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Abstract Macroscopic sliding between two solids is

triggered by the propagation of a micro-slip front along the

frictional interface. In certain conditions, sliding is pre-

ceded by the propagation of aborted fronts, spanning only

part of the contact interface. The selection of the charac-

teristic size spanned by those so-called precursors remains

poorly understood. Here, we introduce a 1D toy model of

precursors between a slider and a track in which the fronts

are quasi-static self-healing slip pulses. When the slider’s

thickness is large compared to the elastic correlation length

and when the interfacial stiffness is small compared with

the bulk stiffness, we provide an analytical solution for the

length of the first precursor, K, and the shear stress field

associated with it. These quantities are given as a function

of the bulk material parameters, the frictional properties of

the interface and the macroscopic loading conditions.

Analytical results are in quantitative agreement with the

numerical solution of the model. In contrast with previous

models, our model predicts that K does not depend on the

frictional breaking threshold of the interface. Our results

should be relevant to the various systems in which self-

healing slip pulses have been observed.

Keywords Precursor to sliding � Self-healing slip pulse �
Propagation length

1 Introduction

Despite the importance of friction [1, 2], several funda-

mental aspects of the problem, such as a detailed descrip-

tion of the beginning of sliding motion, are still not fully

understood. Recent experiments allowed visualization of

the onset of sliding in a variety of experimental situations

for sphere-on-plane [3, 4] or plane-on-plane [5–8] con-

tacts, for randomly rough [3–7] or micro-structured [8]

surfaces, for side-driven [5–7] or top-driven [3, 4, 8]

loading. These experiments have revealed that sliding ini-

tiation is always mediated by the propagation of micro-slip

(rupture) fronts, separating a stuck region and a slipping

region, along the contact interface. Propagation was found

either quasi-static (controlled by the external loading) [3,

4, 8] or dynamic [5–7] with a variety of speeds from

supersonic to anomalously slow [5, 9]. Fronts spanning the

whole contact precipitate macroscopic relative motion

(sliding) of the bodies in contact. Before that, a series of

aborted fronts spanning a portion of the contact only may

be observed [6, 7]. Such fronts are called precursors and

will be the object of the present work.

In side-driven plane-on-plane contacts [6, 7], all pre-

cursors were observed to nucleate near the trailing edge

of the contact, where the loading is applied. The first

precursor propagates through the shear and normal stress

fields produced by the initial loading of the system. After

the precursor has stopped, the mechanical state of the

interface is modified all along the ruptured path, so that

the next fronts will propagate through the stress field

prepared by the previous ones [6]. In this context, suc-

cessive precursors were observed to propagate longer and

longer distances [6, 7]. Here, we will address the problem

of the selection of the characteristic length of the first

precursor.
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Several models have previously been used to investigate

the series of precursors to sliding. Braun et al. [10] used a

dynamic simulation in which the slider was modeled as a

chain of blocks coupled by springs, while the interface was

treated as a set of ‘‘frictional’’ springs with random

breaking thresholds. They reproduced both a series of

precursors of increasing length and a modification of the

stress field by the precursors. These results stimulated the

study of simplified models that would still reproduce series

of precursors. In Refs. [7, 11–13], the interface was

described by the phenomenological Amontons–Coulomb

law of friction: the interface is pinned until the local ratio

of shear to normal stress reaches the static friction coeffi-

cient ls; the interface is then locally slipping and charac-

terized by a kinetic friction coefficient lk\ls. All these

models produce series of growing precursors nucleated at

the trailing edge. Maegawa et al. [7] further showed that an

asymmetric normal loading influences the precursor length.

Scheibert and Dysthe [11] showed that a similar effect is

obtained for a symmetric normal loading, as soon as the

friction force is not applied exactly in the plane of the

contact interface. Amundsen et al. [12] showed that, to be

realistic, 1D models should involve an intrinsic length scale

for the interfacial stress variations, for instance through the

introduction of the shear stiffness of the interface. Trøm-

borg et al. [13] showed that in 2D models, such a length

scale naturally arises when introducing the system’s

boundary conditions and bulk elasticity.

In all the above simplified models [7, 11–13], each

broken contact point repins when its slipping velocity goes

back to zero. As a consequence, the observed rupture mode

is crack-like, i.e., the precursor front separates a stick

region from a region slipping almost everywhere behind it.

Recently, however, Braun and coworkers have used a

different friction law [14, 15]: the friction between two

solids results from multiple individual micro-junctions

which break under stress and immediately form again

elsewhere. As a consequence, the rupture mode of the

interface is of the self-healing slip pulse type, i.e., the

slipping part of the interface is confined between the rup-

ture front and a repinning front.

The scope of this work is to propose a toy model, which

incorporates this alternative friction law within a 1D elastic

model of a solid slider, and use it to investigate the kine-

matics of the onset of sliding. We will show that, assuming

quasi-static propagation, this toy model enables analytic

predictions for the length of the first self-healing precursor

and the shear stress field associated with it. We emphasize

that the self-healing mode is not just a theoretical concept:

It was observed in various experiments using widely dif-

ferent materials and loading conditions (see e.g., [8, 16,

17]). Comparatively, as far as the onset of sliding is

concerned, it has received much less interest than the

crack-like mode. This is why we believe that the present

toy model is a valuable first step toward a better under-

standing of the full dynamics of self-healing slip pulses.

2 Toy Model

We consider that macroscopic contacts are made of a large

number of micro-junctions in parallel, with an average

distance ac. Let an individual junction (micro-contact,

bridge, solid island, etc.) have an average radius rc and

height hc. Considering it as a cylindrical flexible ‘‘rod’’, we

may estimate its elastic constant as kc ¼ 3pEr4
c=4h3

c, where

E is the Young modulus of the material [14]. Elastic theory

introduces a characteristic size kc (known as elastic cor-

relation length) below which the frictional interface

behaves rigidly [14, 18]. Typical values of the correlation

length lie in the lm scale. The set of Nc ¼ k2
c=a2

c contacts

within the area k2
c is considered as an effective contact (the

k-contact introduced in [14, 15]) with elastic constant

k ¼ Nckc.

At length scales larger than kc, the slider’s bulk is

deformable and two distinct points along the interface can

move by different amounts. To account for this elasticity,

imagine that the slider is discretized into cubic blocks of

size k3
c. The elastic coupling between adjacent blocks is

modeled by springs connecting only the nearest neighbors,

the stiffness of which can be worked out (see below) as

functions of only two elastic parameters, Young’s modulus

E and Poisson’s ratio m. Because we aim at providing

Fig. 1 Sketch of the toy model. Left A 2D rectangular slider (gray) of

dimensions L and H, of elastic constants E and m, in contact with a

track, is discretized into cubic blocks of size k3
c . Right the slider is

modeled using a 1D toy model as a bilayer. The blocks in the

interfacial layer (IL) are connected through springs of stiffness K

(Eq. 1). In the upper part of the slider (US), each vertical slice of

material is assumed to be a rigid block connected to its neighbors

through springs of stiffness KL (Eq. 2). The IL and the US are

connected through transverse springs of stiffness KT (Eq. 3). The IL is

connected with the rigid track by ‘‘frictional’’ springs (or k-contacts)

of elastic constant k. The position of the leftmost block of the US is

imposed and increased at a velocity vd

554 Tribol Lett (2014) 56:553–562

123



analytical solutions, we progressively reduce the dimen-

sionality of the slider from 3D to 1D. A sketch of the final

1D model is shown in Fig. 1 (right). First the model is

reduced to 2D (Fig. 1 left) by reducing the thickness of the

slider to only one block’s size, kc. Then, the height of the

slider is modeled as a bilayer of blocks: The bottom-most

layer (interfacial layer IL) is left as in the 2D model. Each

block of the IL having a size kc, it is connected to the track

through a single k-contact. In the upper part of the slider

(US), each vertical slice is assumed to behave rigidly, with

neighboring slices being connected by internal springs.

Note that a similar, though different, model was previously

introduced in [19].

Let us consider a slider of length L, height H and

thickness W ¼ kc (by assumption). We assume that both L

and H are much larger than kc. Note that in this 1D model,

H should be interpreted as some effective height where the

driving force is applied. The horizontal stiffnesses K and

KL in the IL and US, respectively, can be derived to be:

K ¼ Ekc ð1Þ

and

KL � EH ¼ ðH=kcÞK: ð2Þ

The total transverse stiffness of the slider is

ELW=2Hð1þ mÞ. We assume that we can ascribe the

totality of this stiffness to the L=kc transverse springs KT

connecting the IL to the US. KT thus reads:

KT ¼
Ekc

2ð1þ mÞ
kc

H
¼ kc

2ð1þ mÞH K: ð3Þ

Note that KT=KL� kc=Hð Þ2\\1. This is a consequence of

the rigid connection of the blocks constituting the US (from

left to right in Fig. 1). We chose as an assumption to ascribe

the totality of the transverse rigidity of the slider to only one

plane between the IL and the US. Let us emphasize that, as a

matter of fact, there is no exact way to capture 3D elasticity

within a 1D model, even qualitatively. In particular, the stress

profile in response to a side loading decays as a power law in

3D, whereas it decays exponentially in 1D. The scope of our

toy model is thus merely to help us investigate analytically the

consequences of the self-healing nature of the rupture on the

propagation length. We will see that an important parameter of

the toy model is the ratio of interfacial to bulk stiffness k=K.

The interface is denoted as stiff if k=K � 1 and soft when

k=K � 1; we concentrate on the latter case, which corre-

sponds to most experimental situations.

The system can be described by three variables: utðxÞ
describes the displacement field of the US, uðxÞ is the

displacement field of the blocks in the IL, and ubðxÞ is the

displacement of attachment points of the IL to the track.

The stress in the IL is then given by

rcðxÞ ¼ k ½uðxÞ � ubðxÞ�=k2
c ; ð4Þ

while the stress which is driving the IL is equal to

rdðxÞ ¼ KT ½utðxÞ � uðxÞ�=k2
c : ð5Þ

The whole system is driven by imposing the displacement

of the leftmost block of the US as utð0; tÞ ¼ vdt, with vd an

arbitrarily small velocity.

3 Self-healing Slip Pulse-Like Rupture

The frictional behavior of each junction connecting the IL to

the track is the following. It acts as a spring of elastic

constant k as long as its stretching remains below a critical

value us ¼ fs=k but breaks and immediately repins with zero

stretching when the local shear stress reaches rs ¼ fs=k
2
c .

When a loading is applied to the slider, it is transmitted

differently to each k-contact due to elasticity of the slider.

The leftmost k-contact is the first to reach its breaking

threshold, slide and locally relax the interface. This causes

an extra stress on the neighboring contacts, which tend to

slide too, so that sliding events propagate as a kink,

extending the initial relaxed domain. Such a scenario may

be described as a solitary wave [14, 15]. The rupture mode

is of the self-healing slip pulse type, with a pulse width

equal to the lateral size of one contact, kc, because a

broken contact repins immediately, before the breaking of

its neighbor. Note that, in the absence of the US, and for a

displacement controlled loading of the left edge of the

slider, no propagation would occur: the first block would

not move after breaking of its k-contact, and thus its right-

neighbor would not be further loaded to its breaking

threshold.

In order to simplify the analysis, we suppose the exis-

tence of a hierarchy of times. Namely, we assume that the

pushing rate is adiabatically slow, vd ! 0, while the sound

speed (which determines the rate of propagation of the

elastic stress) is very large, vR !1. Therefore, when a

front propagates, it is accompanied by a quasi-static stress

field defined by mechanical equilibrium of the forces act-

ing on the interface layer (inertia effects are ignored). In

the following, we show that there exists a typical length

scale K , which characterizes the stress accumulation and

thus the precursor length.

4 Equations to be Solved

In the discrete model, we have x ¼ ikc, utðxÞ ! ut;i, uðxÞ!
ui and ubðxÞ! ubi. In equilibrium, the displacements

should satisfy
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KL ðut;iþ1 þ ut;i�1 � 2ut;iÞ ¼ KT ðut;i � uiÞ;
K ðuiþ1 þ ui�1 � 2uiÞ ¼ k ðui � ubiÞ þ KT ðui � ut;iÞ:

In the continuum approximation, these equations reduce to

the set of equations:

u00t ðxÞ ¼ j2
T utðxÞ � uðxÞ½ �; ð6Þ

u00ðxÞ ¼ j2 uðxÞ � wðxÞ½ �; ð7Þ

wðxÞ ¼ b utðxÞ þ ð1� bÞ ubðxÞ; ð8Þ

where jT ¼ ðKT=KLÞ1=2=kc, j ¼ ½ðk þ KTÞ=K�1=2=kc and

b ¼ KT=ðKT þ kÞ.
A key trick of our analytical approach is that the general

solution of the equation u00ðxÞ ¼ j2 ½uðxÞ � wðxÞ� is

uðxÞ ¼ D e�jx � j
R x

0
dn wðnÞ sinh½jðx� nÞ� .

As we impose the position of the left-hand side (trailing

edge) of the US, we have

utð0Þ ¼ Ut; ð9Þ

while the left-hand side of the IL is free so that

Kkcu0ð0Þ þ KT Ut � uð0Þ½ � ¼ k uð0Þ � ubð0Þ½ �: ð10Þ

To simplify considerations, we ignore the right-hand-side

boundary conditions assuming that the chain is infinite,

L!1, so that utð1Þ ¼ uð1Þ ¼ ubð1Þ ¼ 0.

Let initially, at t ¼ 0, the system be completely relaxed:

utðxÞ ¼ uðxÞ ¼ 0 and ubðxÞ ¼ u
ð0Þ
b ðxÞ ¼ 0. We then start to

push slowly the trailing edge of the US, so that Ut ¼ vdt

with vd ! 0. The solution of Eqs. (6)–(10) is:

utðxÞ ¼ D10 e�j1x þ D20 e�j2x; ð11Þ

uðxÞ ¼ a1D10 e�j1x þ a2D20 e�j2x; ð12Þ

where j2
1
2

¼ 1
2
ðj2 þ j2

T �
ffiffiffiffi
D
p
Þ, a1

2
¼ 1

2
½1� ðj2�

ffiffiffiffi
D
p

=j2
TÞ�,

D ¼ ðj2 � j2
TÞ

2 þ 4bj2j2
T, D10 ¼ ða2Ut � ucÞ=ða2 � a1Þ,

D20 ¼ ðuc � a1UtÞ=ða2 � a1Þ and uc 	 uð0Þ ¼ Ut ½kcbj2

ðj1 � j2Þ þ ðKT=KÞ
ffiffiffiffi
D
p
�=½kcj2

Tða2j2 � a1j1Þ þ k2
cj

2
ffiffiffiffi
D
p
�.

The positions Ut and uc grow together until the trailing

edge of the US reaches a position Ut0 where the left end

of the IL achieves the threshold value us at some time

t1 ¼ Ut0=vd. At t ¼ t1 the leftmost k-contact breaks and

attaches again with zero stretching, ubð0Þ ¼ u
ð1Þ
b ð0Þ ¼ us,

and the whole system relaxes, adjusting itself to a new

configuration with utð0Þ ¼ Ut0, ubð0Þ ¼ us and

ubðx
 kcÞ ¼ 0. After relaxation, all contacts have shifted

to the right, so that the IL stress rcðxÞ for x
 kc increa-

ses. As a consequence, the stress on the second contact

has grown above the threshold rs so that it must break

too. This domino-like process will continue until the

stress at some (s0-th) contact will remain below the

threshold. This first passage distance defines a character-

istic length K ¼ s0kc which controls the kinematics of the

onset of sliding.

We emphasize that the driving stress rdðxÞ, Eq. (5),

changes self-consistently during front propagation, as uðxÞ
changes. The moving self-healing crack leaves behind

itself relaxed contacts. When the front reaches a position

s, the current shapes of the displacement fields eutðx; sÞ
and euðx; sÞ are given by solution of Eqs. (6)–(8). The

current displacement of the bottom surface of the IL,

eubðx; sÞ, is determined by the current propagation length

of the front:

eubðx; sÞ ¼ ~uðxþ 0; xÞ for x\s; ð13Þ

while ahead the moving front the contacts are still loaded,

eubðx; sÞ ¼ u
ð0Þ
b ðxÞ for x [ s: ð14Þ

With these conditions, the functions eutðx; sÞ and euðx; sÞ
take the following form. For the front tail (x\s):

eutðx; sÞ ¼ D11ðsÞ sinhðj1xÞ þ D12ðsÞ coshðj1xÞ½ �
þ D21ðsÞ sinhðj2xÞ þ D22ðsÞ coshðj2xÞ½ �
þ �utð0; xÞ;

ð15Þ

euðx; sÞ ¼ a1 D11ðsÞ sinhðj1xÞ þ D12ðsÞ coshðj1xÞ½ �
þ a2 D21ðsÞ sinhðj2xÞ þ D22ðsÞ coshðj2xÞ½ �
þ �uð0; xÞ; ð16Þ

where

�utðx0; xÞ ¼
Z x

x0

dn eubðnÞ b1 sinh½j1ðx� nÞ�f

þ b2 sinh½j2ðx� nÞ�g;
ð17Þ

�uðx0; xÞ ¼
Z x

x0

dn eubðnÞ a1b1 sinh½j1ðx� nÞ�f

þ a2b2 sinh½j2ðx� nÞ�g;
ð18Þ

with b1 ¼ ð1� bÞj2=ðj1ða2 � a1ÞÞ and b2 ¼ �b1j1=j2.

Ahead of the front (x [ s):

eutðx; sÞ ¼ D1ðsÞ e�j1ðx�sÞ þ D2ðsÞ e�j2ðx�sÞ

þ �utðs; xÞ;
ð19Þ

euðx; sÞ ¼ a1D1ðsÞ e�j1ðx�sÞ þ a2D2ðsÞ e�j2ðx�sÞ þ �uðs; xÞ:
ð20Þ

The coefficients D1ðsÞ, D2ðsÞ, D11ðsÞ, D12ðsÞ, D21ðsÞ and

D22ðsÞ in Eqs. (15)–(20) are functionals of the function

u
ð0Þ
b ðxÞ and should be determined by the two left-hand-

side boundary conditions (9) and (10) and the following

four continuity conditions at x ¼ s� 0:
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eutðs� 0; sÞ ¼ eutðsþ 0; sÞ; ð21Þ

eu0tðs� 0; sÞ ¼ eu0tðsþ 0; sÞ; ð22Þ

euðs� 0; sÞ ¼ euðsþ 0; sÞ; ð23Þ

eu0ðs� 0; sÞ ¼ eu0ðsþ 0; sÞ; ð24Þ

which finally lead to a set of integral equations that has to

be solved self-consistently.

5 Numerical Solution

A typical solution of the equations for the first front pas-

sage, for a completely relaxed IL initially (u
ð0Þ
b ðxÞ ¼ 0), is

shown in Fig. 2. We have assumed that front propagation is

fast compared with the slow pushing, so that the leftmost

block of the US has no opportunity to move before the

precursor arrests.

In these conditions, and when the slider’s height is

much larger than kc, the displacement field in the US is

approximately unchanged upon propagation of the pre-

cursor, even if the displacement in the IL almost double

upon front propagation (Fig. 2a). Because the k-contacts

repin immediately after breaking, they also immediately

start to load again as the next k-contacts relax and the

precursor propagates. As a consequence, the stress

behind the front is increasing with the distance to the

front (Fig. 2b). Ahead of the front, the relaxed k-contacts

induce an extra loading of the unbroken contacts ahead

of the front, characterized by a stress peak at the front

location (Fig. 2b). This extra stress Drc is enough to

bring initially less stressed contacts up to their threshold.

However, because the initial stress is a decaying function

of x, the extra stress is sufficient to bring the contacts

above their threshold only over a finite length K
(Fig. 2c).

6 Analytical Solution

For the first precursor arising from a completely relaxed

IL (u
ð0Þ
b ðxÞ ¼ 0), we found some analytical results. The full

proof is available in ‘‘Appendix’’. Here, we will only provide

the main results and the assumptions made to get them.

We assume that the elastic correlation length is much

smaller than the slider’s thickness (kc � H). Since kc is

typically in the micrometer range, this assumption is valid for

a large range of macroscopic systems. We also assume that
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Fig. 2 a Displacement fields eutðx; sÞ and euðx; sÞ: when the front

nucleates at t ¼ t1 (s ¼ 0, dotted, utðx; 0Þ � Ut0e�j2x) and during

front propagation for the distances s ¼ 13 a (dashed) and s ¼ 26 a

(full precursor propagation length, solid curve). b Stress field in the IL

during front propagation. c Dashed line shear stress in the IL at front

nucleation (t ¼ t1 � 0). Solid line shear stress in the IL, at the front

tip, when it passes at location x (s ¼ x) during its propagation. Dotted

line extra stress DrcðsÞ. H=kc ¼ 25, k=K ¼ 0:03, m ¼ 0:3, L ¼ 100kc
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the interfacial stiffness is much smaller than the internal

stiffness of the slider (k � K). For rough interfaces, this

assumption is also generally true [4]. Based on the results of

Fig. 2a, we assume that the displacement field in the US is

given by utðxÞ � Ut0e�j2x and does not change during front

propagation. Under these assumptions, we find an analytical

expression for the length K of the first precursor (Eq. (66) in

the ‘‘Appendix’’). This expression approximates, for K�
j�1 (i.e., large H=kc and/or k=K), to

K � j�1
2 ln 2=½ð1þ b� 2j2=jÞW1�f g; ð25Þ

where W1 ¼ 1þ kcj2=ð1þ kcjÞ.
The analytical results are shown in Fig. 3. K is found to

increase quasi-linearly with the height of the slider

(Fig. 3a) and to increase quasi-logarithmically with the

stiffness of the interface (Fig. 3b). Comparison with the

numerical results shows a quantitative agreement. We also

checked that molecular dynamics simulations of the model

agree with the analytical results (not shown).

7 Discussion

As for any toy model, we cannot expect our model to

reproduce quantitatively experimental results. In this dis-

cussion, we will thus mainly list the consequences of the

various simplifying assumptions that we made in order to

allow for an analytical solution.

We have shown that in our model, the onset of sliding is

characterized by precursory self-healing slip pulses. The

characteristic length K of the first precursor is controlled by

two parameters, H=kc and k=K, determined by the slider

and interface properties. Importantly, K does not depend on

the threshold value rs. This result is due to the fact that we

use linear elasticity and immediate repinning of k-contacts

in a completely relaxed state. As a consequence, all curves

in Fig. 2c are unmodified if rs is changed, and thus the

length K is also unchanged.

This threshold independence of K would mean that, if

the interface would obey Amontons’ law of friction

(rs ¼ lsrn, with ls the static friction coefficient and rn the

normal stress) locally (at the k-contacts scale), K would not

depend on ls. This is a major difference with previous

precursor models [11–13], in which the length of the first

(crack-like) precursor depends explicitly on ls. The inde-

pendence of K with ls implies an independence with the

normal load on the system, as long as the type of loading

(pure side loading) is unchanged.

If an additional uniform shear stress r0 is applied to the

top surface of the slider, then the threshold will decrease,

rs ! rs � r0. In such conditions, the crack will nucleate at

a lower macroscopic force and will propagate over a longer

distance. Moreover, if r0 [ rf , where rf is the Griffith

threshold (see e.g., Eq. (35) in Ref. [14] obtained for a

simpler 1D model), then the crack will never stop, so that

K!1.

We have considered a constant value of rs along the

interface. Let us consider a non-uniform normal load of the

form rnðxÞ ¼ rn0 þ �x, as in top-driven systems with fric-

tion-induced torque [11]. The thresholds thus also depend

on x, rsðxÞ ¼ rs0 þ ls�x. K will depend on the asymmetry

parameter � roughly as Kð�Þ � Kð0Þð1� �Þ.
We have assumed that broken contacts are immediately

restored with zero stretching. Instead, one may assume that

the contacts repin after some delay time sd [9, 10, 20].

Assuming a constant sd, the width of the self-healing crack

will increase from kc to vsd, with v the (minimal)
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Fig. 3 (color online) Dependence of the characteristic length K on

model parameters. Symbols are for numerics, solid lines for analytics,

dotted lines for approximate analytics (Eq. 25). a K versus H=kc for

different values of the interface stiffness k=K ¼ 0:03 (diamonds, red),

0.01 (squares, blue) and 0.003 (circles, black). b K versus k=K for

fixed H=kc=10 (bottom, red), 25 (middle, blue, dots), 50 (top, black).

m ¼ 0:3, L=kc ¼ 100
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propagation velocity of the front (see Refs. [14, 15]), and

the length K will increase to Kþ vsd. Note that experi-

mentally, the repinning conditions is generally unraveled.

In gels, however, the interface was reported to re-stick

when the slip velocity behind the rupture tip decreases back

to a critical velocity depending of the gel composition [17,

21].

In the presence of inertia, which has been neglected in

the present quasi-static model, the IL blocks will be able to

continue increasing the load on their right-hand neighbors

even after repinning of their individual k-contacts. This

extra loading is expected to help breaking further contacts

and thus increase the precursor length. In contrast, the front

nucleation process will be unaffected because it originates

from a static state of the system.

We have assumed that all k-contacts behave as classical

springs with a sawtooth-shape dependence uðrc). In real

systems, they are composed of Nc micro-junctions with a

distribution of thresholds PcðfsÞ. If PcðfsÞ is wide enough,

the elastic instability will disappear, and the k-contacts will

smoothly slide with the pushing velocity vd after reaching

the stretching us [22, 23]. No discrete precursor will thus

be observed, as a quasi-static front will continuously run

through the interface.

Here, we have considered the first precursor only. After

its propagation, the system is left in the stress state shown

in solid line in Fig. 2b. If the system is further loaded, the

leftmost k-contact will again be the first to reach its

breaking threshold, and a second precursor will nucleate. It

will propagate through the stress field left by the previous

event, itself modified by the additional loading and this

scenario will repeat itself. We have run numerical simu-

lations for the series of precursors and found that all pre-

cursors propagate roughly over the same length K (between

precursors, the stress peak left at the precursor extremity

does propagate further quasi-statically due to the increased

external loading). This is not in agreement with experi-

mental data [6, 7] and previous precursor models pro-

ducing crack-like (rather than self-healing-like) rupture

[7, 11–13], in which successive precursors propagate over

increasing lengths.

This discrepancy disappears if aging of the k-contacts

— a newborn contact has a smaller size and thus a lower

breaking threshold force fs — is taken into account [23,

24]. We checked this numerically by considering a time-

increasing fs. The previously broken region of the inter-

face is characterized by ‘‘younger’’ contacts and therefore

by smaller thresholds than the ‘‘old’’ unbroken part of the

system. Hence, the next front will pass this region more

easily and propagate deeper into the system. This process

repeats itself until a precursor would span the whole

interface and trigger macroscopic sliding of the interface.

Note that in these numerical results, there is a competition

between the aging and loading time scales, while the front

propagation time scale is kept much smaller than the

loading time scale.

The proposed toy model is important for all systems in

which friction instabilities are central, from tribology to

geophysics. It helps clarifying the problem of the selec-

tion of the size of the slipping part of the interface as a

function of the bulk material properties, interfacial

parameters and loading conditions. It will be particularly

relevant to systems in which self-healing slip pulses have

been observed (e.g., [8, 16, 17, 21]). Our results empha-

size the fact that the behavior of precursors is intimately

related to the repinning rule of the interface (at vanishing

velocity for crack-like rupture; immediately in the present

model). We thus advocate for an increased experimental

effort to better constrain these repinning rules, which will

be very useful to propose improved models for the onset

of frictional sliding.
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Appendix: Analytical derivation of Eq. (25)

Let us introduce two dimensionless parameters

h 	 kc=H and q 	 k=K; ð26Þ

so that KL ¼ K=h, KT ¼ Kh=2ð1þ rÞ, b ¼ 1=ð1þ bÞ,
1� b ¼ b=ð1þ bÞ, ðkcjTÞ2 ¼ hq=b, ðkcjÞ2 ¼ q ð1þ bÞ=b,

e 	 j2
T

j2
¼ h

1þ b
; ð27Þ

where b ¼ 2ð1þ rÞq=h, and consider the typical system

with h; q� 1. In this case e� 1, so that j2
1 � j2ð1þ beÞ

and j2
2 � j2e ð1� bÞ ¼ qe=k2

c , or

ðkcj2Þ�1 � ½2ð1þ rÞ þ h=q�1=2=h: ð28Þ

In accordance with the numerics (see Fig. 2a), let us

assume that in the case of h; q� 1 the displacement field

in the US is given by

utðxÞ � Ut0e�j2x ð29Þ
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and does not change during front propagation. Before

nucleation of the first precursor, the solution of Eq. (7) is

uðxÞ ¼ A30 sinhðjxÞ þ A40 coshðjxÞ

� jbU

Z x

0

dn e�j2n sinh½jðx� nÞ�

¼ 1

2
A40 þ A30 �

1

2
bU

j
jþ j2

� �

ejx

þ 1

2
A40 � A30 � bU

j
j� j2

� �

e�jx

þ bU
j2

j2 � j2
2

e�j2x:

ð30Þ

The right-hand-side boundary condition, uðxÞ ! 0 at

x!1, gives us

A40 þ A30 ¼
1

2
bU

j
jþ j2

; ð31Þ

while the left-hand-side boundary condition (Eq. (10))

leads to the equation

ðA40 � A30Þð1þ kcjÞðjþ j2Þ ¼ bUjð1þ ajþ 2kcj2Þ:
ð32Þ

Thus, before nucleation of the first precursor, the IL

displacement field is

uðxÞ ¼ bUj2

ðj2 � j2
2Þ

e�j2x � j2

j
ð1þ kcj2Þ
ð1þ kcjÞ

e�jx

� �

: ð33Þ

Equation (33) allows us to couple the parameters U 	
utð0Þ and uc 	 uð0Þ:

U ¼ uc 1þ j2

j

� �
=ðbW1Þ ; ð34Þ

where

W1 ¼ 1þ j2

j
kcj

ð1þ kcjÞ
: ð35Þ

When the displacement of the IL trailing edge reaches the

threshold value us at some U ¼ U0 ¼ usð1þ j2=jÞ= ðbW1Þ,
the front starts to propagate. In this case the solution of

Eq. (7), ahead of the propagating front, x [ s, where ubðxÞ ¼
0 so that wðxÞ ¼ butðxÞ ¼ bU0e�j2x, is given by

euðx; sÞ ¼ A3ðsÞ e�jðx�sÞ þ A4ðsÞ ejðx�sÞ

� jbU0

Z x

s

dn e�j2n sinh½jðx� nÞ�

¼ bU0j2e�j2x

ðj2 � j2
2Þ
þ A3ðsÞ e�jðx�sÞ þ A4ðsÞ ejðx�sÞ

� 1

2
bU0j e�j2s ejðx�sÞ

ðjþ j2Þ
þ e�jðx�sÞ

ðj� j2Þ

� �

:

ð36Þ

The right-hand-side boundary condition gives us the

coefficient A4ðsÞ,

A4ðsÞ ¼
1

2
bU0

j e�j2s

ðjþ j2Þ
; ð37Þ

so that Eq. (36) takes the form

euðx; sÞ ¼ bU0j2

ðj2 � j2
2Þ

e�j2x

þ A3ðsÞ �
1

2
bU0

j e�j2s

ðj� j2Þ

� �

e�jðx�sÞ:

ð38Þ

Behind the propagating front, x\s, where wðxÞ ¼
b utðxÞ þ ð1� bÞ ubðxÞ and ubðxÞ ¼ euðxþ 0; xÞ ¼ A3ðxÞþ
A4ðxÞ, the solution of Eq. (7) is given by

euðx; sÞ ¼ A1ðsÞ sinhðjxÞ þ A2ðsÞ coshðjxÞ

� j ð1� bÞ
Z x

0

dn ½A3ðnÞ þ A4ðnÞ� sinh½jðx� nÞ�

� jbU0

Z x

0

dn e�j2n sinh½jðx� nÞ�

¼ bU0FðxÞ þ A1ðsÞ sinhðjxÞ þ A2ðsÞ coshðjxÞ

� j ð1� bÞ
Z x

0

dn A3ðnÞ sinh½jðx� nÞ�;

ð39Þ

where

FðxÞ ¼ W2j2

ðj2 � j2
2Þ

� j2

j
sinhðjxÞ � coshðjxÞ þ e�j2x

� �
;

ð40Þ

F 0ðxÞ
j
¼ W2j2

ðj2 � j2
2Þ

� j2

j
coshðjxÞ � sinhðjxÞ � j2

j
e�j2x

� �
;

ð41Þ

W2 ¼
ð3� bÞjþ 2j2

2ðjþ j2Þ
; ð42Þ

so that Fð0Þ ¼ 0 and F0ð0Þ ¼ 0.

The coefficients A...ðsÞ in these equations are determined

by the boundary and continuity conditions. The left-hand-

side boundary condition (Eq. (10)) couples the coefficients

A1ðsÞ and A2ðsÞ. Using ubð0Þ ¼ us, euð0; sÞ ¼ A2ðsÞ and

eu0ð0; sÞ ¼ jA1ðsÞ, we obtain

A2ðsÞ � ðkcjÞ�1
A1ðsÞ ¼ W3;

W3 ¼ bU0 þ ð1� bÞ us:
ð43Þ

The continuity conditions (Eqs. (23) and (24)) lead to two

equations

j ð1� bÞ
Z s

0

dn A3ðnÞ sinh½jðs� nÞ� þ A3ðsÞ

¼ A1ðsÞ sinhðjsÞ þ A2ðsÞ coshðjsÞ þ bU0W4ðsÞ
ð44Þ

and
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j ð1� bÞ
Z s

0

dn A3ðnÞ cosh½jðs� nÞ� � A3ðsÞ

¼ A1ðsÞ coshðjsÞ þ A2ðsÞ sinhðjsÞ þ bU0W5ðsÞ;
ð45Þ

where

W4ðsÞ ¼ FðsÞ �
j e�j2s

2ðjþ j2Þ
; ð46Þ

W5ðsÞ ¼
F0ðsÞ

j
� j e�j2s

2ðjþ j2Þ
: ð47Þ

Taking the difference and sum of Eqs. (44) and (45), we

obtain two new equations:

2A3ðsÞ ejs � j ð1� bÞ
Z s

0

dn A3ðnÞ ejn

¼ A2ðsÞ � A1ðsÞ þ bU0½W4ðsÞ �W5ðsÞ� ejs;

ð48Þ

j ð1� bÞ
Z s

0

dn A3ðnÞ e�jn

¼ A2ðsÞ þ A1ðsÞ þ bU0 W4ðsÞ þW5ðsÞ½ � e�js:

ð49Þ

Using Eq. (43), Eqs. (46) and (47) may be rewritten as

2A3ðsÞ ejs � j ð1� bÞ
Z s

0

dn A3ðnÞ ejn ¼ A1ðsÞ
ð1� kcjÞ

kcj

þW3 þ bU0½W4ðsÞ �W5ðsÞ� ejs; ð50Þ

j ð1� bÞ
Z s

0

dn A3ðnÞ e�jn ¼ A1ðsÞ
ð1þ kcjÞ

kcj

þW3 þ bU0 W4ðsÞ þW5ðsÞ½ � e�js:

ð51Þ

Combining these equations, we finally come to the integral

equation for the coefficient A3ðsÞ:

A3ðsÞð1þ kcjÞ ejs

� jð1� bÞ
Z s

0

dn A3ðnÞ ½coshðjnÞ þ ðkcjÞ sinhðjnÞ�

¼ kcjW3 þ bU0W2W6ðsÞ; ð52Þ

where

W6ðsÞ ¼
j ð1þ kcjÞ
2ðj� j2Þ

eðj�j2Þs

� j ðkcj2 þ j2Þ
ðj2 � j2

2Þ
1þ e�ðjþj2Þs
h i ð53Þ

so that

W06ðsÞ ¼
ð1þ kcjÞ

2
ejs þ ðkcj2 þ j2Þ

ðj� j2Þ
e�js

� �

j e�j2s:

ð54Þ

From Eq. (52) we find that

A3ð0Þ ¼ ½kcjW3 þ bU0W2W6ð0Þ�=ð1þ kcjÞ: ð55Þ

Differentiating Eq. (52), we obtain a differential equation

for A3ðsÞ:
1

j
A03ðsÞ þ A3ðsÞ ¼ A3ðsÞ

ð1� bÞ
ð1þ kcjÞ

� ½coshðjsÞ þ ðkcjÞ sinhðjsÞ� e�js

þ bU0W2

j ð1þ kcjÞ
W06ðsÞ e�js:

ð56Þ

From Eq. (56) we obtain that at short distances, s� j�1,

A3ðsÞ � A3ð0Þð1þ c3sÞ, where

c3 ¼ �
j

1þ kcj
bþ kcj�

bU0

A3ð0Þ
W2

W06ð0Þ
j

� �

: ð57Þ

From Eqs. (37) and (56) it follows that euðsþ 0; sÞ ¼
A3ðsÞ þ A4ðsÞ � A0 ð1þ csÞ at short distances, s� j�1,

where

A0 ¼ A3ð0Þ þ A4ð0Þ ð58Þ

and

c ¼ ½c3A3ð0Þ � j2A4ð0Þ�=A0; ð59Þ

while for long distances, s� j�1, euðsþ 0; sÞ decays

exponentially,

euðsþ 0; sÞ � A e�j2s;

A ¼ bU0

j
2ðjþ j2Þ

þ W2

ð1þ b� 2j2=jÞ

� �

:
ð60Þ

The function euðsþ 0; sÞ may be approximated as

euðsþ 0; sÞ � A0

ð1þ CÞa ej3s

ðej3s þ CÞa ; ð61Þ

where

a ¼ 1þ j2=j3; ð62Þ
C ¼ ðj2 þ cÞ=ðj3 � cÞ; ð63Þ

and comparing Eqs. (59) and (61), we obtain a nonlinear

equation, which defines the value j3:

ln
A
A0

¼ 1þ j2

j3

� �

ln
j2 þ j3

j3 � c
: ð64Þ

Then, the IL stress ahead of the front is

rcðsÞ ¼ k euðsþ 0; sÞ=k2
c, and the equation rcðKÞ ¼ rs

defines the characteristic length K:

K � j�1
3 ln y; ð65Þ

where y is determined by the solution of the equation By ¼
ðyþ CÞa with B ¼ ð1þ CÞakA0=ðrsk

2
cÞ.

Using Eq. (60), K may approximately be presented as
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K � j�1
2 ln kA=rsk

2
c

	 


¼ 1

j2

ln
2

ð1þ b� 2j2=jÞW1

� �

:
ð66Þ

Equation (65) corresponds to the analytical solution for K,

whereas Eq. (66) corresponds to the approximated analyt-

ical solution provided as Eq. (25) in the main text.
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