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Relative Speed of Interacting Microcracks as Deduced from the Geo-

metry of Conic-Like Markings. Fig. S2A depicts the interaction be-
tween two microcracks growing radially at velocities c1 and c2,
respectively. Calling Δ the distance between the two nucleation
centers and τ the time interval between the nucleations of the first
and second microcracks, the equation describing the successive
locations of intersection points (and hence the conic-like mark-
ing) is given by
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where c ¼ c2∕c1 and ðx;yÞ are expressed in a frame the origin of
which is the first nucleation center and the x axis goes through
both centers (see Fig. S2A). As can be seen in Fig. S2 B and
C, qualitatively different shapes are predicted by this equation
depending on the velocity ratio c2∕c1: true (mathematical) conics
when c2∕c1 ¼ 1, egg shapes when c2∕c1 < 1, and flared shapes
when c2∕c1 > 1. The fact that the markings observed on the
postmortem fracture surfaces look like conics hence suggests a
velocity ratio close to unity.

To assess quantitatively the value of the velocity ratio, we di-
rectly extracted c2∕c1 for each pair of interacting microcracks
from the marking’s geometry on the fractographic images (see
Fig. 2B and Fig. S4, Upper). Note that seemingly continuous
conic-like markings often result from the successive interactions
between more than two microcracks, and are hence actually made
of several branches, each of them associated with a single pair of
interacting microcracks. The analysis procedure we developed is
as follows: (i) The nucleation centers of two interacting micro-
cracks are selected on the image; (ii) the apex of the associated
marking is determined as the intersection of the segment relating
the two centers and the marking’s branch lying in between; (iii)

the marking’s shape predicted by Eq. S1 is plotted for various
ratio c2∕c1 while adjusting c1τ∕Δ so that the apex position re-
mains fixed; and (iv) the value c2∕c1 that best fits the experimen-
tal marking is selected. Typical examples of the cumulative
distributions obtained for c2∕c1 are presented in Fig. 3B and
Fig. S4, Lower. For all the fractographic images analyzed, the dis-
tributions were found to be roughly Gaussian, with mean values
around 0.98–0.99 and standard deviation of 0.02–0.03, irrespec-
tive of the density ρ of conic-like markings. Note that local sta-
tionarity of the average crack front over the millimeter length
scales of the analyzed fractographic images should imply a geo-
metric mean value of c2∕c1 strictly equal to one. The dispersion
smallness around one allows identification of this geometric
mean with the standard arithmetic one. The observation of a
mean value systematically slightly smaller than unity is attributed
to an initial accelerating transient in microfracturing events that
is not taken into account to derive Eq. S1.

It is then justified to assume that all microcracks propagate at
the same constant velocity c1 ¼ c2 ¼ cm on a given fractographic
image. Eq. S1 can then be simplified to
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where dn ¼ Δ − cmτ is the distance between the triggering front
and the nucleation point at the instant of microcrack nucleation
and is equal to twice the distance between the marking’s apex and
focus. Note that, contrary to Eq. S1, Eq. S2 describes a true math-
ematical conic (see Fig. 2C), the eccentricity and focal parameter
of which depend on both dn and Δ.

Variation of Microcrack Density with Stress Intensity Factor. The K
dependency of ρ (Fig. 3A, Lower) has been understood in ref. 1
by assuming the material to contain a population of local weak
zones, so-called source-sinks (SS). Each one is able to turn into a
microcrack provided two conditions are met: (i) The local stress
at the considered SS reaches a threshold value σ� (smaller than
the local yield stress σY ), and (ii) the SS is located at a distance
from the crack front larger than da. Calling ρv the SS volume den-
sity, the surface density ρ is then equal to the number of activated
SS beyond da per unit of fracture area (i.e., ρvfh⊥ − 2da − ρVg),
where h⊥ is the thickness (size orthogonal to the fracture plane)
of the fracture process zone (i.e., the layer in which the stress
is larger than σ�). V is the excluded volume around nucleated
microcracks. The universal square root singular form taken by
the elastic stress field around the tip of the growing crack gives
h⊥ ¼ Kd

2∕α2σ2� where α1 is a dimensionless constant close to
unity, and Kd relates to K via Kd ¼ kðcmÞK with
kðcmÞ ¼ ð1 − cm∕cRÞ∕
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≈ 0.81 (3). Finally, one gets
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The parameter Ka represents then the value of K at the onset of
microcracking. Below this value, microcracks cannot nucleate
and ρ ¼ 0. Eq. S3 is found to reproduce the experimental data
fairly well (see Fig. 3A, Lower, in the main text) up to a value
Kb≈3.1 MPa·m1∕2, which is associated with the microbranching
onset (see ref. 1). The loss of agreement above Kb is actually ex-
pected because linear elastic fracture mechanics is invalid in the
presence of microbranches (see ref. 2). The fitted parameters C
and Ka are found to be C ¼ 9.0� 0.5 × 106 MPa−2·m−3 and
Ka ¼ 2.1� 0.1 MPa·m1∕2, respectively.

Variation of Mean Distance at Nucleation with Microcrack Density. In
the scenario invoked above, the relation between the mean dis-
tance at nucleation d̄n and Kd is deduced from the universal
square root singular form taken by the elastic stress field around
the tip of the growing crack (see, e.g., ref. 3). The mean distance
d̄n at which the stress level reaches σ� then reads d̄n ¼ Kd

2∕α2σ2�,
where α2 is a dimensionless constant close to unity. This relation
together with Eq. S3 yields
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This equation is found to reproduce the experimental data fairly
well (see Fig. 3C, Lower) up to the point where ρ reaches the
value ρsat ¼ 45.5 mm−2 defined in Fig. 3A, Lower and identified
with the microbranching onset. The fitted parameters are found
to be α1ð1þ ρvV Þ∕α2ρv ≈ 106 μm3 and 2α1da∕α2 ≈ 4.5 μm.

Saturation of d̄n and Avalanches.Fig. S6 superimposes the variation
of the mean distance at nucleation d̄n with ρ (presented in Fig. 3C,
Lower) to the variation of the mean nearest-neighbor distance
hΔri with ρ. For a Poissonian distribution, hΔri ¼ 1∕ð2 ffiffiffi

ρ
p Þ,

whereas the variance is given by σ2Δr ¼ ð4 − πÞ∕ð4πρÞ≈0.068∕ρ.
When ρ becomes of the order of ρsat, the distance between some
nucleation centers and the centers of their triggering microcrack
becomes smaller than the distance necessary for them to nucle-
ate. Hence, both centers will open almost simultaneously (within
the same time step), and an avalanche will occur. This steric effect
yields an effective mean distance at nucleation d̄n (as measured
from fracture surfaces) that saturates above ρsat at a value
d̄n ≈ 50 μm. The proportion of microcracks involved in nuclea-
tion avalanches increases significantly in the vicinity of ρsat (solid
squares in Fig. S6). However, this proportion remains small,
less than 7% over the explored range of densities, which explains
why the mean-field model yielding Eq. 1 captures so well the
increase of the acceleration factor with ρ, even above ρsat
(see Fig. 5B).

Edge Effects in the Deterministic Reconstruction. Once the growth
rule c2 ¼ c1 has been ascertained experimentally, and once the
nucleation center location and distance at nucleation of all indi-
vidual microcracks have been determined from image analysis,
the main source of mismatch between the reconstruction and
the actual fracture surfaces are errors in the time succession of
nucleation events. Such errors are unavoidable when using partial
images (a few square millimeters) of the complete fracture sur-
face (a few square centimeters). Along the top and bottom sides
of the image, we lack for the possibility of being triggered by
microcracks outside the field of view. From the left side of the
image, we lack for a realistic initial front shape which would con-
tain all the information about the precise instants at which the
leftmost centers have to be nucleated during the reconstruction.
Because no information could be obtained about this initial front
shape, we arbitrarily chose a straight vertical front as an initial
condition.

In Fig. S7, we illustrate the degree of sensitivity of the recon-
struction results to changes in the initial front shape, by running
the simulation with a sinusoidal initial front. Its period is chosen
to roughly match the average vertical distance between simulta-
neously propagating microcracks. Its amplitude is set to the mean
value of the standard deviation of the horizontal location of the
total front as obtained using an initial straight front. The same
sinusoidal shape, but translated vertically by half a period, was

also tested. As the front involves more generations of micro-
cracks, the patterns become more alike, and hence less affected
by the initial conditions. However, some differences can propa-
gate over the whole image. We emphasize that nearly perfect re-
constructions could have been obtained through the analysis of
images showing the region where the first microcracks nucleate,
because it would have allowed for the determination of the actual
initial front shape.

The crucial point for our study is to check that the reconstruc-
tion errors induced by edge effects do not quantitatively affect
the value A of the acceleration factor. Fig. S7 shows that, for
the three very different initial front shapes tested, A is found con-
stant within less than 0.6%. This check demonstrates that the
average velocity measurement hardly depends on edge effects.
These results were found to be robust to changes in period
and amplitude of the sinusoidal initial front.

Lattice Model. The variations of the ratio between the macro- and
microscale velocities (i.e., the acceleration factor A) as a function
of microcrack density ρ can be captured by a simple mean-field
model. In the model, the nucleation centers are placed at the
nodes of a square lattice, so that the distance ℓ between two
neighboring centers is kept constant and equal to ℓ ¼ 1∕ ffiffiffi

ρ
p

. This
model arrangement is depicted in Fig. S8, where x and z axes are
chosen parallel to mean crack propagation direction and to mean
crack front, respectively. At t ¼ 0, the leftmost nucleation centers
are turned into microcracks and start to grow radially at velocity
cm. The fronts then trigger the nucleation of the next centers
when the shortest distance between the nucleation centers and
the fronts reaches a distance of d̄n. The nucleated microcracks
then grow radially, coalescing with each other and with the pri-
mary crack. The new microcracks trigger the nucleation of the
next microcracks, and so on. Because of the invariance to transla-
tion along the z axis, the crack can be considered to propagate in
the x direction only (see Fig. S8). When the main front has tra-
veled over a distance L ¼ Acmt along this line, it has triggered
L∕ℓ ¼ L

ffiffiffi
ρ

p
microcracks. And because each coalescence with a

microcrack makes the rightmost point jump over a distance d̄n,
while the crack velocity is cm between these coalescence events,
one also gets L ¼ cmtþ Ld̄n

ffiffiffi
ρ

p
. From the two expressions for L,

it can be deduced that A ¼ 1∕ð1 − dn
ffiffiffi
ρ

p Þ.
In real materials, the centers are not aligned along lines par-

allel to the direction of mean crack propagation but are distrib-
uted randomly. We thus propose to modify this equation into

A ¼ 1

1 − bd̄n
ffiffiffi
ρ

p ; [S5]

where the geometrical constant b (expected to be close to one)
accounts for the projection onto the x axis of (i) the real distance
between successive nucleation centers and (ii) the distance
jumped during a coalescence event with a nonaligned microcrack.
This equation is the one proposed in the main text (Eq. 1).
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Fig. S1. Sketch of the so-called wedge splitting geometry used to grow dynamic cracks in polymethylmethacrylate (see Materials and Methods and ref. 1).

Fig. S2. Geometry of conic markings. (A) Sketch underlying Eq. S1. A first microcrack nucleates at time t ¼ 0 at frame origin O1 and subsequently grows at
velocity c1. A second microcrack nucleates at time τ at point O2 of coordinates (x ¼ Δ, y ¼ 0) and subsequently grows at velocity c2. The two gray circles
correspond to both microcrack fronts at time t, if microcrack interaction was ignored. In reality, the intersection of the two fronts leaves on the fracture
surface a marking that develops as the blue curve as time t increases. In dimensionless coordinates x∕Δ and y∕Δ, the marking aspect is set by the ratios
c2∕c1 and c1τ∕Δ. The forms obtained for c2∕c1 ¼ 0.9 (blue), c2∕c1 ¼ 1 (red), and c2∕c1 ¼ 1.1 (green) are plotted in B and C, for c1τ∕Δ ¼ 0.05 and
c1τ∕Δ ¼ 0.2, respectively.
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Fig. S3. Cumulative distribution of the number of nucleation centers contained in square regions of lateral size a, for each of the eight fractographic images
analyzed. The cumulative distribution is defined as the proportion of square regions containing a number of nucleation centers which is strictly superior to the
value in abscissa. Four values of a were chosen, namely a ¼ 100, 200, 300, and 400 μm. In each graph, solid lines represent Poisson fits PðnÞ ¼ ∑n

k¼0ðρa2Þk∕k!,
where the fitting parameter ρ is the same in all four curves and hence defines the surface density of centers in each image. Note that the same Poissonian
distribution was assumed in ref. 1. The stress intensity factor K applying on the macroscopic crack front at these points was computed using finite element
calculations (Materials and Methods). Its value together with the fitted value ρ is reported in each graph inset.

1. Ravi-Chandar K, Yang B (1997) On the role of microcracks in the dynamic fracture of brittle materials. J Mech Phys Solids 45:535–563.
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Fig. S4. Direct extraction of the relative speed between two interacting microcracks. (Upper) Typical examples of investigated zones (985 × 745 μm2 in size) at
three different microcrack densities. Each conic branch has been attributed a given color and the nuclei of the two corresponding interacting microcracks have
been joined by a dotted segment of the same color. Note that a conic mark is often made of several of these branches. The ratio c2∕c1 is the only adjustable
parameter in Eq. S1 to determine the branch geometry once the nuclei position and the branch apex are set. (Lower) Corresponding distributions for c2∕c1. In
the three cases, the distributions are found to fit normal distributions of mean value of approximately 0.98–0.99 and standard deviation of approximately 0.03–
0.04, irrespective of ρ.
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Fig. S5. Cumulative distribution, P, of the distance dn between the triggering crack and the nucleation center at the time of nucleation, determined from each
of the analyzed fractographic images. In each graph, the solid line shows the fit of the form PðdnÞ ¼ ½ðdmax − dnÞ∕ðdmax − dminÞ�2, where dmin and dmax are
positive quantities. The fitted values dmin and dmax together with the surface density of nucleation centers ρ are reported in the inset in each graph. The value
dmin decreases with ρ and becomes equal to zero when ρ is larger than 36 mm−2. The value dmax increases with ρ over the whole explored range. Neglecting the
small value of dmin allows us to use a single parameter [e.g., d̄nðρÞ] to define the whole distribution and its variations.
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Fig. S6. Saturation of d̄n and avalanches. Evolution of the fitted mean distance at nucleation, d̄n, (thick red line, see Fig. 3C, Lower), as a function of ρ. It is
compared to the mean nearest-neighbor distance in a Poissonian distribution 1∕ð2 ffiffiffi

ρ
p Þ (black solid line, error bars correspond to �one standard deviation

approximately 0.26∕ ffiffiffi
ρ

p
). Solid squares indicate the proportion of microcracks involved in avalanches, as computed from the reconstruction.

Fig. S7. Influence of edge effects on the reconstruction and average velocity. (A–C) Fracture surface images (gray level) compared to the reconstructed conic
marks (red lines), for ρ ¼ 45.0 mm−2 (K ≃ 3.65 MPa·m1∕2). Three different initial conditions were used. (A) Straight vertical line. (B) Vertical sinusoidal shape
with a period of 186 μm and a peak-to-peak amplitude of 242 μm. (C) Same sinusoidal shape, but translated vertically over half a period. In all cases, red dots
indicate nucleation centers. (D) Time evolution (scaled by cm) of the average location of the simulated crack front for the three different initial front shapes. For
each curve, the dashed line is a linear fit of the data between the two black dots. The fitted slopes between the black dots, which directly give the value of the
acceleration factor A, are 1.679� 0.001 (straight), 1.666� 0.001 (sinus 1), and 1.687� 0.001 (sinus 2). These almost identical slopes show that the value of A is
hardly sensitive to edge effects in the reconstruction.
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Fig. S8. Sketch of the mean-field model used to establish the relationship between the acceleration factor A, the microcrack density ρ, the mean distance at
nucleation d̄n, and the microscopic velocity cm of microcrack growth (Eq. 1 in the main text). The nucleation centers are placed on the nodes of a square lattice.
The crack front is plotted at 10 successive times separated by a constant interval d̄n∕cm (from blue to red). At each time, the rightmost point of the front is
projected along the x axis (thick black ticks on the x axis). It propagates at a constant velocity cm between coalescence events and jumps over a distance d̄n at
coalescence.

Movie S1. Movie of the reconstructed microscopic dynamics of crack propagation and microcracking events, for a density of microcracks ρ ¼ 27.5 mm−2. It
shows a region of size ≃2;500 × 2;400 μm during ≃9.8 μs.

Movie S1 (MOV)
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Movie S2. Movie of the reconstructed microscopic dynamics of crack propagation and microcracking events, for a density of microcracks ρ ¼ 64.6 mm−2. It
shows a region of size ≃3;400 × 2;500 μm during ≃8.5 μs.

Movie S2 (MOV)
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