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Dynamic crack propagation drives catastrophic solid failures. In
many amorphous brittle materials, sufficiently fast crack growth
involves small-scale, high-frequency microcracking damage loca-
lized near the crack tip. The ultrafast dynamics of microcrack
nucleation, growth, and coalescence is inaccessible experimentally
and fast crack propagation was therefore studied only as a macro-
scale average. Here, we overcome this limitation in polymethyl-
methacrylate, the archetype of brittle amorphous materials: We
reconstruct the complete spatiotemporal microcracking dynamics,
with micrometer/nanosecond resolution, through post mortem
analysis of the fracture surfaces. We find that all individual micro-
cracks propagate at the same low, load-independent velocity.
Collectively, the main effect of microcracks is not to slow down
fracture by increasing the energy required for crack propagation,
as commonly believed, but on the contrary to boost the macroscale
velocity through an acceleration factor selected on geometric
grounds. Our results emphasize the key role of damage-related in-
ternal variables in the selection of macroscale fracture dynamics.
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The fracture of brittle amorphous materials is usually described
using the linear elastic fracture mechanics (LEFM) frame-

work (1–4), which considers the straight propagation of a single
smooth crack. All dissipative processes (e.g., plastic deformation or
bond breaking) are assumed to be localized in a small zone around
the crack tip (fracture process zone, FPZ). Crack velocity, v, is then
predicted from the balance between the flux of mechanical energy
released from the surrounding elastic material into the FPZ (5)
and the dissipation rate within this zone. The former is computable
within continuum theory and connects to the stress intensity factor,
K , which describes the macroscopic forcing applied on the crack
tip and depends on the external loading and specimen geometry
only. The dissipation rate is quantified by the fracture energy, Γ,
required to expose a new unit area of cracked surfaces, to be
measured experimentally. The resulting equation of motion reads
(1) Γ ≈ ð1 − v∕cRÞK2∕E, where E and cR denote the material’s
Young’s modulus and Rayleigh wave speed, respectively.

Polymethylmethacrylate (PMMA) is often considered as the
archetype of nominally brittle materials and, therefore, has been
one of the most widely used materials against which theories have
been confronted from the early stages of fracture mechanics. Yet,
in PMMA, single smooth cracks are actually observed for slow
propagation only. Fast enough cracks (v > va ∼ 0.2 cR; ref. 6) pro-
pagate through the nucleation, growth, and coalescence, in the
fracture plane, of individual microcracks (6–9). Cracks faster than
vb ∼ 0.4 cR also involve aborted out-of-plane secondary cracks
known as microbranches (2, 10, 11), which prevent LEFM from
being applicable (11). LEFM has been shown to agree with ex-
periments as long as no microbranch is involved (6, 11–13)—i.e.,
even in the presence of microcracks, provided a suitable velocity
dependence of the fracture energy, ΓðvÞ, is prescribed (6, 11).

Recent experiments using PMMA (see ref. 6, Materials and
Methods, and Fig. S1) showed that, above va, the slope of ΓðvÞ
drops (6) (see Fig. 1), suggesting that microcracks make macro-
scale cracks dissipate less or/and propagate faster than a single
crack would. These possible conclusions are at odds with the
common view that damage through opening mode microcracks
slows down crack propagation by increasing energy dissipation
(3, 7, 14). Understanding this counterintuitive behavior requires
unraveling the coupling between (i) the space-time dynamics of
damage at the FPZ scale and (ii) the crack dynamics at the
macroscale. The time interval between two successive microcrack
nucleation events is typically a few tens of nanoseconds. Such a
timescale makes real-time local measurements of microcracking
dynamics beyond current researchers’ reach. Hence, fast crack
propagation has been studied only through measurements of the
average dynamics of the macroscopic crack front (5–16).

Quantitative fractography is an appealing tool to probe micro-
scale damage mechanisms. Fracture surfaces are indeed known
to record fracture processes down to the nanoscale (9, 17). In
particular, in many materials including PMMA (Fig. 2A), micro-
cracks leave characteristic conic-like markings on fracture surfaces
(3, 6–9). These patterns are commonly understood through a geo-
metrical model first developed in ref. 18 and improved in, e.g.,
refs. 7 and 19. In this model, each conic-like marking corresponds
to the intersection of two penny-shaped microcracks, nucleated at
point-like nucleation centers and growing at speeds c1 and c2 along
two slightly different planes (Fig. 2B and Fig. S2). The numerical
implementation of this model demonstrated that microcracking
is responsible for some of the complexity of macroscopic crack
growth (7) (e.g., mist fracture surfaces decorated by conic-like
markings and strong fluctuations in the velocity signal, vðtÞ). How-
ever, the agreement remained only qualitative because simplifying
prescriptions were used for the characteristics of microcracking dy-
namics (7), namely (i) the location of nucleation centers, (ii) c2∕c1,
and (iii) the nucleation criterion.

Experimental Determination of the Dynamics of Individual
Microcracks
Here, we determine experimentally the microscopic rules for the
nucleation and growth of microcracks, by analyzing the morphol-
ogy of each individual conic-like marking on different millimeter-
sized fracture surfaces (see, e.g., Fig. 2A) corresponding to dif-
ferent K (i.e., to different v in the range 0.23–0.49 cR) (Materials
and Methods). We first find that, irrespective of K , the spatial dis-
tribution of nucleation centers is Poissonian (see Fig. 3A, Upper
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and Fig. S3) (i.e., the centers are homogeneously and randomly
distributed in space, without correlation). Such a distribution is
consistent with the usual view that microcracks nucleate at some
preexisting weak defects randomly distributed within the materi-
al’s volume, when a crack tip running in their vicinity sufficiently
enhances the stress field (3, 9). The increase in mean surface den-
sity of nucleation centers, ρ, with K (Fig. 3A, Lower) is attributed
to the increase in FPZ size with K , which yields more volume de-
fects turning into microcracks (6) (see SI Text). Because ρ comple-
tely characterizes Poisson distributions, it will be used hereafter
as the parameter as a function of which the various quantities will
be plotted.

Stationarity of macroscopic crack propagation at the scale
of each millimetric-sized image requires the ratio c2∕c1 of the
velocities of two successive microcracks to be one, on average.

A smaller (larger) value would indeed produce a decelerating
(accelerating) macroscale crack. This requirement has conse-
quences on the geometry of conic-like markings (see SI Text and
Fig. S2), which were checked: We fitted all individual markings
with the shape predicted using the geometrical model (see Fig. 2B
and SI Text), with c2∕c1 being the only adjustable parameter.
Irrespective of ρ, c2∕c1 is found equal to one within 4% standard
deviation (see Fig. 3B and Fig. S4). In the following, we will neglect
the slight dispersion of c2∕c1 and consider that, for any given ρ, all
microcracks propagate at the same velocity: c2 ¼ c1 ¼ cm, where
cm denotes the speed of individual microcracks and a priori de-
pends on the macroscopic external loading K (or equivalently
on ρ).

In these conditions, the intersection between two microcracks
is a true conic. Its focus coincides with the nucleation center of
the triggered microcrack, and the apex-to-focus distance is half
the distance dn between the triggering front and the triggered
center at the instant of nucleation (see Fig. 2C and SI Text).
Hence, dn defines the nucleation criterion. Its cumulative distri-
bution is well fitted by a two-parameters parabolic function, irre-
spective of ρ (Fig. 3C, Upper and Fig. S5). Variations of the mean
value d̄n with ρ exhibit two regimes: an initial linear increase fol-
lowed by a saturating plateau, when ρ exceeds a value ρsat (Fig. 3C,
Lower). The linear behavior comes from the fact that d̄n and ρ both
scale linearly with the FPZ size (see SI Text). The transition is un-
derstood as the point where d̄n becomes comparable with themean
distance between nucleation centers (see SI Text and Fig. S6).

Deterministic Reconstruction of the Microcracking Damage
History
The analyses performed up to now permit a full characterization
of the statistics of microcrack nucleation, growth, and coales-
cence within the FPZ. To unravel how this FPZ quantitatively op-
erates to relate the macroscale crack velocity, v, to the microscale
velocity, cm, of individual microcracks, we feed the geometrical
model with the observed locations of all individual nucleation
centers and the corresponding distances at nucleation, dn. We
then simulate the space-time evolution of the fracturing process
with the constraint that all microcracks propagate at the same
velocity c1 ¼ c2 ¼ cm (Materials and Methods). Note that, at this
point, cm is constant within the FPZ but can depend on K (or
equivalently on ρ). Fig. 4 A and B shows typical snapshots of
the simulated crack dynamics (seeMovies S1 and S2). Apart from
edge effects (see SI Text and Fig. S7), the matching between the
experimental conics and the simulated ones is quite satisfactory
(Fig. 4 C and D) for all values of ρ. As expected, the simulated
dynamics thus provide a deterministic reconstruction of the ultra-
fast microcracking dynamics. The spatial resolution of approxi-
mately 2 μm (pixel size) and the time resolution of approxi-
mately 10 ns (pixel size divided by cm, demonstrated hereafter
to be a load-independent constant close to a value cm ∼ 200 m∕s)
are much beyond standard experimental mechanics methods like
acoustic emission or fast imaging. Similar deterministic nuclea-
tion and geometrical growth models are used in a broad range
of fields including metallurgy (20), biology (21), and supercon-
ductivity (22).

Macroscale Crack Dynamics
To shed light on the macroscale effect of microcracking damage,
we now focus on the time evolution of the average location of
the simulated crack front (Fig. 5A). For each ρ, this evolution
is linear, meaning that the average front has a constant velocity,
A × cm, the value of which was found insensitive to edge effects
(see SI Text and Fig. S7). Fig. 5B shows that the acceleration
factor A equals one only for ρ ¼ 0, and then increases with ρ.
The time evolution of the position of a single point of the front
(Fig. 5A) sheds light on the origin of this effective acceleration.
The point motion is jerky, with sudden jumps corresponding to
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Fig. 1. Fracture energy Γ as a function of macroscale crack velocity v
(adapted from ref. 6). Different symbols correspond to different experiments.
The two vertical dashed lines correspond to va (microcracking onset) and vb
(microbranching onset). Below vb, all the experimental points collapse onto a
single ΓðvÞ curve. The slope of this curve exhibits a drop at va.

Fig. 2. Fractographic signature of microcracking in the dynamic fracture
of PMMA. (A) Typical fractographic microscope image (K ≃ 3.10�
0.05 MPa·m1∕2). Bright regions correspond to microcrack nucleation centers
(Materials and Methods). (B) Red dashed circle arcs sketch successive front
locations of two interacting microcracks (nucleated at t ¼ 0 and t ¼ τ) grow-
ing radially at speeds c1 and c2. Fitting of fractographic branches (color lines)
with a geometrical model (Eq. S1) allows measuring c2∕c1. (C) When c2 ¼ c1,
markings (green line) are conic branches (Eq. S2), and the distance dn be-
tween the triggered microcrack center and the triggering front at the nuclea-
tion time t ¼ τ (highlighted in red) is twice the apex-to-focus distance, O2P12.
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microcrack coalescence events, and the velocity between jumps is
close to cm. Hence, as the rate of coalescence events increases
with ρ, A also increases with ρ. A simple mean-field lattice model,
which evaluates the rate of coalescence events, yields (see SI Text
and Fig. S8)

A ¼ 1

1 − bd̄n
ffiffiffi

ρ
p ; [1]

where b is a numerical factor ≃1. This equation, when combined
with the observed evolution of d̄n with ρ (Fig. 3C, Lower, red line),

Fig. 3. Microcrack dynamics deduced from fracture surfaces. (A,Upper) Cumulative distributions for the number of nucleation centers in square regions of size
a, for K ≃ 4.15� 0.07 MPa·m1∕2. Solid lines: Poisson function with parameter ρa2. The fitting parameter ρ is a independent, indicating homogeneous uncor-
related random distribution with mean surface density ρ. Similar results hold for all K (Fig. S3). (Lower) Black discs indicate ρðKÞ curve superimposed to that
obtained from the data reported in ref. 6 (gray triangles, vertical lines indicate standard deviation). Red line: fit using Eq. S3 in the range Ka ¼ 2.1 MPa·m1∕2 <
K < Kb ¼ 3.1 MPa·m1∕2 (see SI Text). ρsat ≃ 45.5 mm−2. (B) Cumulative distribution, for various ρ, of the velocity ratio c2∕c1 obtained via fitting fractographic
branches using the geometrical model (see Eq. S1 and SI Text). Red line: Fitted normal distribution (average 0.98 and standard deviation 0.03). Similar results
hold for each ρ (Fig. S4). (C,Upper) Cumulative distribution of dn for ρ ¼ 27.5 mm−2. Red line: best two-parameters fit PðdnÞ ¼ ½ðdmax − dnÞ∕ðdmax − dminÞ�2. Here
dmin ¼ 4 μm, dmax ¼ 77 μm. Similar fits hold for all ρ (Fig. S5). (Lower) Mean distance at nucleation d̄n as a function of ρ. Error bars: �one standard deviation.
Red line: fit using Eq. S4 up to a saturating value d̄n ≃ 50 μm reached at ρsat (see SI Text).

Fig. 4. Deterministic reconstruction of microscale damage and fracture processes. (A and B) Successive snapshots of the reconstructed crack propagation and
associated conic markings for ρ ¼ 64.6 mm−2. Crack propagates from left to right. (C and D) Fracture surface images (gray level) for (C) ρ ¼ 27.5 mm−2

(K ≃ 2.77 MPa·m1∕2) and (D) ρ ¼ 64.6 mm−2 (K ≃ 4.18 MPa·m1∕2) compared to the reconstructed conic markings (red lines). Red dots indicate nucleation centers.

392 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1113205109 Guerra et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113205109/-/DCSupplemental/pnas.1113205109_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113205109/-/DCSupplemental/pnas.1113205109_SI.pdf?targetid=SF8
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113205109/-/DCSupplemental/pnas.1113205109_SI.pdf?targetid=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113205109/-/DCSupplemental/pnas.1113205109_SI.pdf?targetid=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113205109/-/DCSupplemental/pnas.1113205109_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113205109/-/DCSupplemental/pnas.1113205109_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113205109/-/DCSupplemental/pnas.1113205109_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113205109/-/DCSupplemental/pnas.1113205109_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113205109/-/DCSupplemental/pnas.1113205109_SI.pdf?targetid=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113205109/-/DCSupplemental/pnas.1113205109_SI.pdf?targetid=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113205109/-/DCSupplemental/pnas.1113205109_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113205109/-/DCSupplemental/pnas.1113205109_SI.pdf?targetid=STXT


gives the red line in Fig. 5B, which is in very good agreement with
reconstructed velocities.

The question remains of the possible dependence of cm with
ρ. Fig. 5B shows that, if we chose a ρ-independent cm ¼
217� 3 m∕s ¼ 0.24� 0.01 cR, the ρ dependence of the recon-
structed acceleration factor A is identical to the ratio of the mea-
sured macroscopic crack speed, v, over cm. This matching
means that the propagation speed of microcracks is not only
identical for two successive microcracks, but also all along the
crack path, irrespective of ρ—and hence of K . Note that cm is
found very close to the maximum speed, ≃204 m∕s or
≃0.23 cR, of individual crack fronts in PMMA originating from
the fracture energy increase with FPZ size (6). The change in
the ρ dependence of A observed at ρsat in Fig. 5B corresponds
to a macroscopic crack speed ≃1.67 cm ≃0.41 cR. This velocity
is very close to the onset of the microbranching instability
(0.36 cR in PMMA; ref. 11), which suggests that this instability
could be related to the steric effect responsible for the saturation
of d̄nðρÞ above ρsat.

Discussion
In dynamic fracture, the relationship between the opening force
and the speed at which a macroscopic crack moves forward is
controlled by dissipative and nonlinear processes that develop at
the microscale within the FPZ. The space and timescales asso-
ciated with the FPZ dynamics are usually too small to enable
a real-time and space monitoring of these processes. Here,
we demonstrate that such a detailed monitoring is actually pos-
sible in PMMA, the archetype of nominally brittle materials,
by analyzing post mortem the patterns left on fracture surfaces
by microcracking damage.

Our results show that, in PMMA, the true local propagation
speed of single cracks is limited to a fairly low value cm, about
0.23 cR, although the apparent speed, v, measured at the conti-
nuum-level scale, can be much higher. When v ≥ cm, the macro-
scopic crack is actually found to progress through the coalescence
of microcracks, all growing at the same constant velocity cm. The
main effect of microcracking damage, therefore, is not, as
commonly believed (3, 7, 14), to slow down fracture by increasing
the energy required to further propagate a crack, but on the con-
trary to boost the macroscopic (group) crack velocity to a value
larger than what would have been obtained in their absence.

We conjecture that the limiting value cm of the local crack
speed is set by the material-dependent dissipative and nonlinear
processes that develop in the highly stressed/strained zones in
the very vicinity of the (micro)crack tips, like, e.g., thermal (23),
viscoelastic (15, 24), or hyperelastic (5, 25) processes. As for
the subsequent boost from cm to the continuum-level scale velo-
city v, it is shown here to take the form of a purely geometric
factor controlled by two microscopic quantities: (i) The density
of nucleation centers ρ and (ii) the mean distance at nucleation
d̄n. These two internal variables characterize the damaging state
and evolve with the amount of mechanical energy flowing into
the FPZ. As such, they are material-dependent functions of
the external loading K , the knowledge of which permits to fully
relate v and cm.

This enhanced description of dynamic brittle fracture, demon-
strated on PMMA, can likely be extended qualitatively to all
materials involving propagation-triggered microcracks, e.g., oxide
glass (3, 26), polymeric glasses (3, 9), polycrystals (3), rocks (27,
28), and bones (29). Further work is required to check this con-
jecture, and subsequently to quantitatively determine how cm, ρ,
and d̄n are selected in these materials. From the geometric nature
of the acceleration factor, we also anticipate that fast macro-
scopic cracks in other fracture modes could similarly originate
from the collective motion of many slow microcracks.

Materials and Methods
Experiments. Fracture surfaces were obtained from the experiments de-
scribed in ref. 6. Dynamic cracks were driven in PMMA (Young’s modulus
E ¼ 2.8 GPa and Poisson’s ratio ν ¼ 0.36, yielding a Rayleigh wave speed
cR ¼ 880 m∕s) using the wedge-splitting geometry sketched in Fig. S1. Speci-
mens were prepared from parallelepipeds of size 140 × 125 × 15 mm3 in the
propagation, loading, and thickness directions, respectively. Subsequently, a
notch was formed (i) by cutting a 25 × 25 mm2 rectangle from the middle of
one of the 125 × 15 mm2 edges; and (ii) by subsequently adding a 10-mm
groove deeper into the specimen. A circular hole with a radius ranging
between 2 and 8 mm was eventually drilled at the tip of the groove. Two
steel jaws equipped with rollers were placed on both sides of the rectangular
cutout and a steel wedge of semiangle 15° was pushed between them at
constant velocity 38 m∕s up to crack initiation. Crack speed was measured
using a modified version of the potential drop technique: A series of 90 par-
allel conductive lines (2.4-nm-thick Cr layer covered with 23-nm-thick Au
layer), 0.5-mm wide with a period of 1 mm (space accuracy 40 μm) were de-
posited on one of the two 140 × 125 mm2 sides of the specimen, connected in
parallel and alimented with a voltage source. As the crack propagated, the
lines were cut at successive times detected with an oscilloscope (time accuracy
0.1 μs) and allowed to record the instantaneous macroscopic crack velocity v,
with better than 10% accuracy. The variations of the quasi-static stress inten-
sity factor K were computed using 2D finite element calculations (software

Fig. 5. From slow microcracks to fast collective macroscopic crack motion.
(A) Time evolution (scaled by cm) of the average location of the simulated
crack front for various ρ. The fitted slopes of these curves define the accel-
eration factor A. A ¼ 1 for ρ ¼ 0. (Inset) Evolution of the location of a single
point of the simulated front, for ρ ¼ 64.6 mm2, together with that expected
for ρ ¼ 0 (slope 1). Jumps correspond to coalescence events with microcracks.
Between jumps, the slope is close to one. (B) Black dots: Evolution of the re-
constructed acceleration factor A as a function of ρ. Triangles: Ratio of the
measured macroscopic crack speed, v, over the microscopic velocity fitted to
be cm ¼ 217� 3 m∕s. Error bars indicate the minimum and maximum mea-
sured velocities within the considered fractographic image. Thick red line:
Eq. 1 with b ¼ 1.19� 0.02. A change in regime occurs for ρ ¼ ρsat (vertical
dashed line), which corresponds to a velocity of 1.67 cm (horizontal dashed
line). �stands for 95% confidence interval.
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CASTEM 2007) on the exact experimental geometry, assuming plane
stress conditions, and a constant wedge position throughout failure of the
specimen. Values for the fracture energy Γ were directly obtained from the
equation of motion Γ ≈ ð1 − v∕cRÞK2∕E by combining the v measurements
and the K calculations.

Post Mortem Analysis. Post mortem topography images were obtained with
an optical profilometer (M3D; Fogale Nanotech, ×5 objective yielding square
pixels of size 1.86 μm) at various locations along the fracture surfaces in
different broken specimens—each zone of observation is characterized by
a given value of K. For each location, nine neighboring images were gath-
ered to provide an observation field of at least 2 × 2 mm2, large enough to
carry out statistical analyses. The presence of a highly reflective area at the
focus of each conic-like marking results from plastic deformations at micro-
crack nucleation and allows locating unambiguously all nucleation centers
(see Fig. 2A). For many microcracks, fragmentation lines focusing on the
nucleation center were also observed, and they helped increase the accuracy
of the location. For each marking, we made an initial guess about which
microcrack triggered its nucleation. The apex of the marking was defined
as the intersection between the segment linking the triggering and triggered
centers and the conic-like marking. A new guess was made if the simulated
marking did not resemble the observed one.

Simulation. The macroscopic crack front was initially straight, vertical, and
located on the left of the image. It started propagating toward the right

at constant velocity (one pixel per time step). When the macroscopic crack
front reached a distance dn from the closest nucleation center, a microcrack
was nucleated andmade to grow radially at the same velocity. The total front
was then made of both the initially straight translating front and the newly
created radially growing circular front. When these two coincided, propaga-
tion was continued in the unbroken part of the specimen only. Intersection
points defined the conic-like marking. The same procedure was applied each
time the shortest distance between the total front and another nucleation
center was found to have decreased down to the distance at nucleation dn

associated with this center. Edge effects were minimized in the evaluation of
A by considering only the times after all points of the initial front coalesced
with a nucleated microcrack, and before the first point of the total front
reached the right edge of the image.
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