,𝑠 at which,
during the shearing phase, the friction peak is reached (from left to right: for 𝑃𝑖𝑛𝑖 ≃ 0.1, 0.2 and 0.4, respectively). The color code used in both panels A and
B is defined from the data in Fig. 3A.

3. Results and discussion

Typical contacts in various conditions are shown in Fig. 1. The contact is circular at the end of the loading phase (Maximum
indentation). At the end of the shearing phase (Maximum shear), the contact has undergone an anisotropic change in morphology:
its total area is smaller and the eccentricity of its elliptic-like shape is larger when the shear displacement 𝛥𝑡 is larger. Note
that the above observations, although fully consistent with those of Sahli et al. (2018, 2019) and Mergel et al. (2019), remain
incompletely understood (Papangelo et al., 2019; Lengiewicz et al., 2020; Mergel et al., 2021). During the unloading phase, the
contact progressively shrinks (keeping a non-circular shape), until full separation (Fig. 1, last column).

3.1. The pull-off force decreases with shear displacement

Fig. 2A shows the evolution of the normal force, 𝑃 , as a function of the imposed normal displacement, 𝑧 (𝑧 = 0 corresponds to
first contact during loading, thus 𝑧 is also the normal indentation), on the example of a standard-PDMS/glass contact. Each curve
corresponds to a specific value of the initial shear displacement, 𝛥𝑡. All curves are found different, indicating that the shearing phase
affects the subsequent unloading path of the contact. From each curve in Fig. 2A, one can measure two characteristic forces: the
minimum value of 𝑃 , so-called pull-off force, 𝑃𝑃𝑂 (solid disk); the force of the last step spent in contact (as verified on contact
images), defining the separation force, 𝑃𝑆𝑒𝑝 (open disk). The curve for 𝛥𝑡 = 0 is the one that would have been obtained in a
classical pull-off test (no preliminary shear applied). Note that |

|

𝑃𝑃𝑂
|

|

> |

|

|

𝑃𝑆𝑒𝑝
|

|

|

, as expected in pull-off tests under controlled normal
displacement (Maugis, 2000).

The evolution of 𝑃𝑃𝑂 with 𝛥𝑡 (Fig. 2B, solid symbols) indicates the existence of two regimes. First, for increasing values of 𝛥𝑡
from 𝛥𝑡 = 0 up to a critical value 𝛥𝑡,𝑐 ≃ 40 − 50µm, the amplitude of 𝑃𝑃𝑂 steadily decreases, starting from the (negative) value
one would find in a classical pull-off test in absence of preliminary shearing. Second, for values of 𝛥𝑡 larger than 𝛥𝑡,𝑐 , 𝑃𝑃𝑂 becomes
independent of 𝛥𝑡, and takes a non-vanishing residual value, with a mean value about 12% of its initial value. The crossover between
the two regimes is rather sharp. The open symbols in Fig. 2B show that all those qualitative observations also apply to 𝑃𝑆𝑒𝑝.

The results of Fig. 2B validate our initial hypothesis that the pull-off force is strongly affected by minute preliminary shear. They
fill the gap between two known results: (i) the classical pull-off force is recovered when 𝛥𝑡 = 0 and (ii) the pull-off force is much
reduced, although non-vanishing, when 𝛥𝑡 is so large that the contact is fully sliding before unloading starts (Peng et al., 2021).
The latter case corresponds to the data points on the right of the vertical dashed lines in Fig. 2B (𝛥𝑡 beyond a few 100µm), for
which full sliding is observed during the shearing phase (after a peak in the tangential force). Importantly, our results shed light on
a characteristic shear displacement, 𝛥𝑡,𝑐 , of order a few 10µm, already sufficient to lower adhesive forces down to their minimum.
In practice, shear displacements as small as 10µm (i.e. ∼100 times smaller than the contact radius and ∼35-60 times smaller than
the shear displacement necessary to trigger full sliding during the shearing phase, 𝛥𝑡,𝑠) already reduce the pull-off force by ∼25%
(Fig. 2B). Such a rapid decrease sets strong constraints on the required orthogonality between interface plane and pulling direction
in adhesion setups, in order to avoid any unwanted tangential force during loading/unloading, that would induce biases in the
measurement of adhesion forces.
4
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Fig. 3. Evolution of the contact area during unloading. Contact area, 𝐴, as a function of either (A) the normal indentation 𝑧 or (B) the tangential force 𝑄,
uring the unloading phase of a standard-PDMS/glass contact. Different curves are for different 𝛥𝑡. 𝑃𝑖𝑛𝑖 ≃ 0.4 N. (A) For clarity, only the curves for the 11
mallest and the largest 𝛥𝑡 are shown in the main plot (zoom on small 𝑧). Inset: full data, with the zoomed region indicated as a blue rectangle. Curves not
howing an abrupt change in slope as the contact area decreases are highlighted in red. This color code is also used in B and in Fig. 2. (B) Also in this plot,
he red curves end at small contact areas without reaching the linear master curve on which all black curves end. The dashed line represents the fitted slope
f the linear master curve (see corresponding value of 𝜎𝑢𝑛𝑙𝑜𝑎𝑑 in Table 1), which is reached when the contact is fully sliding.

.2. Origin of the transition at 𝛥𝑡,𝑐

To pinpoint the differences in the unloading of contacts having undergone preliminary shear either below or above 𝛥𝑡,𝑐 , we
arness the additional information contained in the contact images, and in particular the evolution of the contact area 𝐴. Fig. 3A
hows how 𝐴 decreases as the indentation 𝑧 decreases during unloading, for various values of the preliminary shear distance. For
he smallest 𝛥𝑡, the curves reach their minimum area (at separation) through a single nonlinear branch (cases highlighted in red).
n contrast, for larger 𝛥𝑡, the curves are made of two different branches: an initial nonlinear branch for large 𝐴, analogous to that
t small 𝛥𝑡; a second linear-like branch for small 𝐴. We emphasize that all such second branches tend to collapse on the same
aster curve, suggesting that, in this range of 𝛥𝑡, all contacts reach a common state before separation, irrespective of the amount

f preliminary shear. Most importantly, the curves made of a single branch correspond exactly to those for which the pull-off force
s in the first, 𝛥𝑡-dependent, regime (𝛥𝑡 < 𝛥𝑡,𝑐), as visible when applying the colorcode of Fig. 3A to Fig. 2B. Thus, we conclude that
he transition between the two adhesion regimes at 𝛥𝑡,𝑐 , as seen in Fig. 2B, has the very same physical origin as the emergence of
second, linear branch in the curves 𝐴(𝑧) of Fig. 3A.

To interpret the nature of the common branch on which all 𝐴(𝑧) curves in the second adhesion regime end up, we consider the
oncurrent evolution of the contact area 𝐴 and of the tangential force 𝑄 (Fig. 3B). For each curve, both 𝐴 and 𝑄 decrease during
nloading and monotonously approach the origin. The initial point (topmost point of each curve) is the point reached at the end
f the shearing phase. The initial area decreases when 𝛥𝑡 increases and, for each 𝑃𝑖𝑛𝑖, the ensemble of all initial points delineate a

quadratic-like decrease of the curve 𝐴(𝑄), in agreement with previous studies on sheared elastomer contacts using the same PDMS
as that used here (Waters and Guduru, 2010; Sahli et al., 2018, 2019; Mergel et al., 2019). Such contacts are known to obey a
friction law such that, when the contact is fully sliding, 𝐴 is proportional to 𝑄, the proportionality coefficient being the friction
strength of the interface, 𝜎 (Cohen et al., 2011; Sahli et al., 2018; Mergel et al., 2019; Lengiewicz et al., 2020). In Fig. 3B, all 𝐴(𝑄)
curves marked in black (second adhesion regime) are found to end up (sooner for larger 𝛥𝑡) on a linear master curve reminiscent of
the above-mentioned friction law, suggesting that the master curve actually indicates full sliding of the contact. This interpretation
is strongly grounded by the value of the inverse slope of the master curve, about 0.28MPa (Fig. 3B and Table 1), very close to the
values of 𝜎 found for similar standard-PDMS/glass interfaces in Sahli et al. (2018), Mergel et al. (2019) and Lengiewicz et al. (2020).

Thus, the scenario that emerges from our data is that, in the shear-dependent adhesion regime (𝛥𝑡 < 𝛥𝑡,𝑐 , red curves), the
reliminary shear is too small to yield any full sliding of the contact before the two solids separate. In contrast, in the shear-
ndependent adhesion regime (𝛥𝑡 > 𝛥𝑡,𝑐 , black curves), the initial shear is large enough to make the contact enter, at some point
uring unloading, into a fully sliding state, during which 𝐴 and 𝑄 are proportional. This is consistent with the extremely non-circular
hape of the contact at separation (see the two bottom-most images in the right-most column of Fig. 1), which is expected for a fully
liding contact. We emphasize that full sliding in our experiments can be reached either already during the shearing phase or only
uring the unloading phase. When 𝛥𝑡 is larger than the shear displacement required to trigger full sliding during the shearing phase,
𝑡,𝑠 (≃ 350/475/600µm, i.e. about 8/11/14 times 𝛥𝑡,𝑐 for standard-PDMS/glass contacts at 𝑃𝑖𝑛𝑖 ≃ 0.1/0.2/0.4N, see dashed vertical

lines in Fig. 2B), our experimental conditions are similar to those used by Peng et al. (2021), where unloading was always performed
after the contact has undergone a significant amount of steady macroscopic sliding during shearing. In those conditions, it is expected
that the pull-off force is independent of 𝛥 because, at the end of the shearing phase, the contact state is identical for all 𝛥 , and
5
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the contact spends all of the ensuing unloading phase in full sliding conditions (see Fig. 3B). In contrast, when 𝛥𝑡,𝑐 < 𝛥𝑡 < 𝛥𝑡,𝑠, the
contact exits the shearing phase without having reached gross sliding. Nevertheless, full sliding is triggered during the subsequent
unloading phase, due to the fact that the maximum shear displacement that a contact can sustain without sliding is smaller for a
smaller contact. Because the macroscopic shear displacement 𝛥𝑡 is kept constant during unloading and, simultaneously, the contact
is continuously shrinking, the interface eventually reaches its sliding threshold. Note that, consistently with Lengiewicz et al. (2020)
and Prevost et al. (2013), full sliding is expected to be preceded by a so-called partial slip state, where a peripheral region of the
contact is slipping while the central region has remained stuck. In summary, for any value of 𝛥𝑡 larger than 𝛥𝑡,𝑐 , the contact state
at separation is expected to be a fully sliding one, irrespective of when full sliding started (during either the shearing or unloading
phase), and the pull-off force is a constant (points on the right of the solid vertical line in Fig. 2B).

3.3. Robustness of the observations

To check whether the results shown in Figs. 2 and 3 on standard-PDMS/glass contacts submitted to 𝑃𝑖𝑛𝑖 ≃ 0.4 N are robust to
changes made on the tribological system, we performed complementary experiments, changing the properties of the interface and
the initial normal load (see Figs. 4 to 6).

First, the very same loading-shearing-unloading experimental protocol was reproduced with two different types of interfaces
(see Section 2.2): a softer PDMS against either a glass or a PolyMethylMethAcrylate (PMMA) plate. As shown in Figs. 4 and 5, all
qualitative features observed in Figs. 2 and 3 are robust to those material changes. The only difference is the occurrence, during
unloading, of contact instabilities (presumably reattachment folds, common in the literature on sheared elastomers, see Petitet
and Barquins, 2008; Lengiewicz et al., 2020) that decorate the area evolution and significantly increase the uncertainty in the
determination of 𝛥𝑡,𝑐 from 𝐴(𝑧) curves. Note however that the transition from a decreasing to a constant pull-off force as a function
of 𝛥𝑡 (Fig. 5) apparently still occurs at about 50µm, suggesting that 𝛥𝑡,𝑐 is actually only weakly affected by our changes in contacting
materials.

Second, we varied the initial normal load (to ≃ 0.2 and 0.1N) and found that the results remain essentially identical. This is
illustrated on the example of the curves 𝐴(𝑄) in Fig. 6, where the data for the three tested 𝑃𝑖𝑛𝑖 are overplotted, for each of the three
different types of interfaces. Although curves corresponding to larger initial indentations start with larger forces and areas, they
do overlap with those corresponding to smaller initial indentations, in their common range. Such an observation indicates that the
final path to interface separation is independent of the initial compressive state (and so 𝛥𝑡,𝑐 is independent of 𝑃𝑖𝑛𝑖). Thus, for our
specific loading protocol, the contact state during the unloading phase is presumably controlled solely by the instantaneous couple
of imposed displacements: 𝑧 and 𝛥𝑡. This is consistent with the data shown in Figs. 2B and 5, which indicate that the evolutions of
𝑃𝑃𝑂 and 𝑃𝑆𝑒𝑝 are unaffected by 𝑃𝑖𝑛𝑖.

3.4. Modeling attempt

To capture our experimental results, one needs a model describing adhesion in mixed-mode conditions (normal + tangential
forces). Various such models exist, with a recent interest in explaining anisotropic shear-induced contact shrinking observed in Sahli
et al. (2018), Mergel et al. (2019) and Sahli et al. (2019). While investigating the relevance of numerical models coupling adhesion
and friction (Mergel et al., 2019, 2021; Pérez-Ràfols and Nicola, 2022) to our sheared adhesion tests is left for future work, here, in an
effort to unravel the physical parameters that control 𝛥𝑡,𝑐 , we consider analytical models such as those of Papangelo and Ciavarella
(2019), Papangelo et al. (2019), Das and Chasiotis (2020), Papangelo et al. (2020) and Peng et al. (2021). Most such analytical
mixed-mode adhesion models assume axisymmetric contacts, which is less and less realistic when the contact is increasingly sheared
up to full sliding (Fig. 1). To our knowledge, the only analytical model describing non-circular contacts is in Papangelo et al. (2019).
Unfortunately, it is valid in the limit of short-ranged adhesion, i.e. that of the classical JKR adhesion model (Johnson et al., 1971).
In contrast, and consistently with Acito et al. (2023) on PDMS, our contacts have a Maugis parameter 𝜆 between 1 and 2 (Table 1),
far from the JKR limit (𝜆 > 5).

In the absence of a fully suitable analytical model, we propose a first, simple modeling attempt limited to qualitative comparisons
in the JKR limit. We consider the axisymmetric model of Papangelo et al. (2020) and test if it predicts our main result, i.e. a transition
between two pull-off regimes at a critical 𝛥𝑡. The model describes the adhesive contact (nominal work of adhesion 𝑤0) between
a linear elastic sphere (radius 𝑅, reduced Young modulus 𝐸∗) and a rigid plate. A fracture description of the (circular) contact’s
periphery is made, with a shear-dependent energy release rate, 𝐺𝑒𝑓𝑓 = 𝑤0 − 𝛼 𝐸∗𝛥2𝑡

3𝜋𝑎 , 𝑎 being the contact radius. 𝛼 ∈ [0; 1] is a
dimensionless index (used e.g. in McMeeking et al., 2020; Ciavarella and Papangelo, 2020; Peng et al., 2021) quantifying the part
of the mode II (shear mode) energy release rate that is dissipated at the interface (if 𝛼 = 0, there is no reversible slip, so that slip
does not affect adhesion).

The constitutive equation of the model, which relates the contact radius, 𝑎, to the couple of imposed displacements, 𝛥𝑛 and 𝛥𝑡,
is (obtained by combining Eqs. (19) and (20) of Papangelo et al. (2020):

𝛥𝑛 =
𝑎2

3𝑅
+
(

1 + 2𝐸∗𝑎
𝑘𝑛

)

⎡

⎢

⎢

⎢

⎣

2𝑎2
3𝑅

−

√

√

√

√

√

√

2𝜋𝑎𝑤0
𝐸∗ − 2

3
𝛼
⎛

⎜

⎜

⎝

𝛥𝑡

1 + 4𝐸∗𝑎
3𝑘𝑡

⎞

⎟

⎟

⎠

2
⎤

⎥

⎥

⎥

⎦

, (1)

where 𝑘𝑛 and 𝑘𝑡 are the loading apparatus stiffnesses, in the normal and tangential directions, respectively. In our mechanical device,
𝑘 = 2.8 × 105 Nm and 𝑘 = 1.2 × 105 Nm. These values are so large that, in all our experiments, 2𝐸∗𝑎 and 4𝐸∗𝑎 remain always
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Fig. 4. Evolution of the contact area during unloading of interfaces involving soft-PDMS. Contact area, 𝐴, as a function of the normal indentation 𝑧 (left column)
or of the tangential force 𝑄 (right column). Top line (resp. bottom line): soft-PDMS/glass (resp. soft-PDMS/PMMA). 𝑃𝑖𝑛𝑖 ≃ 0.4N. For clarity, the main plots of
anels A and C only show the curves for the 11 smallest and the largest 𝛥𝑡. The wiggling curves in panels A and C illustrate that contact instabilities (see text)
ecorate the area evolution of interfaces involving soft-PDMS, and significantly increase the uncertainty in the determination of 𝛥𝑡,𝑐 from 𝐴(𝑧) curves. The color
ode (red and black curves) is analogous to that defined in Fig. 3, and used in Figs. 2 and 3. Gray curves in A and C correspond to cases where one cannot
irmly conclude about whether the 𝐴(𝑧) curves are made of a single branch (red curves) or two branches (black curves) due to contact instabilities (see text).

maller than 0.016 and 0.025, respectively. We further observe that the contact area at separation is always smaller than 0.1 mm2

for standard-PDMS) and 0.2 mm2 (for soft-PDMS), as seen in Figs. 3A, 4A and 4B. With those values, 2𝐸∗𝑎
𝑘𝑛

and 4𝐸∗𝑎
3𝑘𝑡

are actually
lways smaller than 0.0039 and 0.0025, respectively, when the two surfaces detach, which is the phenomenon under study. Thus,
n the following, we will neglect 2𝐸∗𝑎

𝑘𝑛
and 4𝐸∗𝑎

3𝑘𝑡
, so that the constitutive equation reduces to:

𝛥𝑛 =
𝑎2

𝑅
−

√

2𝜋𝑎𝑤0
𝐸∗ − 2

3
𝛼𝛥2

𝑡 . (2)

To mimic the unloading phase of our experiments, we apply this model with fixed 𝛥𝑡 and imposed decreasing normal indentation
𝛥𝑛 (equivalent to 𝑧 in Figs. 1–3 and 4). The decrease of 𝛥𝑛 causes a decrease of the contact radius 𝑎, but Eq. (2) cannot describe the
contact down to a vanishing 𝑎, because two phenomena may occur beforehand.

The first phenomenon is the so-called jump instability, described in Papangelo and Ciavarella (2019). It is analogous to the
instability that leads to contact separation in the classical JKR model. It occurs when the slope of the evolution of 𝑎 as a function of
𝛥𝑛 becomes infinite. This takes place when the contact radius is equal to 𝑎𝑗𝑢𝑚𝑝, defined as 𝜕𝛥𝑛

𝜕𝑎 |𝑎=𝑎𝑗𝑢𝑚𝑝 = 0, i.e. when (from Eq. (2)):

√

2𝜋𝑎𝑗𝑢𝑚𝑝𝑤0
∗ − 2𝛼𝛥2

𝑡 =
𝜋𝑤0𝑅

∗ . (3)
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Fig. 5. Evolution of the pull-off force 𝑃𝑃𝑂 (solid markers) and of the separation force 𝑃𝑠𝑒𝑝 (open markers) as a function of 𝛥𝑡, for the experiments involving
soft-PDMS. (A) Soft-PDMS/glass interface. (B) Soft-PDMS/PMMA interface. Insets: full datasets. Mains: zooms on small 𝛥𝑡. Squares/diamonds/disks are for 𝑃𝑖𝑛𝑖 ≃
0.1/0.2/0.4N. Error bars: standard deviation of the difference between the raw force signal and its trend (smoothed signal using a moving interval of ±5 points).
Color code similar to that of Figs. 2, 3 and 4. Red (resp. black): points corresponding to 𝐴(𝑧) curves with a single branch (resp. with a transition between two
branches). Gray: points for which the attribution of a red or black color was dubious, due to the oscillations in the 𝐴(𝑧) curve, as seen in Fig. 4A and C (gray
points in the present figure correspond to the gray curves in Fig. 4).

Fig. 6. The results are robust against changes in initial normal load. Contact area, 𝐴, as a function of the tangential force, 𝑄, during the unloading phase, for
the three types of interface. (A) Standard-PDMS/glass. (B) Soft-PDMS/glass. (C) Soft-PDMS/PMMA. In each panel, the three colors correspond to three different
𝑃𝑖𝑛𝑖: blue for 𝑃𝑖𝑛𝑖 ≃ 0.1N, yellow for 𝑃𝑖𝑛𝑖 ≃ 0.2N and black for 𝑃𝑖𝑛𝑖 ≃ 0.4N. The black curves in panel A are the same as the curves in Fig. 3B. Note how well
do the curves for the same 𝛥𝑡 but different 𝑃𝑖𝑛𝑖 superimpose.

Solving Eq. (3), one obtains the evolution of 𝑎𝑗𝑢𝑚𝑝 as a function of 𝛥𝑡. As sketched as a green curve in Fig. 7, it is a monotonically

increasing and accelerating function, starting from a finite value
(

𝜋𝑤0𝑅2

8𝐸∗

)1∕3
for 𝛥𝑡 = 0, which corresponds to the classical JKR

result for fixed-grips conditions.
The second phenomenon possibly occurring during the unloading phase is the transition to sliding. The rapid decrease of the

contact area during unloading of a sheared contact, as seen e.g. in Fig. 3B, causes an increase of the average shear stress on the
contact, 𝑄∕𝐴. Such an increasing stress might reach the sliding friction stress of the interface, 𝜎, thus precipitating full sliding of
the contact. Such a criterion (𝑄 = 𝜎𝐴) for the transition to sliding in terms of a critical interfacial shear strength has been used in
many models from the literature on mixed-mode loaded soft contacts, including (Mergel et al., 2019, 2021; Lengiewicz et al., 2020;
Scheibert et al., 2020). Within the model of Papangelo et al. (2020), 𝑄 = 4

3𝐸
∗𝑎𝛥𝑡 and the contact is assumed to the circular. Thus,

the sliding criterion translates into a critical contact radius 𝑎𝜎 given by:

𝑎𝜎 = 4
3𝜋

𝐸∗

𝜎
𝛥𝑡. (4)

𝑎𝜎 is linearly related to 𝛥𝑡, as sketched as a red straight line in Fig. 7.
We now assess for which conditions a contact described by the above modeling framework is likely to enter a fully sliding regime

before contact separation.

• If, for a given 𝛥𝑡, 𝑎𝜎 > 𝑎𝑗𝑢𝑚𝑝 (i.e., for 𝛥𝑡 larger than that at the intersection of the red and green curves, see cases 1 and 2 in
Fig. 7) then, when the contact radius 𝑎 decreases due to unloading, the transition to full sliding will occur before the jump
8
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Fig. 7. Sketch of various possible evolutions of 𝑎𝑗𝑢𝑚𝑝 (green curves, solution of Eq. (3)) and 𝑎𝜎 (red straight lines, Eq. (4)) as functions of 𝛥𝑡. Green dots: points
where 𝛥𝑛,𝑗𝑢𝑚𝑝 = 0, and which define 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝. 𝛥𝑡,𝑐,𝜎 is defined as the intersection of both curves, and is set to +∞ when such intersection does not exist (case 3).
Case 1 and 2 differ by the respective locations of 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 and 𝛥𝑡,𝑐,𝜎 along the horizontal axis. 𝛥𝑡,𝑐,𝑚𝑜𝑑 , defined as the minimum of 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 and 𝛥𝑡,𝑐,𝜎 , separates the
two adhesion regimes: a shear-dependent adhesion regime at small 𝛥𝑡 (orange region) and a shear-independent adhesion regime at large 𝛥𝑡 (blue region).

instability can take place. According to our experimental observations, such a contact that slides before separation will belong
to the shear-independent adhesion regime.

• If, conversely, 𝑎𝑗𝑢𝑚𝑝 > 𝑎𝜎 (i.e., for 𝛥𝑡 smaller than that at the intersection of the red and green curves, see case 3 in Fig. 7 and
cases 1 and 2), the unloading contact will undergo the jump instability before the criterion for the transition to sliding is met.
At that point, one must distinguish two cases.

– If the normal displacement at which the jump instability occurs is negative (𝛥𝑛,𝑗𝑢𝑚𝑝 < 0, green curves on the left of the
green dots in Fig. 7), i.e. the contact is tensile just before instability, then the contact will abruptly separate without any
prior sliding, and the contact will belong to the shear-dependent adhesion regime.

– If, in contrast, 𝛥𝑛,𝑗𝑢𝑚𝑝 > 0 (green curve on the right of the green dots in Fig. 7), then the contact remains in a compressive
state after instability, so that the solids cannot separate yet. Thus, the contact finishes its unloading phase following
a branch different from that described by the model of Eq. (2) (this initial branch ceases to exist for 𝛥𝑛 < 𝛥𝑛,𝑗𝑢𝑚𝑝).
Consistently with our observations, and with an assumption already used in Xu et al. (2022), we assume that in this
other branch the contact still exists and is fully sliding. Therefore, such a contact will belong to the shear-independent
adhesion regime.

In this context, in order to determine the critical tangential displacement 𝛥𝑡,𝑐 , one must perform two calculations. The first is to
calculate the value of 𝛥𝑡 for which 𝛥𝑛,𝑗𝑢𝑚𝑝 = 0. To do this, one replaces the square root in Eq. (2) by the right hand term of Eq. (3),
to get the following relationship between the indentation and contact radius at unstable separation, respectively 𝛥𝑛,𝑗𝑢𝑚𝑝 and 𝑎𝑗𝑢𝑚𝑝:

𝛥𝑛,𝑗𝑢𝑚𝑝 =
𝑎2𝑗𝑢𝑚𝑝
𝑅

−
𝜋𝑤0𝑅

2𝑎𝑗𝑢𝑚𝑝𝐸∗ . (5)

Note that for 𝛥𝑡 = 0, we recover the classical JKR value for fixed-grips conditions (Maugis, 2000): 𝛥𝑛,𝑗𝑢𝑚𝑝,𝐽𝐾𝑅 = − 3
4

(

𝜋2𝑤2
0𝑅

𝐸∗2

)1∕3
. Let

us denote by 𝑎𝑗𝑢𝑚𝑝,𝑐 the solution of Eq. (5) when 𝛥𝑛,𝑗𝑢𝑚𝑝 = 0. Then, the solution of Eq. (2) for 𝛥𝑛 = 0 and 𝑎 = 𝑎𝑗𝑢𝑚𝑝,𝑐 is:

𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 =
3

27∕6
√

𝛼

(

𝜋2𝑤2
0𝑅

𝐸∗2

)1∕3

. (6)

𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 is the expected value of 𝛥𝑡,𝑐 if only the jump instability is possible, i.e., excluding the transition to sliding (see green dots
in Fig. 7). Interestingly, 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 and JKR’s indentation at separation 𝛥𝑛,𝑗𝑢𝑚𝑝,𝐽𝐾𝑅 are proportional: 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 =

25∕6
√

𝛼
|

|

|

𝛥𝑛,𝑗𝑢𝑚𝑝,𝐽𝐾𝑅
|

|

|

.
The second calculation consists in finding 𝛥𝑡,𝑐,𝜎 , the value of 𝛥𝑡 such that 𝑎𝜎 = 𝑎𝑗𝑢𝑚𝑝. The equation to be solved is Eq. (3), in

which 𝑎𝑗𝑢𝑚𝑝 is replaced by the expression of 𝑎𝜎 in terms of 𝛥𝑡 as given in Eq. (4). We have not found an analytical solution for
𝛥𝑡,𝑐,𝜎 , and thus evaluate it numerically as the intersection of 𝑎𝜎 (𝛥𝑡) (Eq. (4)) and 𝑎𝑗𝑢𝑚𝑝(𝛥𝑡), as sketched in Fig. 7. Note that in certain
conditions (case 3 in Fig. 7), such intersection does not exist, in particular when 𝛼 and/or 𝜎 are sufficiently large. In this case, 𝛥𝑡,𝑐,𝜎
is considered to be infinite.

Once 𝛥𝑡,𝑐,𝜎 and 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 are known, we propose to define the model prediction for the critical tangential displacement, 𝛥𝑡,𝑐,𝑚𝑜𝑑 ,
as the minimum value between 𝛥𝑡,𝑐,𝜎 and 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 (see three possible different cases in Fig. 7). Doing so, any contact loaded by a 𝛥𝑡
larger than 𝛥𝑡,𝑐,𝑚𝑜𝑑 will reach a fully sliding phase before contact separation (either through the transition to sliding, or after a jump
instability in a compressive state). Thus, in the model, 𝛥 is indeed the seeked critical displacement separating the two adhesion
9
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Table 2
Comparison between observed and predicted 𝛥𝑡,𝑐 . Lines 1 to 4: estimates of 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 and 𝛥𝑡,𝑐,𝜎 , using either 𝛼𝑃𝑎𝑝 or 𝛼𝑃𝑒𝑛𝑔 . Lines 5 and
6: corresponding model predictions 𝛥𝑡,𝑐,𝑚𝑜𝑑 . Line 7: observed 𝛥𝑡,𝑐 . Error bars on model calculations are standard deviations over 10000
evaluations of 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 or 𝛥𝑡,𝑐,𝜎 , with 𝐸, 𝑤0, 𝜎, 𝛼𝑃𝑎𝑝 and 𝛼𝑃𝑒𝑛𝑔 drawn from gaussian distributions of mean (resp. standard deviation) the
values (resp. error bars) from Table 1.
Parameter Standard/glass Soft/glass Soft/PMMA

𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 predicted using 𝛼𝑃𝑎𝑝 (µm ) 133 ± 24 282 ± 26 233 ± 22
𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 predicted using 𝛼𝑃𝑒𝑛𝑔 (µm ) 10.7 ± 0.9 28.7 ± 2.1 24.7 ± 2.5
𝛥𝑡,𝑐,𝜎 predicted using 𝛼𝑃𝑎𝑝 (µm ) 47 ± 2 162 ± 10 127 ± 6
𝛥𝑡,𝑐,𝜎 predicted using 𝛼𝑃𝑒𝑛𝑔 (µm ) +∞ +∞ +∞

𝛥𝑡,𝑐,𝑚𝑜𝑑 predicted using 𝛼𝑃𝑎𝑝 (µm ) 47 ± 2 162 ± 10 127 ± 6
𝛥𝑡,𝑐,𝑚𝑜𝑑 predicted using 𝛼𝑃𝑒𝑛𝑔 (µm ) 10.7 ± 0.9 28.7 ± 2.1 24.7 ± 2.5

𝛥𝑡,𝑐 observed from 𝐴(𝑧) (µm ) ∈[40; 60] ∈[40; 200] ∈[50; 200]

regimes. Three possible cases are sketched in Fig. 7: when there is no intersection between 𝑎𝑗𝑢𝑚𝑝 and 𝑎𝜎 (case 3), 𝛥𝑡,𝑐,𝑚𝑜𝑑 = 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝;
when both 𝛥𝑡,𝑐,𝜎 and 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 are finite, if 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 < 𝛥𝑡,𝑐,𝜎 (case 1) then 𝛥𝑡,𝑐,𝑚𝑜𝑑 = 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝; conversely, if 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 > 𝛥𝑡,𝑐,𝜎 (case 2) then
𝛥𝑡,𝑐,𝑚𝑜𝑑 = 𝛥𝑡,𝑐,𝜎 .

We now check to what extent the model can reach quantitative agreement with the measurements. For that, we need to estimate,
from the experiments, the values of all parameters required to evaluate 𝛥𝑡,𝑐,𝑚𝑜𝑑 . 𝑅 is fixed by the geometry of the mold used to prepare
the PDMS spheres. 𝐸∗ and 𝑤0 are estimated from an unloading experiment with no preliminary shear (Table 1). The friction strength,
𝜎, is estimated from the data in full sliding, as described in Section 2.5 (see 𝜎𝑢𝑛𝑙𝑜𝑎𝑑 in Table 1). Estimating the value of 𝛼 is less
straightforward. In the literature, two distinct methods to access 𝛼 exist, that have been reproduced here. 𝛼𝑃𝑎𝑝 is estimated from the
shear-induced area reduction, 𝐴(𝑄), during the shearing phase (see Section 2.5). For all types of interfaces, we find values of 𝛼𝑃𝑎𝑝
of order 0.01 (see Table 1), compatible with those of Ciavarella and Papangelo (2020) for PDMS. Alternatively, 𝛼𝑃𝑒𝑛𝑔 is estimated
from the value of the pull-off force of fully sliding contacts (see Section 2.5). The latter actually corresponds to the pull-off force
deep in our second adhesion regime (on the right of the dashed vertical lines in Fig. 2B, where 𝛥𝑡 is larger than 𝛥𝑡,𝑠 and much larger
than 𝛥𝑡,𝑐). For all types of interfaces, we find values of 𝛼𝑃𝑒𝑛𝑔 of order 1 (see Table 1), compatible with those of Peng et al. (2021)
for PDMS.

With all those values, we first estimate the value of 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝. In the absence of any argument in favor of one or the other evaluation
of 𝛼, we test both 𝛼𝑃𝑎𝑝 or 𝛼𝑃𝑒𝑛𝑔 . While, with 𝛼𝑃𝑎𝑝, 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 is a few hundreds of micrometers for all types of interfaces (see line 1
n Table 2), with 𝛼𝑃𝑒𝑛𝑔 , 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 is only a few tens of micrometers (see line 2 in Table 2). This discrepancy is fully attributable to
he ∼100 ratio between 𝛼𝑃𝑎𝑝 and 𝛼𝑃𝑒𝑛𝑔 . Explaining such a difference between both estimates of 𝛼, already present in the related
iterature articles (Ciavarella and Papangelo, 2020; Peng et al., 2021), is beyond the scope of the present experimental work. We
mphasize however that, in the related models, 𝛼 is merely a phenomenological way of accounting for the potentially complex way
nergy is dissipated at the molecular level of the contact, under mixed-mode loading. In the current state of knowledge, one cannot
xclude that such dissipation might be different in a shearing experiment under constant normal load (the condition used to evaluate
𝑃𝑎𝑝, see Ciavarella and Papangelo, 2020) and in a pull-off test of a previously sliding contact (the condition used to evaluate 𝛼𝑃𝑒𝑛𝑔 ,
ee Peng et al., 2021), possibly explaining the difference between the values of 𝛼𝑃𝑎𝑝 and 𝛼𝑃𝑒𝑛𝑔 .

The impact of the difference between 𝛼𝑃𝑎𝑝 and 𝛼𝑃𝑒𝑛𝑔 is also important, now even qualitatively, when considering the estimates
f 𝛥𝑡,𝑐,𝜎 . For 𝛼𝑃𝑎𝑝, 𝛥𝑡,𝑐,𝜎 is of order several tens of micrometers, smaller than 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 (case 2 in Fig. 7), for all types of interfaces (see
ine 3 in Table 2). In striking contrast, for 𝛼𝑃𝑒𝑛𝑔 , 𝑎𝜎 is found smaller than 𝑎𝑗𝑢𝑚𝑝 whatever 𝛥𝑡 (case 3 in Fig. 7), indicating that the
ontact would always undergo a jump instability, and not a transition to sliding. This is why infinite values are indicated in line 4
f Table 2. Finally, for each case, the predicted critical tangential displacement, 𝛥𝑡,𝑐,𝑚𝑜𝑑 , is taken as the minimum between 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝
nd 𝛥𝑡,𝑐,𝜎 . For all interfaces, 𝛥𝑡,𝑐,𝑚𝑜𝑑 = 𝛥𝑡,𝑐,𝜎 when using 𝛼𝑃𝑎𝑝 (line 5 in Table 2), while 𝛥𝑡,𝑐,𝑚𝑜𝑑 = 𝛥𝑡,𝑐,𝑗𝑢𝑚𝑝 when using 𝛼𝑃𝑒𝑛𝑔 (line 6 in
able 2).

We now compare 𝛥𝑡,𝑐,𝑚𝑜𝑑 to the experimentally observed values of 𝛥𝑡,𝑐 (last line of Table 2). When 𝛼𝑃𝑒𝑛𝑔 is used, the predictions are
ystematically smaller than the observations, by a factor ∼2–5, a difference not accountable for by uncertainties. Instead, when 𝛼𝑃𝑎𝑝
s used, the predictions agree with the observations, within the experimental error bars announced in Table 2. Such an agreement
s unexpected, given that most of the assumptions of the underlying model (Papangelo et al., 2020), including axisymmetry of the
ontact and the JKR limit, are far from satisfied by our experimental system. In addition, while the quantitative agreement is striking
n the case of standard-PDMS/glass interfaces, it is less satisfactory for interfaces based on soft-PDMS. Indeed, the large error bars
rovided for the observed 𝛥𝑡,𝑐 (up to 200µm, see line 7 in Table 2), are mainly due to the obscuring effect of the oscillations in the
orresponding 𝐴(𝑧) curves in Fig. 4A and C. If one refers instead to Fig. 5A and B, the actual value of 𝛥𝑡,𝑐 that separates the two
dhesion regimes appears to remain in the range [40; 60]µm, i.e. 2–3 times below the corresponding model predictions.

Overall, the above first modeling attempt is promising because it provides realistic qualitative insights into the physical
echanisms potentially involved in the transition between the two observed adhesion regimes. Those mechanisms presumably

nvolve a competition between the jump instability and the transition to sliding, controlled in particular by interfacial parameters
ike the reversible slip index, 𝛼, the estimation of which remains challenging. As a matter of fact, our quantitative tests of the model
rediction of 𝛥𝑡,𝑐 remain essentially inconclusive: 𝛥𝑡,𝑐 is satisfactorily captured for only one of the three types of interfaces, and for
nly one of the two known ways of estimating 𝛼. We believe that identifying the origins of such a quantitative failure would be an
10
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In this respect, an important observation is that finite strains are expected to play a role in the present experiments. As argued

n Lengiewicz et al. (2020), the characteristic interfacial shear strain in our contacts during sliding is 𝜎∕𝐺, where 𝜎 is the sliding
friction stress of the interface and 𝐺 is the shear modulus of the PDMS (for such an incompressible material, 𝐺 = 𝐸∕3). Based
on the values of Table 1, 𝜎∕𝐺 ranges from 0.57 for standard-PDMS/glass to 1.05 for soft-PDMS/glass interfaces. Those very large
values indicate that finite strains are indeed expected in our experiments, especially those involving a fully sliding regime, further
explaining why the linear-elasticity-based models tested above fail quantitatively. In this context, quantitative reproduction of our
experimental results will likely involve finite strains, for instance within finite element frameworks like those of Mergel et al. (2019,
2021) and Lengiewicz et al. (2020).

3.5. Comparison with other types of contact interfaces and implications

We eventually place our results in the context of previous studies of the effect of preliminary shear or sliding on pull-off forces,
made on other tribological systems.

Recent nanoscale adhesion tests on hard materials yield contrasted results. For instance, Milne et al. (2019) report a significant
sliding-induced increase of the pull-off force of silicon nanocontacts, an effect interpreted as the creation of covalent bonds after the
sliding-induced removal of passivating surface species. Such a tribo-chemical phenomenon is not expected in our elastomer/glass
experiments, possibly explaining the opposite behaviors. In contrast, Sato et al. (2022) report a decrease of the pull-off force
of silver nanocontacts with preliminary sliding, consistent with our results. Interestingly, the same above-discussed continuum
models (Papangelo et al., 2020; Peng et al., 2021) also fail to quantitatively capture those nanotribology measurements, confirming
the necessity to improve existing models of sheared adhesive contacts, irrespective of the length-scale.

Shear-induced control on adhesion is also key to the locomotion of climbing animals. Although adhesive pads vary among species
(wet or dry, hairy or smooth), adhesion is often found an increasing function of the shear force when pulling the pad towards the
body. Such adhesion enhancement presumably involves a combination of surface microstructures, shear-dependent peeling angle,
slip-induced dissipation and specific rheological properties of contact-mediating secretions (Labonte and Federle, 2016; Federle and
Labonte, 2019). In this respect, our measurements on dry interfaces between smooth solids with well-defined macroscopic shape
may help clarify the respective contributions of the above-mentioned mechanisms.

4. Conclusion

Overall, our results bring new experimental insights into the fundamental and practical issue of the interplay between adhesion
and friction, which resists the surface science community for decades (Weber et al., 2022). Here, we identified a characteristic
shear displacement, 𝛥𝑡,𝑐 , that separates two different detachment regimes of dry soft and smooth contacts. From an empirical
perspective, we showed that 𝛥𝑡,𝑐 is the minimum preliminary shear displacement necessary for the contact to reach full sliding
before separation, irrespective of whether sliding occurs already during preliminary shearing or during the subsequent unloading.
Better predicting quantitatively the value of this critical shear displacement, and fully unraveling the system parameters that control
it, will likely require the development of improved models. Practically, applying preliminary shears represents a new potential way
to tune macroscopic adhesive forces in various applications, from haptics to soft robotics.
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