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Abstract In this article, we study the dynamic behaviour of

1D spring-block models of friction when the external loading

is applied from a side, and not on all blocks like in the

classical Burridge–Knopoff-like models. Such a change in

the loading yields specific difficulties, both from numerical

and physical viewpoints. To address some of these difficul-

ties and clarify the precise role of a series of model param-

eters, we start with the minimalistic model by Maegawa

et al. (Tribol. Lett. 38: 313, 2010) which was proposed to

reproduce their experiments about precursors to frictional

sliding in the stick-slip regime. By successively adding an

(i) internal viscosity, (ii) interfacial stiffness and (iii) initial

tangential force distribution at the interface, we manage to

(i) avoid the model’s unphysical stress fluctuations, (ii) avoid

its unphysical dependence on the spatial resolution and (iii)

improve its agreement with the experimental results,

respectively. Based on the behaviour of this improved 1D

model, we develop an analytical prediction for the length of

precursors as a function of the applied tangential load. We

also discuss the relationship between the microscopic and

macroscopic friction coefficients in the model.

Keywords Sliding friction � Stick-slip � Precursors �
Spring-block model � Interfacial stiffness � Numerical

simulation � Friction coefficient

1 Introduction

The dynamics of frictional interfaces are crucial to many

situations in mechanical engineering [7, 36], geosciences

[33] or biology [25, 30]. Today, after decades of studies,

the science of contacts under time-invariant loading con-

ditions, e.g. static contacts or steady sliding contacts [2, 16,

24], has reached a high level of advancement which, in

many instances, enables quantitative reproduction of global

[2, 37] or local [13, 30, 31] measurements. In contrast, the

dynamics of contacts under rapidly evolving loads or

during fast unstable motion like stick-slip [3, 22, 38] is far

less understood. In particular, recent experiments on the

transition from static to kinetic friction of side-driven

poly(methyl methacrylate) (PMMA) rough samples form-

ing line contacts with a rough PMMA substrate have

revealed unexpected features [4, 19, 26, 27]. The transition

occurs through the fast (comparable to the speed of sound)

propagation of micro-slip fronts through the contact [4,

26]. It can also be preceded by a series of fronts that arrest

before having ruptured the whole contact, thus denoted as

precursors [19, 27].

These results, which may have important implications

for e.g. the study of earthquakes, have triggered an active

modelling activity. Braun et al. [9], using a one-dimen-

sional (1D) spring-block model with a complex time-

dependent friction law, produced three types of micro-slip

front velocities, analogous to that observed in [26].

Maegawa et al. [19], using a 1D spring-block model with a

simple Amontons-Coulomb (AC) friction law, showed that

the length of precursors is modified when the external

normal load is made asymmetric. Scheibert and Dysthe

[29], using a quasi-static 1D model with AC friction,

showed how the increasing tangential load itself induces an

increasing pressure asymmetry which influences the
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Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134

Ecully Cedex, France

e-mail: julien.scheibert@ec-lyon.fr

123

Tribol Lett (2012) 45:357–369

DOI 10.1007/s11249-011-9894-3



precursors’ series. Due to the intrinsic limitations of 1D

models, all these studies yielded only a qualitative agree-

ment with experiments. Very recently, Trømborg et al. [35]

demonstrated, using a 2D spring-block model with AC

friction, that quantitative agreement with the kinematics

(i.e. the properties of the states in which no micro-slip front

is propagating) of the experiments requires an accurate

description of the interfacial stresses, and therefore the use

of realistic boundary conditions on the sample.

Compared with such a 2D model, the strongest advan-

tage of 1D models is that their results are much easier to

analyse and understand, so that they provide opportunities

for theoretical approaches. They also require simpler

implementation and lower computational power. In most

situations, in which very accurate results are not needed

and/or a thorough qualitative understanding of the behav-

iour of the system is desired, 1D models are preferable.

From the pioneering work of Burridge and Knopoff [12],

spring-block models of friction have been extensively

studied (see e.g. [10, 14, 15, 23]). These models have

mainly been used to describe the statistical properties of the

series of earthquakes at a seismic fault. Inertial blocks are

connected in series via internal springs that model the

crust’s elasticity. A homogeneous tectonic loading is

modelled by coupling, via loading springs, all individual

blocks to the same rigid driving body. Such statistical

analysis of homogeneously driven systems contrast with

the recent 1D studies by Braun et al. [9] and Maegawa

et al. [19], in which the time evolution of side-driven

systems is analysed deterministically, in order to produce

data comparable to the experimental measurements. The

two models by Braun et al. and Maegawa et al. are actually

very different. Both consider an array of blocks connected

by internal springs, but the model by Braun et al. [9] also

considers viscous dissipation and a complex time-depen-

dent friction law emerging from the collective behaviour of

interfacial springs with random stiffness, breaking thresh-

old and reattachment time. In contrast, the model by

Maegawa et al. [19], which only considers blocks and

springs and the minimalistic AC friction law, is probably

the simplest possible model.

On the one hand, we will see that, due to its extreme

simplicity, the model by Maegawa et al. [19] yields

results that are strongly resolution dependent, which

prevents robust comparison with experiments. On the

other hand, it is difficult to disentangle the respective

roles of the many parameters of the model by Braun et al.

[9]. The scope of this article is therefore to (i) construct,

step by step, a minimal 1D side-driven spring-block

model, the results of which are essentially resolution

independent and (ii) qualify the capabilities of this model

to reproduce the main qualitative features of recent

experimental observations.

This article is organised as follows. In Sect. 2, we

describe the model by Maegawa et al. [19] and show its

limitations. In Sect. 3, we improve this model by intro-

ducing successively an internal viscosity, interfacial stiff-

ness and initial tangential force distribution. In Sect. 4, we

describe an analytic prediction for the length of precursors

in both Maegawa et al.’s and our improved model.

2 The Model by Maegawa et al. and Its Limitations

2.1 The Model by Maegawa et al. [19]

In the model developed by Maegawa et al. [19], the slider

is modelled as a chain of blocks connected by springs

(Fig. 1), with material spring constant k and block mass

m = M/N, where M is the total mass of the slider and N is

the number of blocks. In experiments, the base (also called

track) is fixed on a very stiff support, and it is therefore

modelled as a rigid surface for simplicity. The tangential

force is applied at the trailing edge of the system through a

loading spring with stiffness K. One end of this spring is

attached to the trailing edge block (block 1), whilst the

other end of the spring moves at a constant velocity V. The

normal force pn is imposed on each block, satisfying the

criterion
P

n=1
N pn = FN, where FN is the total applied

normal force.

The equations of motion are given by

m€un ¼
kðu2 � u1Þ þ FT þ f1; n ¼ 1

kðunþ1 � 2un þ un�1Þ þ fn; 2� n�N � 1

kðuN�1 � uNÞ þ fN ; n ¼ N;

8
<

:

ð1Þ

where un = un(t) is the position of block n as a function of

time relative to its equilibrium position and € denotes the

double derivative with respect to t. FT = FT(t) is the

driving force (or tangential force/load) given by

FT ¼ KðVt � u1Þ: ð2Þ

A local friction law giving the friction forces fn is

imposed between the blocks and the base. AC friction is

used with local kinetic and static friction coefficients lk

f1 f2 fN

mm

kK

m

V

x p2 pNp1

Fig. 1 Schematics of the model system. The sample is modelled by

N blocks of mass m connected in series through springs of stiffness

k. The trailing edge of the system (block 1) is slowly driven through a

loading spring of stiffness K. Each block is also submitted to a normal

force pn and to a friction force fn
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and ls, respectively. The resulting global friction

coefficients are similarly denoted by lK and lS. The

friction force on block n, fn, is then given by

fn ¼
� lspn; _un ¼ 0

�signð _unÞlkpn; _un 6¼ 0;

�

ð3Þ

where, when _un ¼ 0; equilibrium of block n imposes that fn
balances all other forces acting on block n.

The material spring constant k is chosen such that the

elastic deformation of the model is similar to that of a linear

elastic medium with Young’s modulus E, which yields:

k ¼ ðN � 1ÞES=L; ð4Þ

where S and L are the cross-section area and the length of

the slider, respectively.

In the experiments by Maegawa et al. [19], an asym-

metric normal loading was used, leading to the following

linear model for pn:

pn ¼
FN

N
1� 2n� N � 1

N � 1
h

� �

; ð5Þ

where h 2 �1; 1½ � is a measure of the non-uniformity in the

normal loading.

The values of the parameters are chosen to be in

agreement with their respective values in the experiments

by Maegawa et al. [19], which are: K ¼ 0:8 MN/m; V ¼
0:1 mm/s;FN ¼ 400 N;M ¼ 0:012 kg; L ¼ 100 mm; S ¼
100 mm2;E ¼ 2:5 GPa;ls ¼ 0:7 and lk = 0.45.

2.2 Results and Limitations of the Model by Maegawa

et al.

We have implemented the model by Maegawa et al. and

tested our code by comparing it to (i) two other similar

codes and (ii) the analytical solution of the equation of

motion for a one-block system. The simulation starts with

each spring at its equilibrium length, i.e. un = 0 for all

blocks. From t = 0, the force from the driving spring on

block 1 is increased. Figure 2a shows that the resulting

time evolution of FT (t) exhibits stick-slip behaviour. Each

time a drop in the driving force is observed, some part of

the slider moves relative to the base. We call the short-time

intervals during which movement occurs events.

Between events, no block is moving. Since the driving

force is applied only at the trailing edge block, only block 1

is loaded and eventually reaches its static friction thresh-

old, so that all events must nucleate at the trailing edge.

The movement of block 1 then loads block 2, which itself

reaches its threshold and so on. This succession of blocks

starting to move defines a micro-slip front, which propa-

gates towards the leading edge, in analogy with the fronts

observed in experiments [19, 26]. The distance from the

trailing edge to the micro-slip front as a function of time,

xf(t), is shown in Fig. 2b. If this front reaches the leading

edge, the event is a global event, and the whole slider

moves relative to the base.

From Fig. 2, it is evident that not all events are global:

smaller events are observed between global events. In

addition, a series of events with increasing maxima of

xf(t) is seen to precede the first global event. These events

occur for FT well below the macroscopic static friction

threshold, and are called precursors [19, 27]. The maxi-

mum of xf(t) during a precursor event, i.e. the length of a

precursor, is denoted by Lp.

To perform a quantitative comparison between their

experimental and numerical results, Maegawa et al.

focused on the relationship between the normalised length

Lp/L of the series of precursors (Fig. 2b) and the norma-

lised tangential force FT/FN at which they are triggered

(Fig. 2a). To do this, they discarded all simulated precur-

sors having a length smaller than any of the previous

events, with the justification that no such smaller event was

observed in the experiments. Note that 2D models produce

series of precursors of monotonically increasing length, so

that practically no event has to be discarded [35].

Figure 3 shows the tangential force s normalised by the

normal force p on each block at the time of initiation and

arrest of a precursor of length Lp = 0.6L. The tangential

force is here defined as the total force on a block excepting

the friction force. Each event is initiated, when the tan-

gential force on block 1 reaches the local static friction

threshold. As block 1 moves, the tangential force on block

2 increases, eventually reaching the local static friction

threshold, and starts to move. The precursor event arrests

when the tangential force built on a block by its left

neighbour is not sufficient to make it reach its static friction

threshold. The slow loading of block 1 continues, and will

eventually trigger a new event nucleating at the trailing

edge.

x f
t

/L

t [s]

F T
t

/F
N

b

a
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0
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0.6

Fig. 2 Time evolution of FT (a) and xf (b) in the model by Maegawa

et al. using N = 10 (as in [19]) and h = 0. Before macroscopic stick-

slip (reached when t& 2.8 s), the loading curve is punctuated by partial

relaxations associated with precursors to sliding, i.e. micro-slip fronts

spanning a length smaller than L
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The spatial resolution used in the above results, i.e.

N = 10 as used by Maegawa et al. [19], is rather low. This

is especially evident in Fig. 3, which only contains 10 data

points for s/p. We expected to improve these results by

simply increasing the resolution to N = 100. The corre-

sponding loading and front position curves, FT(t) and

xf(t), are shown in Fig. 4.

One of the limitations of the model by Maegawa et al. is

now clearly evident. By only changing the spatial resolu-

tion, the loading and front position curves are changed

significantly. Some aspects are unchanged: precursors

precede the first global event and then stick-slip behaviour

is observed. The final average level of FT/FN also appears

to be conserved. However, the amplitude of the drops in the

loading curve is reduced, whilst the number of events, both

global and precursory, is seen to increase significantly.

To illustrate this scaling with respect to the model reso-

lution, we have plotted in Fig. 5 the evolution with N of (i)

the total number of events and the number of global events

(Fig. 5a), and (ii) the total number of precursors and the

number of precursors longer than any previous ones

(Fig. 5b). An approximately linear increasing trend is

observed in all four curves. This behaviour is problematic as

soon as one wants to compare with experiments, in which the

size of the drops in FT/FN and the number of events are well-

defined experimental measurements. Maegawa et al. [19]

used N = 10, which produced a number of precursors sim-

ilar to that observed in their experiments, but this agreement

appears to be casual. A robust model should produce almost

identical numbers of events whatever the spatial discretiza-

tion of the slider. In this respect, note that 2D models do

produce a resolution-independent number of events [35].

Another problematic behaviour of the model affects the

tangential force spatial distribution, as shown in Fig. 6. The

tangential force has been plotted at three different times: at

t = 0.5 s, t = 3 s and at the arrest of the precursor of

Arr.

Init.
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Block number, n
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Fig. 3 Tangential force distribution at initiation of a microslip-event

(open circle). Block 1 has reached its slip threshold (s / p = ls). The

event involves all blocks from 1 to 6 (i.e. a precursor of length Lp/

L = 0.6), leading to a modified tangential force distribution at arrest

(open square). Results obtained using N = 10 (as in [19]) and h = 0
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Fig. 6 Tangential force distribution sn normalised by the normal

force pn on each block, at three different times: at t = 0.5 s, t = 3 s

and at the arrest of the precursor of length Lp/L = 0.7 using N = 100

and h = 0. Unwanted large oscillations with a half-period equal to the

lattice spacing appear
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Fig. 5 Number of different kinds of events as a function of N, using

h = 0. a Number of global events (solid line) for t 2 ½5 s; 20 s� and

total number of events (dashed line). b Number of precursors longer

than any previous one (solid line) and total number of precursors

(dashed line). All curves are strongly increasing functions of

N, indicating unphysical resolution dependence of the model’s results
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Fig. 4 Time evolution of FT (a) and xf (b) in the model by Maegawa

et al. using N = 100 and h = 0. Comparison with Fig. 2 shows a

drastic increase in the time–frequency of micro-slip events
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length Lp/L = 0.7. Strong oscillations are observed, with a

half spatial period of the order of the lattice spacing,

whatever the number of blocks N used. Again, this

unphysical dependence on the model resolution impedes a

robust comparison with experimental measurements of the

tangential stress distribution s(x), like e.g. those of [4].

In their quantitative comparison between model and

experimental results, Maegawa et al. [19] focused on the

length of precursors Lp as a function of the tangential load

FT, Lp(FT). This relationship has also been studied

experimentally by Rubinstein et al. [27]. Whilst similar

behaviours are found, we will only compare our model

results to the experimental results of Maegawa et al..

The experimental setup by Maegawa et al. allowed for

non-uniformities in the normal loading, and they studied its

consequences on the length of precursors. The non-uni-

formity in the normal loading is modelled as an asymmetric

distribution of the normal loads pn by using Eq. 5. The

value of the parameter h = ±0.833 is chosen to be in

agreement with its corresponding experimental value.

The length of precursors Lp is plotted as a function of the

tangential force FT at event arrest in Fig. 7. Three different

values of h are used, and the results for both N = 10 and

N = 100 are included. As discussed above, the number of

precursors increases with N. However, the shape of the

curves does not change significantly with N, thus enabling

comparison with the shape of the experimental curves.

The qualitative behaviour of Lp as a function of FT is in

agreement with experiments. For h = 0.833, the normal

force on the trailing edge is reduced, leading to longer

precursors for the same tangential load compared with

h = 0. On the other hand, h = -0.833 leads to an

increased normal load on the trailing edge, and precursors

are shorter for a given FT. All curves converge to the same

point at Lp/L = 1, meaning that the global static friction

threshold lS (the value of FT/FN when the first global event

occurs) is independent of the normal loading distribution.

The value of lS appears to be approximately 0.45, which

incidentally is the value of the local kinetic friction coef-

ficient lk. The reason for this will become clear in Sect. 4.

A quantitative comparison between the experimental

results in [19] and the model results in Fig. 7, however,

reveals large discrepancies: all three experimental curves

are found way below their simulated counterpart, meaning

that the simulation strongly overestimates Lp for any given

FT; the rapid increase in precursor length after Lp/L &0.5

that is observed experimentally has no equivalent in the

model.

Summing up, three main limitations of the model by

Maegawa et al. have been identified: (i) the tangential

force shows large oscillations, the wavelength of which is

controlled by the lattice spacing, (ii) the number of all

kinds of events is an increasing function of N and (iii) the

quantitative agreement with the Lp(FT)-curve between

model and experiments is poor. In the following section,

we propose improvements of the model that contribute to

overcome these limitations.

3 Improvements of the Model by Maegawa et al.

3.1 Introducing a Relative Viscous Damping

Resolution-dependent oscillations are known to occur in

Burridge–Knopoff-like models and more generally in

dynamic rupture models involving AC friction at the

interface between dissimilar elastic media [1]. Classical

ways to reduce them significantly are either to regularize

the AC friction law (see e.g. [5] and references therein) or

to introduce a viscous damping in the system [9, 17, 20, 34,

35]. Both are physically sound, but we choose to adopt the

second approach. Physically, such viscosity is a way to

model the energy dissipation that any material undergoes

during deformation. After Knopoff and Ni [17], we con-

sider the following form for the viscous force Fn
g:

Fg
n ¼

g _u2 � _u1ð Þ; n ¼ 1

g _unþ1 � 2 _un þ _un�1ð Þ; 2� n�N � 1

g _uN�1 � _uNð Þ; n ¼ N;

8
<

:
ð6Þ

which is a damping on the relative motion of neighbouring

blocks. As in e.g. [19, 35], we assume that energy

dissipation due to the motion of a block relative to the

substrate is satisfactorily included in fn, and therefore do

not, in contrast to e.g. [8, 9], include any viscous damping

at the interface in our system. This also serves to keep the

model as simple as possible. The equations of motion are

then given by

L
p

/L

FT/ FN

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Fig. 7 Length of precursors Lp normalised by the system length L as

a function of the tangential load FT at event arrest normalised by the

normal load FN for N = 10 and h = 0.833 (open circle), h = 0 (open
square) and h = -0.833 (open diamond), and N = 100 and

h = 0.833 (asterisk), h = 0 (times) and h = - 0.833 (plus). Solid
lines are the analytical predictions described in Sect. 4
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m€un ¼
kðu2 � u1Þ þ FT þ Fg

1 þ f1; n ¼ 1

kðunþ1 � 2un þ un�1Þ þ Fg
n þ fn; 2� n�N � 1

kðuN�1 � uNÞ þ Fg
N þ fN ; n ¼ N:

8
<

:

ð7Þ

The tangential force sn is still defined as the sum of all

forces on a block excepting the friction force, i.e. now

including Fn
g. It remains to choose a reasonable value of the

damping coefficient g.

In Appendix A, the value of g for critical damping of

waves of wavelength k = 2a, corresponding to the cut-off

wavelength, is calculated. The result is gc ¼
ffiffiffiffiffiffi
km
p

: It is also

shown that the values of g corresponding to critical

damping of higher wavelength oscillations are always lar-

ger than
ffiffiffiffiffiffi
km
p

: We want to damp out oscillations of wave-

length k = 2a, and using g ¼
ffiffiffiffiffiffi
km
p

is then a possibility.

However, waves of other wavelengths close to k = 2a will

also be highly damped, causing significant changes to the

dynamics. Since this is an undesirable effect, a compromise

has to be made. As suggested in [17], the value

g ¼
ffiffiffiffiffiffiffi
0:1
p ffiffiffiffiffiffi

km
p

� 0:32
ffiffiffiffiffiffi
km
p

ð8Þ

is used in the following. Note that since k � N - 1 and m �
1/N, g is N-independent for N � 1.

Figure 8 shows the tangential force distribution obtained

when relative viscous damping is included. The improve-

ment with respect to Fig. 6 is clear: the short wavelength

oscillations have almost disappeared, resulting in a physi-

cally reasonable smooth tangential force profile. s/p also

appears to be on average approximately equal to lk in

ruptured regions, a fact that will be utilised below to pre-

dict the precursor lengths.

Some small one- or two-node spikes remain. They have

a different origin, as they are mainly caused by the

discreteness of the friction law: at the tip of the rupture, one

block is moving and therefore increasing the force on its

neighbour, which is still stationary. The region beyond this

stationary block is therefore not affected by the

approaching rupture front, and a spike will therefore appear

at the rupture front. Spikes may also appear as an event

arrests, also caused by one part of the interface slipping

whilst another part is stuck.

In all the following, the viscous damping introduced in

this section will be used.

3.2 Introducing a Tangential Stiffness of the Interface

As discussed above, the model by Maegawa et al. exhibits

an unphysical scaling with N. It is possible to understand

this scaling by considering how the system is tangentially

loaded. As stated above, the driving force only acts on

block 1. In order for an event to nucleate, this block has to

reach its static friction threshold, which is proportional to

the normal force: ls p1 � p1 � 1/N. Since the added driving

force per time is independent of N, the time between two

events will be proportional to 1/N, and the frequency of

events consequently scales as N, an argument which is

fully consistent with Fig. 5. The origin of the odd N-

dependence of the model by Maegawa et al. is therefore

the decreasing size of the loading region as N is increased.

In a physical system, like in the experiments by Maeg-

awa et al., the loading region has a well-defined spatial

extension, which is a combination of various effects. First,

the tangential loading is applied at the trailing edge of the

slider at some effective height h above the interface. As

discussed experimentally in [27] and modelled in [35],

such a loading condition makes the tangential stress very

high in the region near the trailing edge, the extension of

which is of order h. Second, the interface between slider

and base is not rigid. Both surfaces are rough and the multi-

contact layer between them has a finite tangential stiffness

associated to the tangential deformation of the microas-

perities involved in the contact. Such stiffness can be

measured experimentally [6] and is found much smaller

than the slider’s bulk stiffness. Such a low interfacial

stiffness can be responsible for deviations with respect to

AC friction in static contacts [32]. The interfacial stiffness

also results in a physical finite size of the loading region,

since a localised tangential force at the interface will

induce tangential strains within the rough layer not only at

the loaded point, but also in its neighbourhood.

The first effect relates to the elastic coupling of points of

the interface through the slider’s bulk, which cannot be

accounted for explicitly by a 1D model like the one con-

sidered here. In contrast, the effect of the interfacial stiff-

ness can be introduced [8] in a 1D model in the following

way. Each block is initially attached to the track by a spring

Lp / L 0.7

t 3 s

t 0.5 s

μk

μs

τ /
p

Block number, n

0 25 50 75 100
0

0.2

0.4

0.6

Fig. 8 The tangential force s normalised by the normal force p on

each block is plotted at three different times: at t = 0.5 s, t = 3 s and

at the arrest of the precursor of length Lp/L = 0.7 from a simulation

including the relative viscous damping and using N = 100, h = 0 and

g ¼
ffiffiffiffiffiffiffi
0:1
p ffiffiffiffiffiffi

km
p

. Comparison with Fig. 6 shows that lattice-controlled

fluctuations have disappeared
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with stiffness kt as seen in Fig. 9a. The spring connecting

block n to the track has a breaking strength ls pn (Fig. 9b).

When the spring to the track is detached, the block is

subject to the kinetic friction force ±lk pn (Fig. 9c). As the

velocity of this block reaches zero, the spring reattaches

such that the total force on the block is 0 at the time of

reattachment (Fig.9d).

The friction force is now given by

fn ¼ �kt un � ustick
n

� �
if attached;

�sign _unð Þlkpn if detached;

�

ð9Þ

where un
stick is the attachment point of the spring between

block n and the track. It is given by

ustick
n ¼ un �

sn

kt

; ð10Þ

where un and sn are the position of and tangential force on

block n at the instant of its last reattachment to the track.

This causes the total force on block n to be zero at the time

of reattachment. The spring then detaches at the time step

in which one finds

�kt un � ustick
n

� ��
�

�
�[ lspn: ð11Þ

The equations of motion are still given by Eq. 7.

As the system is loaded tangentially, a finite region

around the driving point is affected. This is illustrated in

Fig. 10 where the tangential force at the time of nucleation

of the first precursor is plotted. The length of this region

depends on the stiffness kt of the springs between the

blocks and the track.

Assuming (i) N� 1, (ii) the length of the loading region

to be much smaller than L and (iii) slow loading compared

with the internal dynamics of the system, we calculate

analytically the tangential force profile at the time of

nucleation of an event in Appendix B. No assumption is

made for the tangential force profile at the time of arrest of

the previous event, and the calculation is therefore valid for

all events, not only for the first precursor shown in Fig. 10.

The result is an exponential decay of the tangential force

with a characteristic length l0, which consequently is a

measure of the size of the loading region. From Appendix

B, l0 is related to kt by

l0 ¼
ffiffiffiffiffiffiffiffiffi
ESL

Nkt

r

: ð12Þ

In this expression, we recognise Nkt to be the total stiffness,

kt
tot, of the interface (N springs of individual stiffness kt in

parallel), which is a measurable quantity in a given

experimental setup. We then obtain the relation

l0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ESL=ktot

t

q
; ð13Þ

which shows that the size l0 of the loading region is now

independent of N, i.e. of the model’s spatial resolution.

In the model by Maegawa et al., the simple rigid-plastic-

like AC friction ruled the behaviour of the interface. Now

that the interfacial stiffness is introduced, the friction law is

elasto-plastic-like, an improvement that has often been

defended as a necessary extension of AC [6, 9, 11, 21, 32].

Our model is the simplest improvement of the model by

Maegawa et al. that accounts for interfacial stiffness.

The envelopes of the time dependence of both the tan-

gential load and length of precursors in this improved model

are not changed significantly compared with those obtained

using AC friction, as seen by comparing Figs. 2 and 11.

However, comparing Figs. 11 and 4 show a significant

decrease in the number of events and a consequent increase

in the amplitude of the drops in FT/FN. The tangential force

kt

pn

m

μk pn

un un

dc

ba

μs pn

Fig. 9 Sketch of the behaviour of the spring between block n and the

track. a The static friction force on block n is exerted through a spring

of stiffness kt attached to the track. b As the block is moving, the

spring is stretched until it reaches its breaking strength ls pn. c When

the spring is broken, block n is subject to the kinetic friction force lk

pn. (d) As the block stops, the spring reattaches at x = un
stick such that

the total force on the block is zero at the time of reattachment

1st precursor

μk

μsτ/
p

Block number, n
0 20 40 60 80 100

0

0.2

0.4

0.6

Fig. 10 Tangential force s normalised by the normal force p at

initiation of the first precursor, when an interfacial stiffness is

considered. The first block has just reached it threshold for slip

(s/p = ls). The tangential force decays exponentially according to

Eq. 46. Results obtained using N = 100, h = 0 and kt = 107 N/m
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profiles are also very similar to that of Fig. 8, except that

spikes now decay exponentially with a characteristic length

l0. We will now check the model’s behaviour with respect to

its scaling with N. To do this, one has to choose the inter-

facial stiffness kt (or equivalently a loading zone size l0).

The value of kt could be calibrated using an experimental

measurement of the total interfacial stiffness kt
tot. Here, we

do not have access to such a measurement, so we rather

exploit the fact that the number of precursors longer than

any previous one is controlled by the parameter l0. By trial

and error, we found that l0 = 5 mm, corresponding to

kt = 107 N/m produced a number of such events similar to

that observed in the experiments by Maegawa et al. We will

use this value of l0 in the following.

In Fig. 12, the number of events using the elasto-plastic

friction law is plotted in the same way as in Fig. 5 for AC

friction. Both the number of global events and the number

of precursors longer than any previous one are now seen to

be approximately constant. The total number of events and

the total number of precursors are, however, still increasing

with N. This is mainly due to events involving one block,

i.e. events in which no real front propagation occurs. In

other words, interfacial friction is found to satisfactorily

solve the resolution dependence of the model’s results,

provided one considers events that have a measurable

length.

3.3 Introduction of an Initial Tangential Force

Distribution

The introduction of an internal viscosity and an interfacial

stiffness in the model by Maegawa et al. allowed us to

obtain force distributions and numbers of micro-slip events

that were physically sound. However, the predicted Lp

versus FT curves still follow the same shapes as those

shown in Fig. 7 which, as already mentioned, deviate

significantly from those obtained experimentally. In an

effort to further improve the 1D model, we note that one

of the main differences between the model and the

experiment is the initial tangential force distribution

(when no external tangential load has been yet applied).

In the model, such forces are assumed to be zero all along

the contact. However, in the experiments, both the slider

and the base undergo different expansion rates during

application of the normal loading. As discussed in [28],

the associated slip at the interface is impeded by friction,

thus yielding a significant tangential force distribution at

the interface. Such distributions have been measured to be

antisymmetric [4], in agreement with basic contact

mechanics calculations [16], thus ensuring FT(0) =
P

n=1
N

sn (0) = 0. This effect is again a bulk effect which is

quantitatively reproduced in 2D models [35]. Here, in 1D,

we will only study the qualitative influence of an initial

tangential force distribution on the length of precursors.

We consider the simple linear distributions shown in

Fig. 13a.

Implementation of an initial tangential force requires an

initial relative displacement of the blocks. The initial tan-

gential forces are given by

snð0Þ ¼
kðu2ð0Þ � u1ð0ÞÞ þ FTð0Þ; n ¼ 1

kðunþ1ð0Þ � 2unð0Þ þ un�1ð0ÞÞ; 2� n�N � 1

kðuN�1ð0Þ � uNð0ÞÞ; n ¼ N;

8
<

:

ð14Þ

and by choosing FT(0) = 0 and u1(0) = 0 the above

equation can be rewritten to

N
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Fig. 12 Number of different kinds of events as a function of N, when

the interfacial stiffness in taken into account. h = 0, g ¼
ffiffiffiffiffiffiffi
0:1
p ffiffiffiffiffiffi

km
p

and l0 = 5 mm. (a) Number of global events for t 2 ½5 s; 20 s� (solid
line) and total number of events (dashed line). (b) Number of

precursors longer than any previous one (solid line) and total number

of precursors (dashed line). Comparison with Fig. 5 shows that

introduction of an interfacial tangential stiffness suppresses the

resolution dependence of the numbers of global events and of

precursors longer than any previous one
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Fig. 11 Time evolution of FT (a) and xf (b) in our improved model

including both a relative viscous damping and an interfacial stiffness,

using N = 100 and h = 0. Comparison with Figs. 4 and 2 show

similar envelopes but very different numbers of events and ampli-

tudes of the drops in FT/FN
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unð0Þ ¼
0; n ¼ 1

u1 þ sn=k; n ¼ 2

2un�1 � un�2 þ sn�1=k; n ¼ 3; 4; . . .;N;

8
<

:

ð15Þ

thus, enabling calculation of the initial positions of all

blocks given sn. The initial attachment position of the

interfacial springs is then calculated using Eq. 10, which

ensures that the total force on each block is zero at t = 0.

The length of precursors corresponding to the three

initial tangential force profiles shown in Fig. 13a is shown

in Fig. 13b, using h = 0. With respect to a zero initial force

distribution, the stronger the asymmetry the lower the Lp

versus FT curve, i.e. the shorter the precursors for the same

tangential force. Moreover, the slope of the curves is sig-

nificantly increased at large forces. Both effects lead to a

significantly improved qualitative agreement with the

experimental results by both Maegawa et al. and Rubin-

stein et al. [27]. This shows that the initial force distribu-

tion, which arises naturally in 2D models [35], is a crucial

parameter for the kinematics of precursors to sliding. Note

that the number of precursors, which is closely related to

the choice of l0 (as mentioned in the previous subsection) is

only weakly affected by the introduction of an initial tan-

gential force distribution.

4 Analytical Prediction of Precursor Lengths

In order to complete this study, we derive an analytic pre-

diction for the precursor length as a function of the tan-

gential force at event arrest, Lp versus FT. We will first look

at the simpler case of the model by Maegawa et al., and then

extend the prediction to our improved model using both an

interfacial stiffness and an initial tangential force profile.

4.1 Prediction in the Model by Maegawa et al.

Assume that a precursor has reached block np and has the

length Lp = (np/N)L. We want to calculate the tangential

force FT at the time of arrest of this event. At that time, all

blocks are stuck, so that

FT ¼
XN

n¼1

sn: ð16Þ

This means that, given the tangential force distribution at

event arrest, the corresponding tangential force is found

using Eq. 16.

According to Figs. 6 and 8, the tangential force is

observed to be approximately equal to the kinetic friction

level from block 1 to np, and 0 elsewhere. Using this

assumption, Eq. 16 yields

FT ¼ lk

Xnp

n¼1

pn ¼ lk

FN

N

Xnp

n¼1

1� 2n� N � 1

N � 1
h; ð17Þ

where Eq. 5 has been inserted for pn. If N� 1, the sum can

be approximated by an integral and n replaced by x = nL/

N, which yields

FT � lk

FN

N

N

L

ZLp

0

1� 2ðxN=LÞ � N � 1

N � 1
h

	 


dx; ð18Þ

and approximating N ± 1 & N yields

FT � lk

FN

L

ZLp

0

1� 2ðx=LÞ � 1ð Þh½ �dx ð19Þ

FT � lkFN

Lp

L
1þ h 1� Lp

L

� �	 


: ð20Þ

As seen in Fig. 7, this prediction is in very good

agreement with our simulation results. The deviation
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p
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/L
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1

Fig. 13 a Three different antisymmetric initial tangential force

distributions aimed at modelling the effect of friction-frustrated

differential Poisson expansion during normal loading. Open circle
indicates homogeneous distribution. Times and plus indicate linear

profiles of increasing slope (b = 0.225 and 0.45 in Eq. 52,

respectively). b The length of precursors corresponding to the three

initial tangential force profiles shown in (a). Results obtained using

N ¼ 100; h ¼ 0; g ¼
ffiffiffiffiffiffiffi
0:1
p ffiffiffiffiffiffi

km
p

and l0 = 5 mm. Solid lines are the

analytical predictions of the precursor lengths discussed in Sect. 4
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between the actual precursors and the analytical curve is

the result of a slightly incorrect assumed tangential force

profile. Note that a similar good prediction scheme,

numerical rather than analytical, was previously

developed in the 2D study by Trømborg et al. [35].

According to Eq. 20, the global static friction coefficient

lS ðlS � FT

FN
is easily evaluated for Lp = L from Eq. 20) is

independent of h and almost equal to the local kinetic

friction coefficient lk. This is in agreement with the model

result in Fig. 7 and with the results of the 2D model by

Trømborg et al. [35].

4.2 Prediction in Our Improved Model

Prediction of the precursor length in our improved model

including both an interfacial stiffness and an initial tan-

gential force profile follows the same line as that for the

model by Maegawa et al. However, blocks may now move

even though no event is occurring. Despite this, it is

expected that block accelerations are small when all track

springs are attached, which leads to the approximate

validity of Eq. 16.

An approximate tangential force profile at the time of

arrest of an event (Fig. 14) has to be found for a given Lp.

Again, blocks in [0, Lp] are assumed to have a tangential

force equal to the kinetic friction level. Blocks in the

interval [Lp, L], however, now needs to be taken into

account for two reasons: both the initial tangential force

profile and the springs to the track lead to a non-zero

tangential force for x [ Lp. The form of this profile in a

static situation has been calculated in Appendix B, and is

given in Eq. 46, where s0(x) now is the initial tangential

force profile. However, it has to be modified to take into

account that the loaded block is not located at x = 0, but at

x = Lp, and that this block does not have to be loaded up to

the static friction level, but may take some other value, say

apnp
; with a a coefficient to be defined. Our assumed tan-

gential force profile at the arrest of a precursor of length Lp

is therefore given by

sðxÞ ¼
lkpðxÞ; x 2 0; Lp

� �

apðLpÞ � s0ðxÞ
� �

e
�x�Lp

l0 þ s0ðxÞ; x 2 Lp; L
� �

(

ð21Þ

We have considered that all values of the amplitude of the

peak at x = Lp have the same probability to occur

between lk p and ls p, so that we have given a its average

value a = (ls ? lk)/2 in the predictions seen in Fig. 13b.

Figure 14 shows the assumed tangential force profile and

the actual tangential force profile at the arrest of an event,

and the agreement is seen to be satisfactory.

From Eq. 21, one can calculate FT(Lp) in the same way

as was done for the model by Maegawa et al. This calcu-

lation is provided in Appendix C. As seen in Fig. 13b, the

prediction scheme works well. Deviations between the

actual precursors and the analytical curve have two con-

tributions: incorrectly assumed tangential force profile and

inertial effects, where the former gives the largest contri-

bution. Again, the global static friction coefficient lS is

seen to be approximately equal to the local kinetic friction

coefficient lk. The prediction curves appear to bend

slightly backwards at FT/FN *0.45. In our continuous

prediction scheme, this corresponds to micro-slip fronts

that are so close to the leading edge that all blocks at

x [ Lp have a tangential force above the kinetic friction

level, causing FT to get smaller as the front moves further.

In reality, however, no precursor ever arrests in such a state

but propagates all the way to the trailing edge.

5 Conclusion

Recent experimental results about the transition from static

to kinetic friction in line contacts have triggered the study

of the deterministic dynamics of 1D spring-block friction

models in which driving is applied at one extremity of the

chain of blocks. In this article, we have improved the

simplest of such models [19] in order to solve its intrinsic

unphysical resolution dependence and to ameliorate its

qualitative agreement with experimental results on the

kinematics of micro-slip fronts along the contact. In par-

ticular, the introduction of a tangential stiffness of the

interface, by introducing a new length scale in the model,

practically suppresses its resolution dependence and allows

for reproduction of realistic numbers of precursory micro-

slip fronts. The additional introduction of an initial tan-

gential force distribution at the interface significantly

improves the agreement with the evolution of the precursor

length with the external tangential load obtained in

Pred.
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Fig. 14 The tangential force profile at the arrest of the 14th precursor

plotted in Fig. 13 (red dots) and the predicted profile used in the

analytical prediction of precursor lengths (black drawn line) using

N ¼ 100; h ¼ 0; g ¼
ffiffiffiffiffiffiffi
0:1
p ffiffiffiffiffiffi

km
p

; l0 ¼ 5 mm and b = 0.225 in Eq. 52
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experiments. Our improved model is intended to serve as a

framework for more complex friction models when robust

comparisons with experiments are desired.

We focused on 1D models because they are simple enough

to enable deep insights into the qualitative effects of the

model’s parameters. However, it is known that 2D models

[35] are required to provide quantitative agreement with

experiments. In this respect, the improvements brought to the

1D model are effective ways to account for intrinsically 2D

effects: First, the length scale introduced through the interfa-

cial stiffness enables coupling between remote points along

the interface, analogous to the coupling through the slider’s

bulk; Second, the initial tangential force distribution accounts

for the tangential stress arising form the differential Poisson

expansion of two bodies pressed together.

In analogy with 2D results we developed, based on the

well-defined force distribution left by an arrested precursor,

an efficient analytical prediction for the precursors’ length

as a function of the external tangential load applied. We

also find that, like in 2D, the macroscopic static friction

coefficient of a side-driven contact is approximately equal

to its microscopic kinematic friction coefficient.
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Appendices

Appendix A: Relative Viscous Damping in a Linear

Chain of Blocks

If friction forces are ignored, the equation of motion for an

infinite chain of blocks connected by springs is given by

m€un ¼ kðunþ1 � 2un þ un�1Þ þ gð _unþ1 � 2 _un þ _un�1Þ:
ð22Þ

We then assume a solution of the form

unðtÞ ¼ efjteijna; ð23Þ

where fj 2 C and j 2 R: Inserting Eq. 23 into Eq. 22

yields the relation

mf2
j ¼ k eija � 2þ e�ija

� �
þ gfj eija � 2þ e�ija

� �
; ð24Þ

which can be simplified to

mf2
j þ 4g sin2 ja

2


 �
fj þ 4k sin2 ja

2


 �
¼ 0; ð25Þ

since

eija � 2þ e�ija ¼ �4 sin2 ja

2


 �
: ð26Þ

The complex parameter fj is then given by

fj ¼
�4g sin2 ja

2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16g2 sin4 ja

2

� �
� 16km sin2 ja

2

� �q

2m

ð27Þ

The system is critically damped when Eq. 25 only has one

solution for fj; which occurs when the square root is zero:

g2 sin2 ja

2


 �
¼ km ) g ¼

ffiffiffiffiffiffi
km
p

sin ja
2

� ��
�

�
� : ð28Þ

The oscillations that are to be reduced have a wavelength

k = 2a, i.e. a wave number j = 2p/k = p/a. Inserting this

into Eq. 28 leads to

gc ¼
ffiffiffiffiffiffi
km
p

; ð29Þ

which is the value of the damping coefficient g for which

waves of wavelength k = 2a are critically damped. Since

the absolute value of sin is always smaller than one,

choosing g ¼
ffiffiffiffiffiffi
km
p

will cause all other waves to be under-

damped.

Appendix B: Tangential Force Profiles

and Characteristic Length with a Tangential Stiffness

of the Interface

An analytical expression for the characteristic length l0 can

be found. In order to do so, the following assumptions are

made: N � 1, l0/L 	 1 and slow loading compared with

the internal dynamics of the system, which enables a static

analysis. The system is first placed in a static state with an

initial tangential force profile given by sn
0, and then loaded

slowly from the left. The equilibrium of all non-edge

blocks writes

k unþ1 � 2un þ un�1ð Þ � kt un � ustick
n

� �
¼ 0: ð30Þ

We introduce a new variable un
0 defined by

un ¼ u0n þ u0
n; ð31Þ

where un
0 is the initial position of block n. Inserting Eq. 31

into Eq. 30 yields

k u0nþ1 � 2u0n þ u0n�1

� �
� ktu

0
n þ s0

n � kt u0
n � ustick

n

� �
¼ 0;

ð32Þ

where

s0
n ¼ k u0

nþ1 � 2u0
n þ u0

n�1

� �
: ð33Þ

The two terms sn
0 and �kt u0

n � ustick
n

� �
cancel in Eq. 32

since the initial state is static, and thus

k u0nþ1 � 2u0n þ u0n�1

� �
� ktu

0
n ¼ 0: ð34Þ

The above equation can be rewritten to
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ka2 u0nþ1 � 2u0n þ u0n�1

a2
� ktu

0
n ¼ 0; ð35Þ

where a = L/(N - 1) is the lattice spacing. Since N � 1,

the first term in Eq. 35 can be replaced by the second spatial

derivative, and replacing un
0 with u0(na) = u0(x) yields

ka2 o2u0ðxÞ
ox2

� ktu
0ðxÞ ¼ 0; ð36Þ

which has the general solution

u0ðxÞ ¼ Aex=l0 þ Be�x=l0 ; l0 ¼
ffiffiffiffi
k

kt

r

a: ð37Þ

The tangential force is given by

sn ¼ k unþ1 � 2un þ un�1ð Þ ð38Þ

¼ k u0nþ1 � 2u0n þ u0n�1

� �
þ s0

n: ð39Þ

By replacing again finite differences with second-order

derivatives,

sðxÞ ¼ ka2 o2u0ðxÞ
ox2

þ s0ðxÞ; ð40Þ

the general expression for the shear force profile can be

found by using Eq. 37, which yields

sðxÞ ¼ ka2l2
0

L2
Aex=l0 þ Be�x=l0

 �

þ s0ðxÞ: ð41Þ

The system is loaded from the left, and at the beginning of

an event the tangential force on block 1 is equal to the

static friction threshold lsp1. Provided l0/L 	 1, the

trailing edge will not be affected by the loading. The

latter of these two boundary conditions yields

sðLÞ ¼ ka2l20
L2

AeL=l0 þ Be�L=l0

 �

þ s0ðLÞ ð42Þ

� ka2l20
L2

AeL=l0

 �

þ s0ðLÞ ð43Þ

¼ s0ðLÞ; ð44Þ

i.e. A = 0. The first boundary condition yields

sð0Þ ¼ ka2l2
0

L2
Bþ s0ðLÞ ¼ lsp1; ð45Þ

and the tangential force is therefore given by

sðxÞ ¼ lsp1 � s0ðxÞ
� �

e�x=l0 þ s0ðxÞ: ð46Þ

The characteristic length l0 is given by Eq. 37, and

inserting for k given by Eq. 4 and a yields

l0 ¼
ffiffiffiffi
k

kt

r

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ELS

ðN � 1Þkt

s

; ð47Þ

and hence Eq. 12 for N [[ 1.

Note that in a 3D situation, the exponential decay of the

tangential stress with x would be replaced by a power law

[9, 18].

Appendix C: Derivation of the Prediction of Precursor

Lengths in Our Improved Model

We start with Eq. 16 and use the assumed tangential force

profile in Eq. 21, shown in Fig. 14. Again, we go to the

limit N !1; resulting in the substitution

XN

n¼1

sn !
N

L

ZL

0

sðxÞdx; n! xN=L: ð48Þ

The tangential force after a precursor of length Lp is then

given by

FT ¼
N

L

ZLp

0

sðxÞdxþ
ZL

Lp

sðxÞdx

2

6
4

3

7
5 ð49Þ

¼ N

L

ZLp

0

lkpðxÞdxþ
ZL

Lp

apðLpÞ � s0ðxÞ
� �

e
�x�Lp

l0 þ s0ðxÞdx

2

6
4

3

7
5:

ð50Þ

We limit ourselves to predicting the precursors in Fig. 13b,

i.e. using a tangential interfacial stiffness and linear initial

tangential forces as depicted in Fig. 13a, but with h = 0.

The normal and initial tangential force are then given by

pðxÞ ¼ p ¼ FN=N ¼ constant; ð51Þ

s0ðxÞ ¼ bp
2ðx� L=2Þ

L
; ð52Þ

where the parameter b determines the slope in the initial

tangential force profile. Inserting Eqs. 51 and 52 into

Eq. 50 yields

FT ¼
N

L

ZLp

0

lkpdxþ

2

4
ZL

Lp

ap� bp
2ðx� L=2Þ

L

� �

e
�x�Lp

l0

þbp
2ðx� L=2Þ

L
dx




: ð53Þ

The above integrals can be calculated easily, and the result is

the tangential load FT as a function of the precursor length Lp:

FTðLpÞ ¼FN lk

Lp

L
þ 2b

l2
0

L2
e
�L�Lp

l0 � 1

 �

þ b
L� Lp

� �
Lp

L2

	

þ l0

L
b 1þ e

�L�Lp
l0 � 2

Lp

L

� �

þ a 1� e
�L�Lp

l0


 �� �


:

ð54Þ

We observe that again FT(L) = lk FN.
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Experimental evidence of non-Amontons behaviour at a multi-

contact interface. Europhys. Lett. (EPL) 83, 34003 (2008)

33. Scholz, C.: The Mechanics of Earthquakes and Faulting. Cam-

bridge University Press, Cambridge (2002)

34. Shaw, B.: Complexity in a spatially uniform continuum fault

model. Geophys. Res. Lett. 21, 1983–1986 (1994)

35. Trømborg, J., Scheibert, J., Amundsen, D.S., Thøgersen, K.,

Malthe-Sørenssen, A.: Transition from static to kinetic friction:

insights from a 2D model. Phys. Rev. Lett. 107, 074301 (2011)

36. Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The non-

linear nature of friction. Nature 430, 525–528 (2004)

37. Wandersman, E., Candelier, R., Debrégeas, G., Prevost, A.:
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