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In this paper, we develop a new axisymmetric analytic model of surface uplift upon sills and laccoliths, based
on the formulation of a thin bending plate lying on an elastic foundation. In contrast to most former models
also based on thin bending plate formulation, our model accounts for (i) axi-symmetrical uplift, (ii) both
upon and outside the intrusion. The model accounts for shallow intrusions, i.e. the ratio a/h>5 where a
and h are the radius and depth of the intrusion, respectively. The main parameter of the model is the elastic
length l, which is a function of the elastic properties of the bending plate and of the elastic foundation. The
model exhibits two regimes depending on the ratio a/l. When a/lb5, the uplift spreads over a substantial do-
main compared to that of the intrusion. In contrast, when a/l>5, the uplift is mostly restricted upon the in-
trusion. When the elastic foundation is very stiff, our model converges towards that of a clamped plate. We
provide, as supplementary material, a Matlab function that calculates the surface uplift from the set of system
and control parameters. We discuss three possible applications of our model: (i) The model can be used to
describe sill propagation by introducing a propagation criterion. For realistic values, our model reproduces
well the behavior of horizontal intrusions simulated in experiments; (ii) The model can also be used to com-
pute the critical size of saucer-shaped sills. It shows, for instance, that a soft elastic foundation favors the hor-
izontal spreading of sills before they form inclined sheets; (iii) We show that the classical Mogi point source
model cannot be used to constrain sill properties from the surface uplift. We thus propose that our model can
be used as a valuable alternative to both simple analytical models like Mogi's and more complex numerical
models used to analyze ground deformation resulting from sill intrusions in active volcanoes.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Surface deformation in active volcanic systems is generally assumed
to reflect the dynamics of magma intrusion and transport at depth.
Modernmonitoring techniques allow goodmeasurements of the defor-
mation of volcanic edifices before, during and after an eruption (Cayol
and Cornet, 1998; Froger et al., 2001, 2007; Fukushima et al., 2010;
Galland, 2012). A good example is the Eyjafjallajökull Volcano, Iceland,
which has beenmonitored for more than a decade using InSAR and GPS
data (Fig. 1a). These data allowed to detect the onset of its unrest
(Pedersen and Sigmundsson, 2006), and overall the premises of the
2010 eruption that caused massive disruptions in the air traffic in
Europe (Sigmundsson et al., 2010).

Themechanical analysis of surface deformation patterns is commonly
used to constrain the geometry and dynamics of the magma plumbing
systems a posteriori (Cayol and Cornet, 1998; Fukushima et al., 2005;
Masterlark, 2007). One of the first attempts in analyzing surface
ses, University of Oslo, P.O. Box
ax: +47 22855101.
d).

rights reserved.
deformation on active volcanoes has been performed by Mogi (1958),
who developed an analytical solution of surface deformation induced by
a small spherical over-pressured magma reservoir. The solution of Mogi
is valid when the size of the magma reservoir is very small compared to
its depth, i.e. when am/hmbb1, where am and hm are the radius and the
depth of the center of the reservoir, respectively.

Although the so-called Mogi point source solution provides good fits
with data monitored on some active volcanoes, recent studies show
that (1) many magma reservoirs do not consist of spherical chambers
but exhibit a flat-lying shape (e.g. Amelung et al., 2000; Fialko et al.,
2001a, 2001b; Pedersen and Sigmundsson, 2006; Chang et al., 2007;
Sigmundsson et al., 2010; Woo and Kilburn, 2010), and (2) the roof
of the reservoir can be very shallow (b3 km) (McTigue, 1987;
Brandsdóttir and Menke, 1992; Gudmundsson et al., 1994; Brandsdóttir
et al., 1997; Brandsdóttir and Menke, 2008; Elders et al., 2011), such
that the assumption am/hmbb1 is not satisfied. The Mogi point source
solution is thusnot applicable in these conditions, and amore relevant an-
alytical solution is needed to interpret surface deformation data.

Surface deformationhas not only been observed in active volcanoes as
a passive consequence of shallow magma emplacement, but it can exert
an active mechanical feedback on the emplacement of laccoliths and

http://dx.doi.org/10.1016/j.jvolgeores.2012.12.006
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Fig. 1. Geological examples of uplift due to sill emplacement. a. Satellite image of
Eyjafjallajökull Volcano, Iceland, showing InSAR and seismic data during the Spring
2010 eruption (after Sigmundsson et al., 2010). The data were monitored between
25 September 2009 and 20 March 2010. They were related to pre-eruptive period,
which corresponded to the emplacement of a ~10 km large sill at a few kilometers
depth (transparent white surface; Fig. 3e of Sigmundsson et al., 2010). Black arrows
show the satellite flight path (downward arrow) and look directions (leftward
arrow). Black dots show earthquake epicenters during this period. The red stars locate
the eruption localities. The yellow triangles locate GPS stations that monitored contin-
uously flank deformation. The colored fringes represent ground displacement calculat-
ed from TerraSAR-X interferograms from descending satellite orbits. Each fringe
corresponds to line-of-sight, i.e. distance from the satellite, change of 15.5 mm. The
total displacement can thus be several tens of centimeters. Background is shaded to-
pography. The rounded patterned line on the right of the image locates the caldera
of Katla Volcano. Note that the uplifted area is at least twice wider than the underlying
sill. b. Seismic profile illustrating the relationships between a saucer-shaped sill and
the structure in its overburden, Rockall Basin, offshore Scotland (modified after Hansen
and Cartwright, 2006b). Vertical scale is the time for seismic wave travel (in seconds).
The profile shows that sill overburden is bent, forming a dome structure (uplift). This
profile shows that the dome is about 1.3 times wider than the sill. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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saucer-shaped sills (e.g. (Gilbert, 1877; Jackson and Pollard, 1990;
Jackson, 1997;Malthe-Sørenssen et al., 2004; Polteau et al., 2008; Galland
et al., 2009; Galerne et al., 2011). On seismic images and in the field, it can
be observed that saucer-shaped sills, for instance, are closely associated
with uplift and bending of their overlying strata, the inclined sheets
being located under the edges of the uplifted area (Fig. 1b; Hansen and
Cartwright, 2006a; Muirhead et al., 2012). This relationship has been
interpreted as a result of themechanical interaction between the bending
of the overlying strata and the spreading of the sills: the differential uplift
at the edges of the domes generates stresses that interactwith the leading
edges of the sills, which in turn are deflected towards the surface
(Malthe-Sørenssen et al., 2004; Goulty and Schofield, 2008; Galland
et al., 2009). Thismechanismproducing inclined sheets substantially con-
tributes to magma ascent through sedimentary basins (Cartwright and
Hansen, 2006; Muirhead et al., 2012).
In order to (1) better predict surface deformation due to the emplace-
ment of shallow flat-lying intrusions and (2) better quantify how the
bending of strata affects the emplacement of laccoliths and saucer-
shaped sills, one needs to better constrain the mechanics of surface
deformation. In this paper, we develop a new analytical model of surface
deformation above shallow axially symmetric flat-lying intrusions. Our
model is based on the theory of a thin bending plate lying on a deform-
able elastic foundation. After the theoretical development,wediscuss the
limitations and the effects of the parameters on themodel. Subsequently,
we discuss some geological applications, notably for sill propagation and
for saucer-shaped sills. We also briefly discuss the potential application
of our model to the analysis of ground deformation due to sill intrusion
in active volcanoes. We provide the code of our model as a Matlab func-
tion available as supplementary material.

2. Existing solutions

Several models have been developed to calculate the deformation
field associated with flat-lying intrusions. Because sills are sheet intru-
sions, they can be considered as horizontal fluid-filled cracks within
an elastic medium. The strains in the elastic medium are considered to
be small everywhere except close to the tip of the sill, and the formula-
tion of the problem can be achieved using the theory of linear elasticity.

Afirst approach attempted to developmodels tending toward a com-
plete description of cracks in an elastic half-space. Sun (1969) described
the deformation of a free surface above a fluid-pressurized crack by
developing a 3D approximate solution of the vertical and horizontal dis-
placements above a circular crack. To do that, he superimposed (i) the
solution for the displacements due to a crack in an infinite elastic medi-
um and (ii) an auxiliary stress function that satisfies the zero traction
boundary conditions at the free surface. However, such superposition
generates significant errors when the crack's radius-to-depth ratio a/h
becomes greater than 1 (Fialko et al., 2001b). Pollard and Holzhausen
(1979) developed the 2D equations that account for the surface defor-
mation and the stress intensity factor at the tip of an arbitrarily oriented
crack contained in an elastic half-space.More recently, Fialko and Simons
(2001) derived the axi-symmetrical solutions for the stress and displace-
ments associated with a horizontal circular crack in an elastic half-space.
Although these approaches are powerful tools, obtaining the solutions
requires numerical integrations, which can be tricky to implement, like
for most analyses of elastic layers under stress (see e.g. Scheibert et al.,
2009).

A second, classical approach for describing surface uplift due to a sill
or a laccolith is based on thin elastic plate theory (Timoshenko and
Woinowsky-Krieger, 1959). This theory can easily be adapted to investi-
gate the deflection of sedimentary strata above a magma-filled horizon-
tal sill or laccolith (Pollard and Johnson, 1973; Scaillet et al., 1995; Goulty
and Schofield, 2008; Michaut, 2011). This theory accounts only for
shallow sills, i.e. the radius of the crack a is large with respect to its
depth h (typically a/h>5), which is the case for many sills. This
approach, developed both in 2D and 3D, has been extensively used and
generally accepted, such that it is presented as a classical model in text-
books (Turcotte and Schubert, 2002) and is used in the mechanics com-
munity (Murdoch, 1993a,b,c, 2002; Bunger, 2005; Bunger and Cruden,
2011).

The application of thin plate theory alone to sills and laccoliths takes
into account the weight of the overburden (q0), heterogeneous magma
pressure distributions in the intrusion (P(x)), and themechanical layering
of the overburden (Pollard and Johnson, 1973). Very recently, the thin
plate formulation has been coupled with the equations for viscous fluid
flow tomodel the emplacement of viscousmagma into sills and laccoliths
(Bunger and Cruden, 2011; Michaut, 2011). In addition, it has been
extended to derive a simple criterion for the upward propagation of
saucer-shaped sills (Goulty and Schofield, 2008). Nevertheless, the for-
mulations developed in these papers assume that the bending plate is
clamped to a rigid foundation at the tips of the intrusions (Pollard and
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Fig. 2. Schematic diagram of the model developed in this paper (modified after Kerr
and Pollard, 1998). a. Unloaded system. A plate of thickness h is located above an elastic
foundation of stiffness k. Positive vertical axis is downward. The lithostatic stress of the
plate, q0, is not yet applied on the elastic foundation. b. Gravity loading only. Applica-
tion of the weight of the plate yields a homogeneous vertical displacement w0=q0/k.
c. System after a sill intrusion. A (possibly heterogeneous) pressure distribution P(r)
is applied within an axisymmetric sill of radius a. The displacement w is calculated
with respect to state a (dashed line). In contrast, the uplift wi due to the sill is calculat-
ed with respect to state b, i.e. wi=w−w0. d. Plot of the radial distribution of the pres-
sure P(r) in the intrusion, normalized by P0, as a function of r/a, for various values of n
(n increases from 0 to 10 by steps of 1). The pressure at the intrusion periphery was
chosen, for this illustration, such that Pa=P0/4.
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Johnson, 1973). In other words, the bending of the overburden is restrict-
ed upon the intrusion only,which is not realistic in geological systems: for
instance Fig. 1a shows that the uplift measured at the Eyjafjallajökull vol-
cano, resulting from the emplacement of a sill, is significant in a larger
area than that of the sill (Fig. 1a; Sigmundsson et al., 2010). Similarly,
Fig. 1b shows a seismic profile that images a sill and the associated
doming of its overburden in the Rockall Basin, offshore Scotland
(Hansen and Cartwright, 2006b): the doming of the overburden is larger
than the associated sill.

A more realistic formulation of surface deformation above laccoliths
has been proposed by Kerr and Pollard (1998), based on the theory of a
thin bending plate lying on an elastic foundation (Timoshenko and
Woinowsky-Krieger, 1959) (p. 259–269). This 2D model considers the
continuous bending of a plate across two domains, one above the intru-
sion and one around the intrusion. Above the intrusion, the formulation
of the bending plate is the same as that with no elastic foundation. In
contrast, outside the intrusion the plate is attached to a deformable
elastic foundation, and the plate can also deform. Thus, the bending of
the plate is not only restricted above the intrusion, and displacement
of the plate at the tip of the intrusion is allowed.

In this paper, we improve the 2D solution of Kerr and Pollard (1998)
in several ways: we derive an axi-symmetrical analytical solution of
surface uplift above a sill or laccolith andwe use a generic set of bound-
ary conditions. Note that we consider possible heterogeneous distribu-
tions of internal pressure into the sill, as Kerr and Pollard (1998), butwe
do not restrict our analysis to vanishing internal pressure at the
sill periphery. Like in Pollard and Johnson (1973) and Goulty and
Schofield (2008), the magmatic pressure P0 and the radius a of the in-
trusion are known a priori and serve as control parameters. This general
formulation allows to characterize, for any values of the input parame-
ters, the instantaneous state of an intrusion in themechanical equilibri-
um, i.e. without considering propagation. A propagating intrusion
corresponds instead to a quasi-static mechanical system, which re-
quires the definition of a propagation criterion. This will be developed
as an application of our model in Section 5.1.

3. Theoretical development

3.1. The model

We consider the system sketched in Fig. 2: an axisymmetric flat
intrusion of radius a lying under a linear elastic strata of thickness h,
Youngmodulus E, Poisson ratioν andmass density ρ (see Table 1 for def-
initions of the model parameters). We assume that the intrusion is shal-
low (a/h>5), so that the strata can be considered as a thin plate with a
bending stiffnessD ¼ Eh3= 12 1−ν2

� �� �
. Above the intrusion (radial distance

rba), the plate is submitted to a radial pressure profile of the form P=
P0−(P0−Pa)(r/a)n, inwhich P0 and Pa are the pressure values at the cen-
ter (r=0) and periphery (r=a) of the intrusion, respectively (Fig. 2d).
We consider a heterogeneous pressure to account for the viscous drag
due to the flow of viscous magma into the intrusion. Note that a homo-
geneous pressure is obtained for n=∞ and/or Pa= P0. Outside the intru-
sion (r>a), the plate is attached to an elastic foundation of elastic
modulus k. Such an elastic foundation can accommodate substantial
elastic deformation, allowing for displacement outside the intrusion
without propagation of the intrusion tip. At all points of the model, the
strata is also submitted to the lithostatic stress q0=ρgh. Note that
below the intrusion and the elastic foundation, the basement is consid-
ered to be infinitely rigid, like in the analyses of Pollard and Johnson
(1973), Kerr and Pollard (1998), Goulty and Schofield (2008) and
Bunger and Cruden (2011). This assumption is validated by geological
observations (Gilbert, 1877; Johnson and Pollard, 1973; Jackson, 1997),
geophysical observations (Hansen and Cartwright, 2006b; Polteau
et al., 2008) and modeling results (Malthe-Sørenssen et al., 2004),
which show that deformation associated with shallow flat-lying intru-
sions mostly affect the overburden, but not the substratum.
From thin plate theory, we can write the equilibrium equations of
the system as:

DΔ2w ¼ q0−P0 þ P0−Pað Þ r=að Þn; 0brba; ð1Þ

DΔ2wþ kw ¼ q0; r > a; ð2Þ

wherew is the vertical displacement of the plate andΔ2 is the bilaplacian
operator. In the following sections, we will refer to w1 and w2 for the
displacements upon (0brba) and outside (ab r) the sill, respectively.
Eq. (1), when taken in axisymmetric form with abscissa r, has a general



Table 1
Units and symbols.

Parameter Definition and dimension

a Radius of the sill, m
ac Radius of the sill at sill-to-inclined sheet transition, m
am Radius of spherical magma reservoir in the model of Mogi (1958), m
Ci Integration constants, variable
D Bending stiffness of the plate, Pa m3

De Equivalent bending stiffness of a stack of thin plates, Pa m3

Di Bending stiffness of a thin plate i, Pa m3

E Young Modulus, Pa
Ewl Young Modulus of the weak layer, Pa
F Force applied at the base of bending plate, N
Fh Force applied at the base of bending plate for homogeneous pressure, N
h Depth of sill, i.e. thickness of the elastic plate, m
hi Thickness of a plate i, m
hm Depth of spherical magma reservoir in the model of Mogi (1958), m
hwl Thickness of weak layer, m
g Acceleration due to gravity, m s−2

k Stiffness of elastic foundation, Pa m−1

l Characteristic elastic length of the system, m
n Parameter of magma pressure distribution
P Magma pressure distribution in the sill, Pa
P0 Magma pressure at centre of the sill, Pa
Pa Magma pressure at tip of the sill, Pa
Pm Overpressure in magma reservoir in the model of Mogi (1958), Pa
Q Injection volumetric flow rate, m3 s−1

q0 Weight of the plate per unit surface, Pa
r Lateral coordinate, m
t Time, s
u Horizontal displacement, m
uM Horizontal displacement calculated from the model of Mogi (1958), m
w Vertical displacement, m
w0 Vertical displacement before intrusion forms, m
w1 Vertical displacement above the intrusion, m
w2 vertical displacement outside the intrusion, m
wi Uplift due to the intrusion, m
wimax Uplift at r=0, m
wM Vertical displacement calculated from the model of Mogi (1958), m
wPJ Uplift calculated from the solution of Pollard and Johnson (1973), m
V Volume of sill, m3

z Distance from the neutral plane of the plate, m
α Coefficient of proportionality between V and ΔP in Appendix B, m3 Pa−1

β Exponent of the power law relationship between P0 and V
ΔP Magma overpressure, Pa
ΔP0 Magma overpressure at centre of the sill, Pa
ΔPa Magma overpressure at tip of the sill, Pa
�r Radial strain
�ra Radial strain at the tip of the intrusion (r=a, z=h/2)
�c Radial tensile strain at failure
�z Vertical strain
ν Poisson ratio
ρ Density of overburden, kg m−3
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solution of the form (see Timoshenko and Woinowsky-Krieger, 1959),
page 54, Eq. (60)):

w1 ¼ q0−P0ð Þr4
64D

þ C1r
2

4
þ C2 þ C5log

r
a

� �
þ P0−Pað Þrnþ4

Dan nþ 2ð Þ2 nþ 4ð Þ2 ð3Þ

We set C5=0 because the logarithmwould lead to a displacement
singularity at r=0. We are left with only two unknown constants C1
and C2.

The general solution of Eq. (2) when the right member is 0, and
when taken in axisymmetric form, writes (See Timoshenko and
Woinowsky-Krieger, 1959), p. 266, equation h):

w2 ¼ C3kei0 xð Þ þ C4ker0 xð Þ þ C6ber0 xð Þ þ C7bei0 xð Þ ð4Þ

with x ¼ r=l, l ¼
ffiffiffiffiffiffiffiffiffi
D=k4

p
, and berν, beiν, kerν, keiν are Kelvin functions

(Timoshenko and Woinowsky-Krieger, 1959).
We can set C6 and C7 to 0 because limr→∞ber0(r)=∞ and

limr→∞bei0(r)=∞, which would yield unphysical infinite displacements
far from the sill. Eq. (2) also has a constant solution, w0=q0/k, which
must be added to Eq. (4) to obtain the complete solution. Note that
adding this term provides similar boundary condition at r→∞ as that of
Kerr and Pollard (1998), i.e. the displacement w0=limr→∞w2 is not
zero and corresponds to the effect of theweight of the plate on the elastic
foundation.

We are left with the following two equations, with C1, C2, C3 and C4
being four unknown constants:

w1 ¼ q0−P0ð Þr4
64D

þ C1r
2

4
þ C2 þ

P0−Pað Þrnþ4

Dan nþ 2ð Þ2 nþ 4ð Þ2 ; 0brba ð5Þ

w2 ¼ C3kei0
r
l

� �
þ C4ker0

r
l

� �
þ q0

k
; r > a: ð6Þ

We therefore need four boundary conditions to solve themathemat-
ical problem. Continuity of the displacementw and its three first deriv-
atives with respect to r at r=a yield these four boundary conditions,
which write:

w1 að Þ ¼ w2 að Þ; ð7Þ

w1′ að Þ ¼ w2′ að Þ; ð8Þ

w1′′ að Þ ¼ w2′′ að Þ; ð9Þ

w1′′′ að Þ ¼ w2′′′ að Þ; ð10Þ

with prime standing for derivationwith respect to r. This system of four
equations allows for the determination of the four constants.

Eq. (7) writes:

q0−P0ð Þa4
64D

þ C1a
2

4
þ C2 þ

P0−Pað Þa4
D nþ 2ð Þ2 nþ 4ð Þ2 ¼

C3kei0
a
l

� �
þ C4ker0

a
l

� �
þ q0

k

ð11Þ

Eq. (8) writes:

q0−P0ð Þa3
16D

þ C1a
2

þ P0−Pað Þa3
D nþ 2ð Þ2 nþ 4ð Þ ¼

C3ffiffiffi
2

p
l
kei1

a
l

� �
−ker1

a
l

� �h i
þ C4ffiffiffi

2
p

l
kei1

a
l

� �
þ ker1

a
l

� �h i ð12Þ

Eq. (9) writes:

3 q0−P0ð Þa2
16D

þ C1

2
þ P0−Pað Þa2 nþ 3ð Þ

D nþ 2ð Þ2 nþ 4ð Þ ¼
C3

2l2
ker0

a
l

� �
−ker2

a
l

� �h i
þ C4

2l2
kei2

a
l

� �
−kei0

a
l

� �h i ð13Þ

Eq. (10) writes:

3 q0−P0ð Þa
8D

þ P0−Pað Þa nþ 3ð Þ
D nþ 2ð Þ nþ 4ð Þ ¼

C3

4
ffiffiffi
2

p
l3

3ker1
a
l

� �
−ker3

a
l

� �
þ 3kei1

a
l

� �
−kei3

a
l

� �h i
þ C4

4
ffiffiffi
2

p
l3

3ker1
a
l

� �
−ker3

a
l

� �
−3kei1

a
l

� �
þ kei3

a
l

� �h i ð14Þ
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These equations constitute a system of four coupled linear equations, which can be written matricially as:

A:C ¼ B;

with A¼

a2
4 1 kei0 a

l

� �
ker0 a

l

� �
a
2 0

kei1
a
l

� �
−ker1

a
l

� �
ffiffi
2

p
l

kei1
a
l

� �
þ ker1

a
l

� �
ffiffi
2

p
l

1
2 0

ker0
a
l

� �
−ker2

a
l

� �
2l2

kei2
a
l

� �
−kei0

a
l

� �
2l2

0 0
3ker1

a
l

� �
−ker3

a
l

� �
þ 3kei1

a
l

� �
−kei3

a
l

� �
4
ffiffi
2

p
l3

3ker1
a
l

� �
−ker3

a
l

� �
−3kei1

a
l

� �
þ kei3

a
l

� �
4
ffiffi
2

p
l3

0
BBBBBBB@

1
CCCCCCCA
;

B ¼

q0
k − q0−P0ð Þa4

64D − P0−Pað Þa4
D nþ2ð Þ2 nþ4ð Þ2

− q0−P0ð Þa3
16D − P0−Pað Þa3

D nþ2ð Þ2 nþ4ð Þ

−3 q0−P0ð Þa2
16D − P0−Pað Þa2 nþ 3ð Þ

D nþ2ð Þ2 nþ4ð Þ

−3 q0−P0ð Þa
8D − P0−Pað Þa nþ 3ð Þ

D nþ2ð Þ nþ4ð Þ

0
BBBBBB@

1
CCCCCCA
andC ¼

C1
C2
C3
C4

0
BB@

1
CCA

ð15Þ
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The solution matrix C has an analytic solution which is given in the
Appendix A. It allows us to obtain, for any set of system parameters
(h, E, ν, ρ, k, Pa and n) and for any couple of control parameters
(a and P0), the analytical expression of the radial profile of the vertical
displacement w(r).

It is important to note that there are two length scales in themodel:
h and l. The thickness h of the elastic strata is a parameter related to the
geometry of the intrusion. Ourmodel is based on Eqs. (1) and (2), which
are only valid when a/h>>1. In the following, we will therefore only
consider values of a such that a/h> 5, with 5 being an arbitrarily chosen
limit for the validity of the thin plate formulation, already used by e.g.
Pollard and Johnson (1973) and Bunger and Cruden (2011). The elastic
length l ¼ ffiffi

D
k

4
p

is an intrinsic length scale of themodel, which represents
the lateral distance, beyond the sill periphery, over which significant
displacements are found. In the following,wewill see that themodel ex-
hibits two regimes, the transition betweenwhich is controlled only by a/
l, and not by a/h. Note however that h is involved in the value of l, via D.

One can also notice that positive displacementsw are defined down-
ward,meaning that upwarddisplacement of the platewould benegative.
Notice also that before the intrusion forms, the weight of the plate al-
ready pushes down on the elastic foundation, so that there is already a
homogeneous displacement w0 ¼ q0=k. We will consider this equilibri-
um state as the initial condition when the intrusion starts forming.
Consequently, in order to calculate the displacement due to the intrusion,
one needs to calculate the differential displacement wi=w−w0=w−
w(r→∞). For practical reason, in the figures of the next sections, we
plot the uplift induced by the emplacement of the intrusion, i.e.−wi.
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Fig. 3. a. Plots of the radial profile of the surface topography−wi for a=5000 m, ΔP0=
P0−q0 =1 MPa, h=1000 m, E=10 GPa, ν =0.35, ρ =2500 kg m−3 and Pa = P0.
Dashed black line: model of Pollard and Johnson (1973). Solid grey lines: this model
for the same parameters, and with k=105, 106, 108, 1010 Pa m−1. Horizontal arrow
with r=a locates the sill. b. Log–log plot of the relative uplift difference between this
model and the model of Pollard and Johnson (1973) χGSPJ=(∑wi−∑wiPJ)/∑wiPJ,
where GS refers to this model (Galland and Scheibert) and PJ refers to Pollard and
Johnson (1973). The dashed line has a slope of −1/4.
3.2. Validation of the model

In order to test ourmodel, we first compare it to the existingmodel of
Pollard and Johnson (1973), for the same parameters (Fig. 3). The only
difference is that we consider an elastic foundation of stiffness
k, whereas Pollard and Johnson (1973) considered a perfectly rigid foun-
dation, i.e. k= ∞. This latter condition imposes no displacement outside
the intrusion. In contrast, the additional elasticity introduced in our
model with the elastic foundation implies that wi and its derivatives are
significantly different from 0 at the intrusion’s periphery (Fig. 3a).

Our model is expected to converge towards that of Pollard and
Johnson (1973) when k becomes very large. Fig. 3, which shows the
evolution of our model when the stiffness k of the elastic foundation is
varied (the overpressure ΔP0=P0−q0 is kept constant), demonstrates
that this is indeed the case. In order to quantify how our solution con-
verges towards that of Pollard and Johnson (1973), we define the rela-
tive difference χGSPJ=(∑wi−∑wiPJ)/∑wiPJ between our model
(GS) and that of Pollard and Johnson (1973) (PJ). In the range shown
in Fig. 3b, this relative difference is observed to decrease roughly as a
power law of exponent−1/4.
Numerically, our analytic solution is not practically computable for
any set of system and control parameters. The reason is that the Kelvin
functions decay exponentially with the value of the argument a/l and
can become smaller than the numerical accuracy that Matlab can
achieve. The effect of this limitation is shown in Fig. 4a, in which we
plot the relative uplift difference χGSPJ between our model and the one
of Pollard and Johnson (1973) as a function of a. For each given h, the an-
alytic solution becomes unstable for high values of a, as evidenced from
the peaks on the right of the curves. The main reason is that the denom-
inatorD1 derived from thematrix inversion of Eq. (15) (see the complete
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formulation in Appendix A) becomes so small that the ratio becomes un-
stable. The collapse of the curves displayed in Fig. 4b shows that the
boundary of the stability domain of our model corresponds to a critical
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Fig. 5. Plot of the relative uplift difference χAnAsym between the analytic solution and
the asymptotic solution as a function of a/l. Curve obtained for ΔP0 = 2 MPa, h ranging
between 25 m and 5000 m, E=1011 Pa, ν =0.35, ρ =2500 kg m−3, k=1 MPa m−1

and Pa = P0, but any other set of parameters would have produced the same curve
(cf. collapse in Fig. 4b). The slope of the line being −3 shows that the asymptotic solu-
tion converges quickly towards the analytical solution.
value of the ratio a/l. This critical value of a/l is ≃ 450. In practice, there-
fore, we can compute the analytical solution only for a/lb 450.

It is however possible to overcome this numerical limitation by
using the asymptotic forms of the Kelvin functions. For large x, all Kelvin
functions scale as

ffiffiffi
π
2x

p
e−x=

ffiffi
2

p
f xð Þ, where f is a sine or cosine function and

x is the argument of the Kelvin function (see Appendix A). By cancelling
out all exponentials in the inversion of thematrix of Eq. (15), a solution
is found in which no exponential is involved, and thus in which the
numerical accuracy is practically never reached (see Appendix A). The
relative uplift difference between this asymptotic model and that of
Pollard and Johnson (1973) is shown as the black dashed curve in
Fig. 4b. The asymptotic solution never becomes unstable and
prolongates very nicely the analytic solution for large a/l (a/l> 450).
In the following, we will therefore use the analytic solution for a/lb 450
and the asymptotic solution for a/l≥ 450.

Fig. 5 shows the relative uplift difference χAnAsym=(∑wiAn−
∑wiAsym)/∑wiAsym between the analytic and the asymptotic solutions.
As was already visible in Fig. 4b, the asymptotic solution is a very good
approximation of the analytic solution even for relatively small values
of a/l. The relative uplift difference is smaller than 1% for a/l> 3.7; it is
smaller than 0.1% for a/l> 9.1.

Both the analytic (used when a/lb 450) and the asymptotic (used
when a/l≥ 450) solutions have been implemented in a Matlab code,
which is provided as supplementary material online.

One limitation of ourmodel is that it is valid onlywhen a/h>5. In ac-
tive volcanoes or volcanic systems, this is not always the case (Amelung
et al., 2000; Fialko et al., 2001b; Pedersen and Sigmundsson, 2006;
Chang et al., 2007; Sigmundsson et al., 2010; Woo and Kilburn, 2010).
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Fig. 6. a. Plot of the maximum uplift−wimax as a function of ΔP for various a (a varies from
5000 m to10000 mby steps of 500 m). h=1000 m, k=1 MPa m−1, E=100 GPa,ν =0.35,
ρ =2500 kg m−3 and Pa= P0. b. Plot of the effective elastic compliance of the strata−wimax/
ΔP as a function of a, for various E (E=10i Pa with i increasing from 9 to 12 by steps of 0.5).
h=1000 m, k=1 MPa m−1, ν =0.35, ρ =2500 kg m−3 and Pa = P0. Note that the pres-
sure is constant, so that ΔP= ΔP0.
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Volcanic edifices, nevertheless, mostly consist of piles of strong lava
flows intercalated betweenweak scoria layers. Each flow exhibits a typ-
ical thickness of a fewmeters. Pollard and Johnson (1973) and Kerr and
Pollard (1998) noticed that slip occurred between the layers of the
overburden, indicating that the overburden behaved like a stack of
thin plates of thicknesses hi for which a/hi>>1. Therefore, one can cal-
culate an equivalent elastic stiffness of the overburdenDe=∑ i=1

n Dihi
3/

12, which can replace D in Eq. (15). In these conditions, strata can slide
over one another, and ourmodelmight become valid to analyze ground
deformation due to sill emplacement in given active volcanoes even
when a/hb5 (Pollard and Johnson, 1973; Scaillet et al., 1995).

3.3. Behavior of the model

In this section we illustrate the behavior of the model against
changes in control and system parameters.

3.3.1. Effect of the control parameters a and P0
In Fig. 6a we show the evolution of the maximum uplift−wimax=

w(r→∞)−w(r=0) as a function of the overpressure ΔP=P0−q0,
for different values of the intrusion radius a. For all a, −wimax in-
creases linearly with ΔP. The slopes −wimax/ΔP of the curves thus
represent the effective elastic compliance of the strata. In Fig. 6b,
the values of this elastic compliance are plotted as a function of a
for various values of E, i.e. of the bending stiffness D.

Fig. 6 can be made completely non-dimensional by rescaling both
axis (Fig. 7): −wimax is divided by q0−P0ð Þa4=64D as a function of a/l.
Table 2
Range of geological values.

Parameter Range of geological values References

a 103−105.5 m e.g. (Polteau et al., 2008)
E 109−1011 Pa e.g. (Turcotte and Schubert, 2002)
Ewl 105−109 Pa e.g. (Murdoch, 2002; Algar et al., 2011)
h 1000–5000 m e.g. (Polteau et al., 2008)
hwl 1–10 m e.g. (Hutton, 2009)
k 104 to 109Pa m−1 This study (see Section 4.2)
ΔP 106 to 107Pa e.g. (Rubin, 1995)
Doing so, the rescaled displacement is constant for large a/l, meaning
that, in this regime, the first term in Eq. (5) dominates, i.e. −wimax~a4.
For small a/l, the dominating term is the second one in Eq. (5), which cor-
responds to −wimax~a2 and yields a slope of −2 (Fig. 7). A clear
cross-over is observed, for a/l≃ 5, between the two regimes with power
laws of exponent−2 and0 for small and large a/l respectively. Physically,
the regime where−wimax~a2 corresponds to a very soft elastic founda-
tion compared to the bending plate; it means that uplift can occur over a
large area outside the intrusion. In contrast, the regime where −w-
imax~a4 corresponds to a relatively stiff elastic foundation compared to
the bending plate; this means that uplift mainly occurs upon the intru-
sion, with a small uplifted zone outside the intrusion. Interestingly, plot-
ting geological values (Table 2) in Fig. 7 shows that natural systems lie
around the transition between these two regimes (black curve).

3.3.2. Effect of the heterogeneity of the pressure within the intrusion
Up to now, we have only considered situations in which the pressure

is homogeneouswithin the intrusion (Pa=P0). The radial pressure distri-
bution P(r)=P0−(P0−Pa)(r/a)n can be tuned by varying the values of
P0, Pa and n (see Fig. 2d). The pressure at the center (respectively periph-
ery) of the intrusion is P0 (respectively Pa). n=0 corresponds to a homo-
geneous pressure Pa. A higher value of n yields a sharper decrease in the
pressure when r approaches a (Fig. 2d). n= ∞ would correspond to a
homogeneous pressure P=P0. Outside the intrusion, the pressure is set
to zero.

To test the effect of those parameters, we compare uplift profiles for
distinct values of P0, Pa and n (Fig. 8). For a consistent comparison, we
impose that the force F applied to the bending plate is the same for all
curves. We have:

F ¼ ∫
2π

0

∫
a

0

ΔP0− ΔP0−ΔPað Þ r=að Þn� �
r dr dθ

¼ πΔP0a
2 1− 2

nþ 2
1−ΔPa

ΔP0

	 
� �
: ð16Þ

where ΔPa=Pa−q0. This force Fwill be taken equal to that yielded by a
constant overpressure ΔPh=3 MPa, i.e. Fh=πa2ΔPh.

Fig. 8a shows uplift profiles for varying ratios ΔPa/ΔP0 between
0 and 1, and for constant n=1 (see pressure distributions in Fig. 8b).
Note that cases in which ΔPa>ΔP0 will be discussed in Section 4.3. Al-
though the total force applied to the bending plate is the same, themax-
imum uplift −wimax increases when ΔPa/ΔP0 decreases. This suggests
that large pressures applied to the centre of the sill is more proficient
to lift up the overburden of the sill.

Fig. 8c shows uplift profiles for varying n between 0.5 and 20, and
for constant ΔPa=0 (see pressure distributions in Fig. 8d). The max-
imum uplift−wimax increases when n decreases. This also shows that
larger pressures applied at the centre of the sill enhance the uplift of
the sill overburden, although the total force is the same.

4. Discussion

4.1. Comparison with former models

Variousmodels of sill and laccolith emplacement have been formerly
designed. Most of them are based on the formulation of a clamped thin
plate (Pollard and Johnson, 1973; Bunger and Cruden, 2011; Michaut,
2011), although our model shows that uplift outside the sill can be sub-
stantial. Thus, uplift outside the sill needs to be taken into consideration.
Bunger and Cruden (2011) andMichaut (2011) solved the hydrodynam-
ics of magma flowwithin the intrusion, taking into account the viscosity
of, and the body forces within the magma. The pressure distribution
within the intrusion is thus predicted by the calculation, and not pre-
scribed. Nevertheless, such approaches require numerical implementa-
tion, whereas our purpose it to propose a purely analytical model.
Section 4.3, however, shows how the numerical results of Bunger and
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Cruden (2011) and Michaut (2011) can be considered to constrain the
pressure distribution within the intrusion.

Kerr and Pollard (1998) developed a 2D analyticalmodel of laccolith
emplacement based on thin bending plate laying upon an elastic founda-
tion. Our model expands their formulation to axi-symmetrical form,
allowing the calculation of the volume of the intrusions. In contrast to
our model, that of Kerr and Pollard (1998) did not prescribe a priori the
length a of the sill. This difference arises from a different boundary con-
dition for the displacement w(r=a) at the tip of the intrusion. In our
model, the only constraint on the displacement is the continuity be-
tween the two domains upon and outside the intrusion (Eq. (7)). In con-
trast, Kerr and Pollard (1998) also imposed the value of the displacement
w(r=a)=0, i.e. −wi(r=a)=q0/k. This boundary condition is equiva-
lent to an implicit propagation criterion of the intrusion based on a crit-
ical displacement at the tip of the sill. Such a criterion does not take into
account the mechanical properties of the system, and other propagation
criteria cannot be used. In this respect, our model is more general as it
can be combined to any mechanical propagation criterion separately.
Such a propagation criterion establishes a relationship between the radi-
us a of the intrusion and the other parameters like the volume of the in-
trusion V. Doing so, one can reduce the number of control parameters in
ourmodel from two (a,ΔP) to only one (V), as in Kerr andPollard (1998).
An example is developed in Section 5.1.

Note that in ourmodel, flat-lying intrusions are emplaced along a rhe-
ological boundary. This strong assumption is in agreementwith geological
and geophysical observations (e.g., Hawkes and Hawkes, 1933; Johnson
and Pollard, 1973; Thomson, 2007; Hutton, 2009), which show that sills
were mostly emplaced along weak layers such as coal, shale or unconsol-
idated tuff. This assumption is also in good agreement with results from
laboratory experiments (e.g., Kavanagh et al., 2006; Menand, 2008;
Galland et al., 2009; Galland, 2012), which show that layering is required
to turn a vertical dyke to horizontal sill. Note that compressional stresses
can also control the formation of horizontal magma conduits (Hubbert
and Willis, 1957; Sibson, 2003), and that buoyancy can play a role on
the emplacement of flat-lying intrusions (e.g., Bradley, 1965; Francis,
1982; Taisne and Jaupart, 2009). Recently, laboratory experiments
suggested that the high pore fluid pressures contained in sedimentary
rocks can also control the formationof sill (Gressier et al., 2010). These lat-
ter mechanisms, however, can be important for the initiation of flat-lying
conduits, whereas our model accounts for the evolution of an already ini-
tiated intrusion. Therefore, these parameters are not critical in ourmodel.

4.2. Physical meaning of k

Sills and laccoliths are often emplaced in layered rocks, and notably
alongweak layers (e.g. Hawkes and Hawkes, 1933; Duffield et al., 1986;
Dixon and Simpson, 1987; Román-Berdiel et al., 1995; Kavanagh et al.,
2006; Galland et al., 2009). In the model presented in this paper, we
propose that the elastic foundation represents a weak sedimentary
layer, such as clay, tuff, or unconsolidated sediments. We thus expect
this layer to deform elastically more than the overlying strata at the
vicinity of an intruding sill.



0 2000 4000 6000 8000 10000
0

5

10

15

20

25

r (m)

-w
i (

m
)

0 2000 4000 6000 8000 10000

0

1

2

3

4

5
x 106

r (m)

ΔP
 (

P
a)

P(r)=P
0

P(r)=P
0
-(P

0
-P

a
)(r/a)n

r=a

r=a

a

b

Fig. 9. a. Plot of the uplift profile −wi for two pressure distributions within the sill.
Solid grey line: for ΔP=P0−(P0−Pa)(r/a)n−q0, where ΔP0=−0.5 MPa, ΔPa=5
MPa, n=5, a=5000 m, h=1000 m, ρ =2500 kg m−3, E=10 GPa, ν =0.35, and
k=5 MPa m−1. Note that ΔP0b 0, as calculated by Bunger and Cruden (2011). Black
dashed line: for homogeneous pressure ΔPh. Note that the value of ΔPh=P0−2(P0−
Pa)/(n+2)−q0, where P0 and Pa are the values from the heterogeneous case of a, en-
suring that the total force applied to the bending plate is the same in both cases. b.
Plots of over-pressure distributions for both cases presented in a.

122 O. Galland, J. Scheibert / Journal of Volcanology and Geothermal Research 253 (2013) 114–130
An expression of k can be derived by assuming that the deformation
of the elastic foundation corresponds to uniaxial strain in the case of an
infinite plate, such that �x=�y=0 and σ x ¼ σy ¼ νwl= 1−νwlð Þð Þσ z.
Hooke's law thus writes (Turcotte and Schubert, 2002):

−�z ¼
w
hwl

¼ 1þ νwlð Þ 1−2νwlð Þ
Ewl 1−νwlð Þ σ z; ð17Þ

where hwl, Ewl and νwl are the thickness, Young'smodulus and Poisson's
ratio of the weak layer, respectively.

By definition, the displacement w corresponds to the response of
the elastic foundation under any vertical stress σz, such that w=σz/k.
Replacing this relation into Eq. (17) leads to the expression of k:

k ¼ Ewl 1−νwlð Þ
1þ νwlð Þ 1−2νwlð Þhwl

: ð18Þ

k is a linear function of the Young's modulus Ewl and is an inverse func-
tion of hwl, meaning that the effective stiffness of the elastic foundation
becomes smaller if the weak layer is thicker.

FromEq. (18), values of k can be estimated. The Young'smodulus Ewl

can range from 105 Pa for unconsolidated tuff or sediments, or a
paleosoil (e.g. Murdoch, 2002; Barry et al., 2010; Algar et al., 2011) to
109 Pa for consolidated tuff of more competent rocks. Considering real-
istic thicknesses hwl between 1 to 10meters for theweak layer, and con-
sidering ν=0.35, this leads to a geological range for k between 104 and
109 Pa m−1. These values have been used in Fig. 7 when defining the
geologically relevant model parameters. This range is consistent with
the value of k= 2–5 ×107 Pa m−1 given by Kerr and Pollard (1998).

One can notice that for small values of k, the displacement at the tip
of the sills−wi(r=a) can be substantial (Fig. 3). This has two implica-
tions: (1) the tips of sills are not sharp-like fracture tips, and (2) strain
values in the elastic foundation can be substantial (larger than 1). In
this case, it is unlikely that the rock deforms elastically, but it is expected
to deform plastically. Recent geological observations corroborate this
assumption, by showing that ductile deformation at the vicinity of
sills can accommodate substantial amount of strain locally (Schofield
et al., 2012). Consequently, sill tips exhibit massive bulged tips, which
can be several meters thick.

Recent studies highlighted that non-elastic processes occur at the vi-
cinity of dykes, either due to plastic deformation of the country rock or
cooling effects (Kavanagh and Sparks, 2011; Abdelmalak et al., 2012;
Daniels et al., 2012). These inelastic phenomena are accounted neither
in our model nor in Linear Elastic Fracture Mechanics (LEFM) theory
(e.g., Pollard, 1987). To date, however, there is no model that accounts
for these inelastic processes associated with the emplacement of
dykes and sills.

4.3. Tabular shape of sills and laccoliths

Bunger and Cruden (2011) highlight that the classical bell shapes
predicted by the models of Pollard and Johnson (1973) and Kerr and
Pollard (1998) are not fitting with the shapes of natural sills and lacco-
liths, which are tabular. In the models of Pollard and Johnson (1973)
and Kerr and Pollard (1998), the pressure distribution in the sills were
prescribed a priori. Thus, the only pressure distributions considered
were either homogeneous or decreasing from the centre to the tips
(Fig. 2d). In contrast, Bunger and Cruden (2011) implemented numeri-
cally the viscous flow and the body forces of the magma through the
Navier–Stokes equations and calculated a pressure profile at the base
of the deforming plate. Counterintuitively, the over-pressure at the cen-
tre of the sillΔP0 is negative and smaller than the over-pressure at the tip
of the sill ΔPa, which is positive (Fig. 7 of Bunger and Cruden, 2011). In
addition, the shape of their pressure profile resembles that of a function
of the form of P=P0−(P0−Pa)(r/a)n, where P0bPa and n>1.

In Fig. 9, we compare two uplift profiles calculated with our model
for (1) a homogeneous pressure distribution, and (2) a pressure
distribution similar to that of Bunger and Cruden (2011). For comparison
purpose, the forces applied at the bottom of the deforming plate are the
same (see Section 3.3.2). The homogeneous pressure gives the typical
bell-shape as calculated by Pollard and Johnson (1973) and Kerr and
Pollard (1998). In contrast, the other pressure distribution indeed pro-
duces tabular morphology, which is compatible with those observed
for sills and laccoliths. Therefore, the general formulation of ourmodel al-
lows to take into account a physically realistic pressure distribution to cal-
culate geologically relevant intrusion shapes. Nevertheless, in order to
predict the correct pressure distribution within the sill, one would need
to combine our model to the hydrodynamic equations, in a similar way
as that presented by Bunger and Cruden (2011), and solve the problem
numerically. Note that although the forces applied to the deforming
plate are the same in both cases of Fig. 9, themaximumuplift are substan-
tially different.

5. Applications

5.1. Propagation of sills

The dynamics of sill emplacement have been studied extensively
during the last decade using experimental methods (Bunger, 2005;
Kavanagh et al., 2006; Galland et al., 2009). These experimental studies
have shown that (1) the fluid pressure decreases hyperbolically during
emplacement at constant volumetric flow rate (Murdoch, 2002;
Galland et al., 2007; Galland et al., 2009), and (2) the propagation
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velocity of the sill front increases during emplacement at constant fluid
overpressure (Kavanagh et al., 2006). These results have been confirmed
numerically (Malthe-Sørenssen et al., 2004) and theoretically (Pollard
and Johnson, 1973; Pollard and Holzhausen, 1979; Bunger and Cruden,
2011). They indicate that the propagation of sills, or of horizontal
fluid-filled fractures in general, results from a complex interplay be-
tween the pressure in the fluid, the size of the sill and the mechanical
properties of the surrounding material.

Experiments of fluid injection at constant flow rate Q have shown
that the fluid pressure P0∝Vβ, where V=Qt is the injected volume of
fluid and is known at any time t. Simple scaling analysis shows that β
is a function of the fracture propagation criterion (Murdoch, 1993c,
2002; Galland et al., 2007). A fracture propagation criterion is in general
a relationship betweenΔP, the geometry of the system and themechan-
ical properties of the fracturing medium; it expresses how the solid re-
sponds to the loading due to an over-pressurized fluid within a crack.

Detailed analysis of pressure data during experiments of fluid in-
jection in solids have thus been performed to derive the dynamics
of fracture formation (Murdoch, 1993c, 2002; Galland et al., 2007).
The goal is to fit the pressure and uplift evolution curves with the re-
sults of a mechanical model to calculate the intrinsic physical param-
eters of the fracturing process. Murdoch (1993c, 2002), for example,
used the model of a clamped plate of Pollard and Johnson (1973) to
study the development of shallow flat-lying cracks in soils. In his
analyses, Murdoch (1993c, 2002) defined a fracture propagation
criterion based on the mode I stress intensity factor KI derived for a
thin clamped plate attached on a rigid foundation, which writes:

K I ¼ ΔPa2
3

32h3

	 
1=2
: ð19Þ

When KI exceeds a critical value KIC (also called the fracture
toughness, which is a material property), the fracture tip becomes un-
stable and propagates.

Here we propose to develop a similar approach to those of Murdoch
(1993c, 2002) but using our analytical model. In our model, the propa-
gation of an intrusion occurswhen the elastic foundation fails, i.e. when
it reaches a given mechanical threshold, e.g. a critical stretching. We
made the assumption that the failure of the elastic foundation can be
expressed by a critical value of the stress intensity factor. Eq. (19),
however, is valid only for the clamped model of Pollard and Johnson
(1973) and Murdoch (2002), but not for our model. The derivation of
an analytic formula of the stress intensity factor for our model proved
to be very challenging, and we propose to calculate it numerically (see
Appendix B). Such a procedure produces the relationship ΔP∝1/a2

(Fig. 10), which is similar to that of Eq. (19).
In order to compare our model with the analyses of Murdoch

(1993c, 2002) and Galland et al. (2007), we need to derive the vol-
ume V of the intrusion, which writes in cylindrical coordinate system:

V ¼ −∫
2π

0

∫
a

0

rwi rð Þ dr dθ ¼ −2π∫a

0
rwi rð Þdr: ð20Þ

Combining Eqs. (5) and (20) and integrating, the expression of the
volume of the sill at any time t writes:

V tð Þ ¼ −2π
q0−P0ð Þa6
384D

þ C1a
4

16
þ C2a

2

2
−q0a

2

2k

 !
: ð21Þ

For simplicity, we consider here the case of homogeneous pressure
within the sill (Pa=P0). According to Eqs. (32) and (33) given in the
Appendix A, C1 and C2 are complicated functions of a andΔP. Combining
the relationship betweenΔP and a (Fig. 10)with Eq. (21) implies that the
volume V of the sill can be calculated numerically as a function of a orΔP
only, such that a and ΔP can be plotted as functions of V (Fig. 11).
Considering a constant injection flow rate Q, V=Qt can directly be
converted into time t.

Fig. 11a,b, and c show the evolution of ΔP, a and −wimax with V,
respectively. Qualitatively, the curves of Fig. 11a,b, and c match
well the experimental results of shallow horizontal intrusions of
Murdoch (1993a, 2002) and Galland (2012). In log-log representations
(Fig. 11), the data produce linear trends, thus showing that ΔP, a and
−wimax are all proportional to Vα. The slopes in Fig. 11 are −1/2, 1/4
and 1/2, respectively, showing that ΔP∝1=

ffiffiffiffi
V

p
, a∝

ffiffiffiffi
V4

p
and

−wimax∝
ffiffiffiffi
V

p
. The very same relationships have been obtained experi-

mentally by Murdoch (2002), suggesting that our model is relevant
for describing the emplacement of shallow flat-lying intrusions.

Notice that the domain of validity of the thin plate approximation is
for a/h>5. Some authors, however, used this formulation for small
values of a/h (e.g., Pollard and Johnson, 1973; Scaillet et al., 1995).We re-
call that, for the sake of rigor, we chose to use ourmodel only for a/h> 5,
and to represent only such data points in all figures. If one would be in-
terested in the case where a/hb5, e.g. for small sills, further tests and
comparisons with elastic half-space models (e.g., Sun, 1969; Fialko
et al., 2001a) would be required.

Kerr and Pollard (1998) also derived an analytical solution of the
surface uplift as a function of V. In their approach, nevertheless, the
mathematical problem was over-determined, such that a crack prop-
agation criterion was implicitly introduced in their boundary condi-
tions: the fixed displacement imposed at the tip of the sill yielded a
relationship between a and P (Eq. (23) of Kerr and Pollard (1998)),
playing a role analogous to our relationship between a and ΔP in
Fig. 10. We emphasize that our approach is different and more gener-
al: we solved the mathematical problem in the most generic manner
for any values of the system and control parameters, and we subse-
quently used an additional physical definition of a crack propagation
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criterion (Fig. 10) that links the pressure and the radius of the intru-
sion. With this criterion, the radius a of the intrusion is not an inde-
pendent control parameter anymore (like in the analysis of Kerr and
Pollard (1998)), and the surface uplift can be calculated as a function
of e.g. the volume V only. Because the application of a crack propaga-
tion criterion is separated from the main analysis, any crack propaga-
tion criterion can be used with our model, in contrast to the model of
Kerr and Pollard (1998).
5.2. Critical size of saucer-shaped sills

Saucer-shaped sills result from themechanical interactions between a
growinghorizontal sill and the deforming overburden (Malthe-Sørenssen
et al., 2004; Polteau et al., 2008; Galland et al., 2009). The magma over-
pressure within the sill lifts up the overburden to form a gentle dome,
at the rim of which stresses interact with the leading edge of the sill
(Malthe-Sørenssen et al., 2004). When these stresses reach a critical
value, the sill tip is deviated from the horizontal, and it propagates up-
ward to form inclined sheets. Such a phenomenon is fundamental in sed-
imentary basins as it controls the formation of (1) numerous magmatic
sills in the Karoo Basin (e.g., Chevallier and Woodford, 1999; Goulty and
Schofield, 2008; Polteau et al., 2008; Galerne et al., 2011), offshore UK
and Norway (e.g., Hansen and Cartwright, 2006b; Thomson, 2007), and
(2) many sand intrusions (e.g., Duranti and Hurst, 2004; Huuse and
Mickelson, 2004; Szarawarska et al., 2010).

The analysis developed in this paper can be used to predict under
which condition the sill-to-inclined sheet transition occurs (Pollard and
Johnson, 1973; Goulty and Schofield, 2008). The bending of the overrid-
ing plate generates a strain distribution along the plate due to outer arc
and inner arc deformation (Fig. 12). In the formulation of a thin bending
plate, the vertical normal strain �z=∂w/∂zwithin the plate and upon the
sill is zero, because w is a function of r only. In contrast, �r=∂u/∂r is not
zero because the radial displacement u is a function of r. Notably, the tip
of the sill (r=a) is submitted to tensile strains �ra (Fig. 12a). We assume
that the overriding plate fails at the tip of the intrusionwhen �ra reaches a
critical value �c (radial tensile strain at failure), leading to the formation of
an inclined sheet due to mode I fracture (Fig. 12b). This reasoning is in
good agreement with experiments (Fig. 12b; Pollard and Johnson,
1973) and geological observations (Muirhead et al., 2012), which show
that upward open fractures, i.e. inclined sheets, form at the tips of sills.
Nevertheless, we cannot rule out that shear deformation also affects the
overriding plate.

The above analysis has been applied by Goulty and Schofield (2008)
using the formulation of Pollard and Johnson (1973), i.e. that of a clamped
plate. They found the expression of the critical size ac atwhich sills turn to

inclined sheetsac ¼ 2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E�c
3 1−ν2ð ÞΔP

r
. Herewe apply a similar analysis using

ourmore general solution. To this end, one needs to calculate the strain at



Fig. 14. Diagram representing the calculated critical size ac of a sill as a function of ΔP
and h, for �c=2×10−3. The color scale is in meters. The critical size ac of sills is calcu-
lated numerically, as illustrated in Fig. 13. The calculations are done with a constant
k=5 MPa m−1. Horizontal and vertical white lines locate the cuts shown in Figs. 15
and 16, respectively. E=100 GPa, ν=0.35 and ρ=2000 kg m−3.
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the tip of the sill, i.e. �ra. The expression of the radial strain �r at any point
of the bending plate is given by:

�r ¼
∂u
∂r ¼ −z

∂2w
∂r2

; ð22Þ

where u is the radial displacement and z is the distance from the neutral
surface. Combining Eqs. (5) and (22) yields an expression of �r:

�r ¼ −z
3 q0−P0ð Þr2

16D
þ C1 a; P0ð Þ

2
þ nþ 3ð Þ P0−Pað Þrnþ2

Dan nþ 2ð Þ2 nþ 4ð Þ

 !
; rba: ð23Þ

The points at the contact between the sill and the plate are at z=h/2.
The transition from a horizontal sill to an inclined sheet is assumed to
occur when the bending plate above the tip of the sill fails, i.e. when
�ra=�c at z=h/2. The strain at the tip of the sill can be calculated
from Eq. (23),

�ra ¼ −h
2

3 q0−P0ð Þa2
16D

þ C1 a; P0ð Þ
2

þ nþ 3ð Þ P0−Pað Þa2
D nþ 2ð Þ2 nþ 4ð Þ

 !
: ð24Þ

Here, we will consider the case of homogeneous pressure within
the sill, i.e. P0=Pa. Eq. (24) thus becomes:

�ra ¼ − h
2

3 q0−P0ð Þa2
16D

þ C1 a; P0ð Þ
2

 !
; ð25Þ

with the constant C1 given by Eq. (32). We can calculate the strain �r
at the tip of the sill for any values of P0 and a. Here we consider that
E=1010 Pa and ν=0.35. Fig. 13 illustrates how �ra evolves versus a, for
given overpressures ΔP. The transition from horizontal sill to inclined
sheet occurs when �ra reaches the critical value �c. Malthe-Sørenssen
et al. (2004) have suggested that �c may lie in the range 2×10−3 to
2×10−2. Thus, the size ac of the sill at which the transition occurs is the
solution of:

�c ¼ − h
2

3 q0−P0ð Þa2c
16D

þ C1 ac; P0ð Þ
2

 !
: ð26Þ
0.5 1 1.5

x 104

0

1

2

3

4

5

6

7
x 10-3

a (m)

ε ra

εc

ΔP
1
=0.5x106 Pa

ΔP
2
=1x106 Pa

ΔP
3
=1.5x106 Pa

ac1 ac2 ac3

Fig. 13. Plot of the radial strain �ra at the tip of the sill (r=a), at the base of the bending
plate, as a function of a. The thickness of the plate is constant h=1000 m. The three
curves correspond to ΔP1=0.5 MPa (continuous line), ΔP2=1 MPa (dashed line),
and ΔP3=1.5 MPa (dashed-dotted line). Here, E=10 GPa, ν=0.35, k=5 MPa m−1,
ρ=2000 kg m−3. The considered critical tensile strain at failure is �c=4×10−3 (hori-
zontal solid line). The open diamonds locate the calculated sill sizes aci, at which �ra=�c.
The values of aci give the critical size of a sill at the sill-to-inclined sheet transition. Notice
that we consider only points for which a/h>5.
In the case of a clamped plate, C1 is a simple function of a and P0
(C1=P0a

2/16D), such that ac can easily be found analytically. Here,
Eq. (26) is not directly solvable because C1 is a complicated function
of both a and P (see Eq. (32)). Nevertheless, Eq. (26) can be solved nu-
merically, as shown in Fig. 13. Fig. 14 shows a map of the calculated
values of ac versus ΔP and h. For clarity, we plot profiles of this map
(white lines), which are shown in Figs. 15 and 16.

The values of ac calculated with our model, by using typical geolog-
ical parameters, are typically tens of kilometers for sill depths of a few
kilometers. This result is in good agreement with sills observed in the
field (e.g., McCaffrey and Petford, 1997; Malthe-Sørenssen et al., 2004;
Polteau et al., 2008; Galland et al., 2009; Galerne et al., 2011) and on
seismic profiles (e.g., Thomson, 2004; Thomson and Hutton, 2004;
Hansen and Cartwright, 2006a; Thomson, 2007; Hansen et al., 2008).
This suggests that our model is a reasonable approximation of reality.

Fig. 15 shows the difference between the clamped solution of Goulty
and Schofield (2008) and the results of our model for three different
values of k, with a constant h=2000 m. The clamped solution of
Goulty and Schofield (2008) follows a hyperbolic function of ΔP of the
form 1=

ffiffiffiffiffiffiffi
ΔP

p
. When k=1010 Pa m−1, the elastic foundation is very

rigid, almost all the deformation is accommodated by the bending
plate and consequently, our solution provides results very similar to
the clamped solution. In contrast, when k decreases the elastic founda-
tion is softer and it accommodates part of the deformation. As a conse-
quence, the bending of the plate at the tip of the sill is less pronounced.
Therefore, although ac follows a hyperbolic trend similar to that of the
clamped solution, the calculated values are higher (Fig. 15). This has
the important physical meaning that an elastic foundation favors the
horizontal spreading of sills. In addition, for soft elastic foundations,
the linear behavior in the log-log plot of Fig. 15b is lost, showing that
ac cannot be described by a hyperbolic function of ΔP anymore.

Fig. 16 shows the relationship between ac and h for different values
of k. According toGoulty and Schofield (2008), ac is a linear function of h
in the case of a clamped plate. This is consistent with geological and
geophysical observations (Polteau et al., 2008). Similarly to Fig. 15 and
for the same reasons, the values of ac calculated from our solution devi-
ates from the clamped solution. In addition, we can notice for the case
k=105 Pa m−1 that the relationship between ac and h in a log-log
plot is not perfectly linear anymore, but the curve slightly bends down-
ward. This latter behavior has been observed in numerical simulations
(Malthe-Sørenssen et al., 2004) and in experiments (Galland et al.,
2009). This result once again suggests that the solution presented in
this paper is more realistic than the simple clamped solution.
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5.3. Comparison with the model of Mogi (1958)

In active volcanoes, the shape and dynamics of intrusions can be in-
ferred from geophysical (Brandsdóttir and Menke, 1992; Brandsdóttir
and Menke, 2008) and geodetic data (Amelung et al., 2000; Fialko
et al., 2001a; Battaglia et al., 2006; Pedersen and Sigmundsson, 2006;
Chang et al., 2007; Vasco et al., 2007; Fukushima et al., 2010;
Sigmundsson et al., 2010; Woo and Kilburn, 2010). In order to estimate
their geometrical and dynamic characteristics, a standard procedure
consists of (1) making an assumption on the shape of the intrusion re-
sponsible for themonitored ground deformation, and (2) fitting ground
deformation datamonitored from geodetic survey (GPS, InSAR)with an
analytical solution or a numerical model relevant to the assumed intru-
sion shape. The parameters of the model that provide the best fit are
considered to characterize the shape of the intrusion.

Analytical solutions are convenient to use as they often do not re-
quire heavy computational skills. A classical analytical model used for
analyzing ground deformation in volcanic systems is that of Mogi
(1958). The “Mogi point source” model has been used extensively to
invert ground deformation data measured on active volcanoes when
the shape of the magma source was not known a priori (e.g.
Masterlark, 2007; Bathke et al., 2011; Ji and Herring, 2011; Ofeigsson
et al., 2011). This model accounts for the vertical (wM) and horizontal
(uM) displacements due to an over-pressured spherical magma body
of radius am at a depth hm>>am:

uM ¼ 3a3mΔPm

4μ
r

h2m þ r2
� �3=2 ; ð27Þ

wM ¼ 3a3mΔPm

4μ
hm

h2m þ r2
� �3=2 ; ð28Þ

where r is the radial distance on the surface, and μ=Eν/((1+ν)(1−2ν)).
In general, the horizontal displacements produced by models

based on thin bending plates are not considered (e.g., Pollard and
Johnson, 1973; Murdoch, 2002; Bunger and Cruden, 2011). One rea-
son is that u=0 at the neutral line at the centre of the plate, i.e. at
z=0, because the radial strain �r=0 (Fig. 12a). Nevertheless, above
and below the neutral line, �r≠0 as outer-arc stretching and inner-arc
shortening occur (Fig. 12a). Combining Eq. (22) with Eqs. (5) and (6)
lead to the expressions of u at the surface of themodel, i.e. at z=−h/2:

u r b að Þ ¼ h
2

q0−P0ð Þr3
16D

þ C1

2
r þ P0−Pað Þrnþ3

Dan nþ 2ð Þ2 nþ 4ð Þ

" #
; ð29Þ

u r > að Þ ¼ h
2
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� �h i� �
:

ð30Þ

We compare the vertical (−wi) and horizontal (u) displacements
computed from our analytical model with standard values (h=
2000 m, a= 10000 m) with the Mogi point source model (Mogi,
1958) by fitting this latter to our model (Fig. 17). When the fitting
is applied to the domain 0b rb2a, the shapes of the curves exhibit
some differences (Fig. 17a), but the overall shapes are similar. Inter-
estingly, the result of the fit gives an estimate of the depth of the
Mogi point pressure source hm= 7550 m, i.e. the Mogi point source
model greatly over-estimates the depth of the magma source (by
more than a factor of 3.5). One can notice that the ratio −wimax/
umax is larger in our model than in the model of Mogi (1958), i.e.
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the horizontal displacements u calculated from our model are propor-
tionally smaller than uM.

Notice that the failure of theMogi model is mainly due to the geome-
try of the intrusion, rather than to the details of the sill model. As an illus-
tration, in Fig. 17b, we fitted theMogi point sourcemodel to the clamped
model of Pollard and Johnson (1973). The result also shows that theMogi
model over-estimates the depth of themagma source (hm=6681 mver-
sus h= 2000 m), but to a lower extent than with our model.

Because ground deformation data are often produced from InSAR
measurements (e.g. Amelung et al., 2000; Pedersen and Sigmundsson,
2006;Masterlark, 2007; Sigmundsson et al., 2010), only the vertical dis-
placement w can be calculated. We thus fitted the vertical displace-
ments −wi calculated from our model with the vertical component
wM of theMogimodel (Fig. 17c) on the domain 0brb2a. The fit appears
much better than in Fig. 17a, but the calculated depth of the pressure
source is hm= 7439 m, i.e. the same depth as that calculated from
fitting both −wi and u (Fig. 17a). Applying the Mogi model to analyze
ground deformation induced by the emplacement of a sill, and moni-
tored with InSAR also leads to large over-estimates of the depth of the
pressure source (by a factor of 3.5).

All these tests show that the systematic use of the Mogi point
source model (e.g., Sturkell et al., 2012) would lead to substantial mis-
understanding of the structure and dynamics of volcanic systems
if the magma reservoir is shallow and flat-lying, such as in many volca-
noes (e.g., Amelung et al., 2000; Fialko et al., 2001b; Sigmundsson et al.,
2010; Woo and Kilburn, 2010). This large error can have important im-
plications for, e.g. interpreting petrological data for inferring the depth
of magma reservoirs. Constraining properly the depth of magma reser-
voirwould also avoid surprises such as at Krafla Volcano, Iceland, where
drilling unexpectedly ended up directly in themagma chamber at about
2 km depth (e.g., Elders et al., 2011).

Our analysis suggests that inversion of ground deformation data
based on analytical models may not consider the Mogi point source
model only, but should systematically complement this latter with an-
other simple analytical model that takes into account a flat-lying shape,
like our model. In this respect, a systematic test of the suitability of our
analyticalmodel for grounddeformation inversion, and especially a com-
parison with the solutions of Okada (1985) and Fialko et al. (2001a)
would be very interesting to perform.

6. Conclusions

In this paper, we developed a new axi-symmetrical model of sur-
face uplift due to flat-lying magma intrusions. The model is based on
the formulation of a thin bending plate lying on a deformable elastic
foundation. In contrast to former models of sills and laccoliths consid-
ering the thin bending plate formulation (Pollard and Johnson, 1973;
Scaillet et al., 1995; Goulty and Schofield, 2008), our model allows up-
lift both upon and outside the intrusion. The model proposed here is
an improved version of that proposed by Kerr and Pollard (1998), as
we extend it to axi-symmetrical and we set generic boundary condi-
tions. The pressure distribution within the intrusion is P=P0−(P0−
Pa)(r/a)n, where P0 and Pa are the pressure at the center (r=0) and
periphery (r=a) of the intrusion, respectively.

We propose a fully analytical solution of the model. Numerically,
however, the solution becomes unstable for a/l>450, with a the radius
of the sill and l the elastic length emerging from the model. In these
cases,we propose an asymptotic solutionwhich prolongates the analyt-
ic solution for large values of a/l. Both the analytic and asymptotic solu-
tions are provided in a Matlab file as supplementary material.

The uplift calculated from our model depends on both the elastic
properties of the bending plate and of the elastic foundation. We show
that when the elastic foundation is very stiff, i.e. when k→∞, our
model converges towards that of Pollard and Johnson (1973) for a
clamped plate, as expected.

The model exhibits two regimes depending on the ratio a/l. When a/
lb5, themaximumuplift at the center of the intrusion−wimax evolves as
a2 (Fig. 7). In this regime, the elastic foundation is soft compared to the
bending plate, the calculated uplift spreads over a large domain com-
pared to the intrusion area. In contrast, when a/l>5, themaximumuplift
at the center of the intrusion evolves as a4. In this latter regime, the
bending plate is soft compared to the elastic foundation, the uplift ex-
tendsmostly upon the sill. Interestingly, geological systems are expected
to be found on both sides of the transition between the two regimes.

By introducing a relevant fracture propagation criterion, we show
that the model can be used to describe sill propagation. For realistic
values of the model parameters, our solution reproduces well the tem-
poral evolution of shallow horizontal intrusions simulated in experi-
ments (Murdoch, 1993c, 2002; Galland, 2012).

The model can also be used to predict the critical size ac at the tran-
sition from inner sill to inclined sheet in saucer-shaped sills as a
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function of h and ΔP. ac approaches linear functions of h and 1=
ffiffiffiffiffiffiffi
ΔP

p
, as

observed in the field (Polteau et al., 2008), in experiments (Galland
et al., 2009) and in numerical simulations (Malthe-Sørenssen et al.,
2004). We also show that soft elastic foundations favors the horizontal
spreading of sills before they form inclined sheets.

We compared the vertical and horizontal displacements calculated
from our model with the Mogi point source model (Mogi, 1958), and
we show that this latter can strongly over-estimate the depth of a
flat-lying intrusion by more than a factor of 3. We thus propose that
our model can be useful to analyze ground deformation resulting from
sill intrusions in active volcanoes and offers a simple alternative to
numerical models.
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Appendix A

The elements Ci of the solution matrix of Eq. (15) are such that:

C1
Di

2a
¼ 4b 6 himi−ginið Þ þ 3 giqi−hipið Þaþ nipi−miqið Þa2

h i
þ

s½ himi−ginið Þ 24þ26nþ9n2þn3
� �

þ giqi−hipið Þ 12þ7nþn2
� �

aþ nipi−miqið Þ 4þnð Þa2�
ð31Þ

C2−
q0
k
− 5b−s 1− nþ 4ð Þ nþ 3ð Þ

2

	 
� �
a4

 �
Di

a
¼

cihi−f igi þ a f imi−cinið Þ−a2
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himi−ginið Þ

" #
24bþ s 2þ nð Þ 3þ nð Þ 4þ nð Þð Þþ

a2 ciqi−f ipi−
a2

2
miqi−nipið Þ

" #
8bþ s 4þ nð Þ 2þ nð Þð Þ

ð32Þ

C3
Di

a
¼ 8b 3 nia−hið Þ−qia
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h i

þ s 24þ 26nþ 9n2 þ n3
� �

nia−hið Þ− 8þ 6nþ n2
� �

qia
2

h i
ð33Þ

C4
Di

a
¼ gi−miað Þ 24bþ s 2þ nð Þ 3þ nð Þ 4þ nð Þ½ �

þ pi 8bþ s 4þ nð Þ 2þ nð Þ½ �a2 ð34Þ

with b ¼ q0−P0
64D , s ¼ P0−Pa

D nþ2ð Þ2 nþ4ð Þ2, Di=hipi−giqi+(miqi−nipi)a and the

following definition of the coefficients for the analytic (i=1) or the
asymptotic (i=2) solutions:

c1 ¼ −kei0
a
l

� �
ð35Þ

f 1 ¼ −ker0
a
l

� �
ð36Þ
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p
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Appendix B

The derivation of the expression of the stress intensity factor is
based on the mechanical energy U of the system due to the intrusion.
It is equal to the work of the overpressure on the roof of the sill as it is
inflated:

U ¼ −∫V

0
ΔP dV ′: ð51Þ

The expression of the volume of the intrusion for any pressure dis-
tribution is given by:

V tð Þ ¼ −2π
q0−P0ð Þa6
384D

þ C1a
4

16
þ C2−

q0
k

� � a2
2

þ P0−Pa

Dan nþ 2ð Þ2 nþ 4ð Þ2
anþ6

nþ 6

 !
: ð52Þ

When Pa=P0, this Eq. (52) leads to Eq. (21). In addition, Eqs. (32) and
(33) show that when Pa=P0, C1∝ΔP and C2−q0/k∝ΔP. Therefore,
Eq. (21) shows that V=αΔP, with α a constant independent ofΔP. Com-
bining this simple relationship with Eq. (51) leads to:

U ¼ −∫V

0

V ′ dV ′

α
¼ V2

2α
¼ 1

2
ΔPV : ð53Þ

Combining Eqs. (53) and (21) leads to:

U ¼ πΔP
q0
k
−C2

� � a2
2
− C1

16
a4− q0−P0

384D
a6

" #
: ð54Þ
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The stress intensity factor is given by the following expression:

KI ¼
ffiffiffiffiffiffiffiffi
GE′

p
; ð55Þ

where G=−dU/dA, E′=E/(1−ν2), and A is the area of the intrusion.
G is a function of a and P, and can be rewritten as:

G a; Pð Þ ¼ −dU
da

1
2πa

: ð56Þ

U being a very complex function of a through C1 and C2, G cannot
be derived analytically. However, for a given pressure, G can be calcu-
lated numerically as:

G a; Pð Þ ¼ −U aþ dað Þ−U að Þ
da

1
2πa

: ð57Þ

Combining Eqs. (55), (57) and (54), and giving KI a critical value KIC,
i.e. the fracture toughness, leads to a relationship between P and a,
which can be calculated numerically (Fig. 10). Combining this numeri-
cal relationship with Eq. (21) allows one to calculate the evolution of
a, P and −wimax as a function of V (Fig 11).

In order to test the relevance of this approach, we compare it with
the clamped plate problem with homogeneous pressure, in which:

C1

4
¼ 2ΔPa2

64D
; ð58Þ

q0
k
−C2

� �
¼ ΔPa4

64D
: ð59Þ

Combining Eqs. (58) and (59) with Eq. (54) leads to an expression
of the input energy:

U ¼ πΔP2a6

384D
: ð60Þ

Using Eq. (60) in the definition of G Eq. (56) leads to an expression
of G:

G ¼ 3ΔP2a4

32E′h3
: ð61Þ

Finally, the stress intensity factor can be derived from Eq. (55):

KI ¼ ΔPa2
ffiffiffiffiffiffiffiffiffiffiffi
3

32h3

s
: ð62Þ

This expression is identical to that derived byMurdoch (1993c) and
Murdoch (2002) (see also Eq. (19)), thus validating our calculation.
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