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Abstract

The principles of multilevel methods for Maxwell’s equations discretized by
edge elements are reviewed. A particular emphasis is given to the algebraic
method proposed by Reitzinger and Schöberl and the improvements intro-
duced by Bochev et al.. A technique for the construction of coarse nodal
elements by using a minimisation problem based on an energy norm is the
starting point of our developments. The first development, in the nodal el-
ement case, is the replacement of computed coarse matrices by very similar
structured matrices for the multilevel preconditioning. The second and main
extension concerns a new method for constructing coupled coarse nodal and
edge elements; a set of numerical experiments is presented on structured and
unstructured meshes, in two and three dimensions. The geometry (square
or cube) and the problem remain very simple.



Résumé

Le principe des méthodes multiniveau pour les équations de Maxwell dis-
crétisées par les éléments finis d’arêtes est présenté. On s’attache plus par-
ticulièrement à décrire la méthode algébrique introduite par Reitzinger et
Schöberl et les améliorations proposées sur la base de cette méthode par
Bochev et collab.. Le point de départ de nos développements est une méthode
permettant la construction de fonctions d’approximation grossière en élé-
ments finis nodaux, grâce à l’utilisation d’un problème de minimisation en
norme d’énergie. Le premier développement, qui s’applique aux éléments
finis nodaux, consiste à remplacer des matrices grossières, calculées avec
la méthode de minimisation en norme d’énergie, par des matrices struc-
turées très “proches” des matrices initiales pour le préconditionnement mul-
tiniveau. Le second développement est une extension de la construction de
fonctions d’approximation grossière par minimisation d’énergie pour con-
struire des bases nodales et d’arêtes compatibles ; des résultats numériques
sont réunis pour des maillages structurés et non structurés, en deux et trois
dimensions. La géométrie (carré ou cube) et le problème considérés restent
simples.
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Chapter 1

Introduction

The present research is a part of a project called “Efficient algorithms for
solving linear systems coming from the edge element discretization of the
time-harmonic Maxwell’s equations”, and it is a cooperation between the
Laboratoire de Mathématiques Appliquées de Lyon (MAPLY, Laboratory
of Applied Mathematics of Lyon) and the Centre de Génie Electrique de

Lyon (CEGELY, Center of Electrical Engineering of Lyon).

Figure 1.1: Illumination of a plane by a 100Mhz plane wave. Magnitude of
the current density.

The design of efficient communication systems and the consideration of
electromagnetic compatibility problem, for electrical or biological systems, as
illustrated in Fig. 1.1 and 1.2, require the computation of electromagnetic
wave propagation since the beginning of the conception process, in order to
reduce the time and cost of the design. This computation must use efficient
3D numerical codes, based on the discretization of Maxwell’s equations by
finite element or boundary element methods, using fixed space meshes. Cur-
rently, the implementation of these methods on realistic systems hits upon
the crucial issue of accuracy against computational cost.

Regarding this issue, we want to solve efficiently (and if possible opti-
mally with respect to computational time and to memory occupancy) linear
systems coming from the discretization of the electric or magnetic field for-
mulations of the time-harmonic Maxwell’s equations, by edge elements. Let
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Figure 1.2: Hyperthermia RF (27MHz) for treating deep tumours. Magni-
tude of the electric field.

us recall that the electric field formulation of these equations can be written:
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To find E in Q such that:

a(E,E′) = F(E′) ∀E′ ∈ Q,

with a(E,E′) =

∫

Ω

1

µ
curlE · curlE′ − ω2

∫

Ω
ε̃E · E′

+ i

∫

Γa

1

µ
‖k‖(E × n) · (E′ × n),

(1.1)

where µ denotes the magnetic permeability, ε the complex-valued dielectric
permittivity, ω the pulsation, k the wave vector, n the exterior unit normal,
Γa the part of the boundary where absorbing conditions are applied and Γd

the perfect electric conductor boundary (E × n = 0 on Γd). The space of
test functions is:

Q = {E′ ∈ H(curl, Ω) / E′ × n = 0 on Γd}.

The discretization of this formulation by lowest order edge elements leads
to a system whose matrix is complex-valued, symmetric and indefinite, of
the form: K ′ = Sµ − ω2Mε̃ + iMµ,Γa

. The matrices Sµ, Mε̃ and Mµ,Γa

denote respectively the discretization of the first, second and third integrals
in Definition (1.1) of the bilinear form a.

We seek methods which must be efficient for a priori unstructured meshes
i.e. where there is no hierarchy of nested grids. Algebraic multilevel methods
enable us to generate representations of the problem at different scales,
starting from diverse data: matrix coefficients only, or additional geometric
information.

Here, we are more specifically interested in the difficulties due to the
operator curlµ−1 curl. First, we will give an overview of the known multi-
level methods for Maxwell’s equations, emphasising the so-called algebraic
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multilevel methods. Then, we will show an energy-minimising formulation
which computes a coarse basis from a known fine nodal basis. Finally, we
will explain an extension of these ideas to edge elements and we will give the
results of numerical experiments performed on simple examples. This exten-
sion to coarse edge elements satisfies a fundamental geometric compatibility
condition: in the same time, we construct a coarse nodal basis and a coarse
edge basis in such a way that the gradient of coarse nodal elements are linear
combinations of the coarse edge elements. This compatibility condition is
known to be essential for the good performance of our methods.



Chapter 2

Known multilevel methods
for Maxwell’s equations

Known multilevel methods for Maxwell’s equations are introduced. In order
to help the reader, we first give some information relative to the classical
multigrid algorithm. Then, we will study the specific difficulties of Maxwell’s
equations and conceivable approaches to deal with them.

2.1 Introduction to the multigrid method

We solve a second order partial differential equation on the domain Ω. We
explain the main features of the multigrid method. First, the two-grid
method is described. Then, it is extended into the complete multigrid algo-
rithm.

2.1.1 Two-grid method

On the domain Ω, two distinct meshes are defined:

- a “coarse” mesh TH of parameter H,

- a “fine” mesh Th, obtained by refining the coarse mesh TH , of para-
meter h.

Once the problem has been discretized by finite differences or finite elements,
one must solve on the fine mesh the following linear system:

Ahuh = bh. (2.1)

One would like to solve this system by using information given by the coarse
mesh, where the linear system can be written:

AHuH = bH .

Let us define:

6
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- a prolongation operator PH→h which enables us to transfer a solution,
which is known on the coarse mesh, to a solution on the fine mesh,

- a restriction operator Rh→H which performs the inverse operation,
from the fine to the coarse mesh.

The method can then be decomposed into three steps:

1. Presmoothing : it consists in using a linear iteration on the vector uh

(e.g.: one or two iterations of Gauss-Seidel). It can be written in
matrix form:

uh = uh + M−1
h

(

Ahuh − bh

)

. (2.2)

Here, Mh is an operator which will be chosen so that the highly oscil-
lating components of the error are substantially reduced. An example
of the effect of an appropriate smoother for the equation −4u+u = 0
on the unit square with Neumann boundary conditions is displayed
at Fig. 2.1. Once presmoothing is accomplished, the smooth part of
the error is dominant. Therefore restricting it, through Rh→H , to the
coarse grid loses little information.

2. Error correction: it consists in solving on the “coarse” grid (usually
by a direct method):

AHθH = Rh→H(bh − Ahuh). (2.3)

The result obtained enables us to “correct” the smooth iterate:

uh ← uh + PH→hθH . (2.4)

The correction step reduces the smooth component of the error, which
is its only significant part on the coarse grid. The dimension of the
system on the coarse grid is much lower than on the fine grid, and this
is the interesting feature of the correction step.

3. Postsmoothing : analogous the presmoothing step on the “corrected”
solution.

This method is iterative, the previous steps are repeated until the pre-
scribed accuracy is reached (see Fig. 2.2).

However, the use of only two grids limits the performance of the method,
because the resolution on the coarse grid can still lead to a large system.

2.1.2 Multigrid extension

Replacing the correction step by a two-level method leads to the recursively
defined multilevel method.
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Figure 2.1: Non-smooth error and smooth error after 2 Gauss-Seidel itera-
tions.

Step 1: Presmoothing

a few iterations on the fine level

to obtain u
i+1/3

h

approximate value of the solution uh

residual: rh = Ahu
i+1/3

h − bh

Step 2: Transfer to the coarse grid

residual: rH = Rh→Hrh

Step 3: Exact resolution on the coarse grid

we solve : AHθH = rH

Step 4: Transfer to the fine grid

u
i+2/3

h = u
i+1/3

h − PH→hθH

Step 5: Postsmoothing

initial vector : u
i+2/3

h

a few iterations on the fine level

to obtain u
i+3/3

h

approximate value of the solution uh

i ← i + 1

Figure 2.2: Two-grid method
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Let T1, ..., Tj be a hierarchy of meshes of respective parameters h1, ..., hj ;
Tk is a refinement of Tk−1, for all k = 2 . . . j.

Pk−1→k and Rk→k−1 refer to the transfer operators (prolongation and
restriction) which transfer information forward and backward from level
k − 1 to level k.

Ak denotes the matrix of the problem when discretized on the mesh Tk.
Fig. 2.3 sketches the V-cycle1, which is the simplest multigrid algorithm.

Initial solution vector : uj .
Initial right-hand side : bj .
MGVC(level : l, initial solution : ul, right-hand side : bl)
{

if j = 1 then u1 ← A−1
1 b1

else
{

ul ← liss(ul, bl), presmoothing
θl−1 ← 0
MGVC(l − 1, θl−1, Rl→l−1(bl − Alul))
ul = ul + Pl−1→lθl−1

ul ← liss(ul, bl), postsmoothing

}

}

Figure 2.3: V-cycle multigrid algorithm

The multigrid algorithm has been thought to be an optimal solver: the
algorithmic complexity2 and the quantity of data to store for its implemen-
tation (i.e. CPU time + occupied memory) must evolve linearly with the
number of unknowns on the fine grid.

However, there is no valid multilevel algorithm which can solve all prob-
lems but only a generic principle, and we have to define:

- an efficient smoother which damps the oscillating part of the error and
remains as little sensitive as possible to the parameters of the problem
studied,

- a hierarchy of levels and especially the restriction and the prolongation
operators; these must fit the properties of the problem under consid-
eration: for instance, a specific treatment of the anisotropy or the
heterogeneity can be required.

1One iteration of the multigrid method with only one recursive call in the algorithm.
2Number of elementary operations required to accomplish the task.
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For the construction of grids, two distinct approaches can be distin-
guished:

- a geometric approach: a hierarchy of meshes is constructed,

- an algebraic approach: representations at different scales of the initial
linear system are constructed algebraically.

Both approaches will be detailed later.
We will go back also to the smoother; it plays a key-rôle, which has been

recently clarified for Maxwell’s equations, see [1] and [7].

2.2 Properties of multilevel methods for Maxwell’s
equations

The use of a multilevel method for solving Maxwell’s equations requires
unusual smoothers dealing with the difficulties coming from the curl curl
operator. Moreover, generating algebraically a hierarchy of levels requires a
special care.

2.2.1 Difficulties coming from the curl curl operator

The classical smoothers (damped Jacobi, Gauss-Seidel...) strongly damp
the “high energy” part of the error; for a positive bilinear form, the high
energy part of the error corresponds to the modal components associated to
the eigenvalues of largest modulus.

In the case of the Laplace operator, this part coincides with the oscillat-
ing part, which is why the classical smoothers are very efficient.

In contrast, for operators with a curl curl term, there remains oscillating
vectors of low energy. This is due to the existence of a large subspace
(infinite dimensional in the continuous case and of dimension proportional
to the number of unknowns in the discrete case) of curl-free vector fields,
which have a quasi-null energy; indeed, the contribution of the curl curl part
is dominant in the energy.

Thus, the oscillating part contains a curl-free component on which the
classical smoothers will have no effect. Moreover, this component cannot be
correctly represented on the coarse grid because it is oscillating. It is then
impossible to obtain the efficiency of the classical smoothers.

2.2.2 The discrete Helmholtz decomposition

Let T be a given mesh on the domain. Define the following objects:
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- Qk is the space of edge elements of order k on the mesh T . The
construction of these finite element spaces was first proposed by Né-
délec [10]. Hiptmair [8] proposed more recently an approach using
differential forms.

- Qk,Γd
= {E ∈ Qk, n × E = 0 on Γd ⊂ ∂Ω},

- Sk is the space of nodal elements of order k on the mesh T ,

- Sk,Γd
= {φ ∈ Sk, φ = 0 on Γd ⊂ ∂Ω}.

A discrete Helmholtz decomposition exists in the space Qk,Γd
; if the

domain is contractible, it can be written:

Qk,Γd
= gradSk,Γd

⊕ Dk,Γd
. (2.5)

The notation gradSk,Γd
denotes the space of curl-free vector fields. More-

over, the direct sum is orthogonal with respect to the L
2-norm. Observe that

if the domain has holes, a space of small dimension, containing curl-free vec-
tor fields which are not gradients, must be added to the direct sum (2.5).
Dk,Γd

is spanned by weakly divergence-free fields i.e.:

A ∈ Dk,Γd
⇒ (A, grad φ)L2(Ω) = 0, ∀φ ∈ Sk,Γd

Some numericians (Hiptmair [7], Beck [2]) use this decomposition by
solving simultaneously a scalar potential problem in the auxiliary nodal
finite element space Sk,Γd

.

2.2.3 Choice of the smoother

One-level overlapping Schwarz methods are used to find efficient smoothers
for Maxwell’s equations. The mathematical analysis relies on the Helmholtz
decomposition to prove the feasibility of the multigrid approach for Max-
well’s equations. Practical implementations use this decomposition expli-
citly or implicitly.

The two main references concerning the choice of smoothers for Max-
well’s equations are Hiptmair [7] and Arnold et al. [1].

Hiptmair’s smoother uses explicitly the Helmholtz decomposition, by
smoothing at each iteration simultaneously, the whole problem discretized
by edge elements, and an auxiliary scalar potential problem discretized by
nodal elements.

The algorithm is given in Fig. 2.4.
In this figure, the operator T ∗

l lets us transfer information from the edge
element to the nodal element basis. Tl is its adjoint.

The principle of this algorithm has been reported in [7], [4], and sim-
ilar references, which also contains numerical experiments, mainly in the
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liss(xl, bl)
{

Gauss-Seidel iteration on Alxl = bl

ρl ← bl − Alxl

ρl ← T ∗
l ρl

ψl ← 0
Gauss-Seidel iteration on 4lψl = ρl

return to xl + Tlψl

}.

Figure 2.4: The smoother defined by Hiptmair.

transient case; see in particular the bibliography of [9] for a more complete
list.

The smoother of Arnold et al. does not use explicitly Helmholtz’ de-
composition. An overlapping Schwarz preconditioner is used as a smoother.
The space is then decomposed into a set of overlapping subspaces:

Qk,Γd
=

∑

Qi
k,Γd

. (2.6)

The subspace Qi
k,Γd

is generated by the shape functions associated to the
edges connected by the common node i.

Additive or multiplicative Schwarz algorithms are used.
Proving that the multilevel method is optimal for time-harmonic Max-

well’s equations, with the choice of either smoother, is done in [6]; however,
observe that, in this article, absorbing boundary conditions are not used,
the permittivity ε̃ is real and the domain Ω is convex.

Remark: We implemented these smoothers as a one-level precondi-
tioner. The efficiency gains compared to the classical SSOR preconditioner
are reported in [11], [12] and [13] for non-trivial geometry and data (plane,
human body model).

2.2.4 Construction of the levels

The classical geometric multigrid approach is recalled but we concentrate
mainly on algebraic multilevel methods.

Description of a geometric multilevel method

A convenient way of creating nested finite element spaces is to successively
refine the elements, allowing then for a straightforward definition of the
transfer (prolongation or restriction) operators.
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By construction, this class of method is perfect for adaptive refinement3:
the grids are constructed successively and the already computed results are
used to continue to work on the finest grid.

However, this “geometric” multilevel method requires the use of specific
mesh generators that generate a sequence of rather regular grids.

Let us eventually observe that theoretical results are better known for
the geometric multilevel algorithms.

Description of an algebraic multilevel method

The principle of the method is to begin with the fine mesh and to generate
algebraically a coarse level.

For instance, the simplest approach needs to know only the incidence
graph of the matrix on the finest level. Some improvements are possible
by taking into account the coefficients, geometric information or elementary
matrices computed during the global assembly of the matrix.

Moreover, the operator on the coarse level is usually assembled by using
Galerkin method4.

The quality of the method comes from the good complementarity be-
tween the transfer operators and the smoother.

The first algebraic multilevel approach for Maxwell’s equations are de-
scribed in the articles of Beck [2], [3] and of Reitzinger and Schöberl [14].

Both use a scalar potential matrix Aφ for the construction of the different
levels. This approach coincides with the search for a good representation of
the kernel of the curl operator.

The node-edge incidence graph of the mesh can be read from Aφ. Indeed,
the node i and j are linked by an edge if and only if the coefficient Aφ(i, j)
does not vanish.

In the following, we denote by master nodes, the nodes belonging to the
coarse mesh and by slave nodes, all others.

The principles of the approaches of Beck and of Reitzinger and Schöberl,
are recalled and some recent improvements by Bochev et al. are also exposed
(see [5]).

Method of R. Beck This method is used to compute transient or time-
harmonic formulations at low frequencies. Beck uses the smoother defined
by Hiptmair.

In order to select the coarse nodes, Beck introduces a simple algorithm
(Algorithm 2 [2]), which does not use the values of the coefficients of Aφ.
Then, in order to define the restriction operators, he enforces the following
rule: the value of each master node is transfered with a weight of 1, the

3The mesh is only refined in the area where the error will be large.
4If α is the prolongation operator, one obtains AH = αtAhα.
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Master node

Slave node

1
2

3

4

5

6

7

8 9

αt =





1 0 0 1/2 1 1/3 0 0 0
0 1 0 1/2 0 1/3 0 1/2 1/2
0 0 1 0 0 1/3 1 1/2 1/2





Figure 2.5: Representation of master and slave nodes and of the restriction
operator αt.

value of a slave node s connected with ns master nodes is transfered with
a weight of n−1

s to each master node connected with s (Fig. 2.5). Thus,
he only uses the incidence graph of the matrix Aφ, which represents also
usually the mesh.

However, Beck does not define the transfer operators directly in the edge
element space.

His multilevel algorithm is applied to an auxiliary basis of vectors whose
three components are nodal P1 elements. He defines a transfer operator
from his edge element space to this auxiliary nodal element space, on the
same mesh.

Afterwards, he applies the strategy used for scalar problems, in order to
determine the coarse level, and to define the transfer operators; indeed, he
only works with nodal elements.

This transfer form edge to vector nodal elements creates a problem for
the boundary conditions: they are natural in the edge element framework,
but they are not adapted to the auxiliary vector nodal space5. Beck intro-
duces techniques that solve these questions; see [2] Section 5.

This multilevel algorithm can only be used as a preconditioner. The

5The trace operator on the boundary are different: tangential component for H(rot, Ω),
all the components for H

1(Ω).
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method gives satisfactory results, which are quasi-optimal for the problems
that Beck considers. It does not take into account the specific properties of
edge elements.

Method of S. Reitzinger and J. Schöberl As Beck, Reitzinger and
Schöberl use the knowledge of the matrix Aφ to define the coarse level and
the transfer operators. The method is applied to magnetostatic and time-
harmonic problems at low frequencies.

However, the transfer operators are differently defined. Reitzinger and
Schöberl make a partition of the mesh nodes. This partition uses the know-
ledge of Aφ and is built in two steps:

- the master nodes are selected by using previously developed algebraic
techniques (algorithm of Rüge and Stüben for example [15]),

- the aggregates are created by associating uniquely the remaining nodes
to one master node.

Thus, every node of the fine mesh is uniquely associated to one master node
(see Fig. 2.6).

They define the index mapping:

ind : ωn
h → ωn

H ,

where ωn
h denotes the set of node indices on the fine mesh and ωn

H those on
the coarse mesh.

The transfer operator only contains zeroes and ones and is defined as:

αij =

{

1 if i ∈ ωn
h such that j = ind(i),

0 else.
(2.7)

Remark: In order to be able to continue the multilevel construction, on
the coarse level, the scalar potential matrix can be assembled in the form:
αtAφα.

In contrast with Beck, Reitzinger and Schöberl directly define prolonga-
tion operators between edge element spaces from the fine to the coarse level.

They define their transfer operator in order to verify the following com-
mutativity relation:

aα = βA. (2.8)

where:

- α denotes the prolongation operator for nodal elements,

- β denotes the prolongation operator for edge elements,

- a and A denote respectively the discrete analogue of the grad operator
at the fine and coarse levels.
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Master node
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1
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αt =





1 0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 1 1
0 0 1 0 0 1 1 0 0





Figure 2.6: Representation of master and slave nodes and of the restriction
operator αt.

This relation means that the gradient of coarse nodal elements are linear
combinations of coarse edge elements. A detailed explanation will be given
below in Subsection 4.1.1. Its interest is that the geometric representation
of the kernel of the curl operator is preserved during the transfer from one
grid to the other and the vectors of the “coarse” kernel are well interpolated
by these on the “fine” kernel.

Let ωe
h be the set of indices of the fine level edges and ωe

H be those of
the coarse level “edges”. Let i = (i1, i2) ∈ ωe

h be the representation of the
edge linking the node i1 to the node i2 and set j = (j1, j2) ∈ ωe

H .
The transfer operator is defined in the following way:

βij =







1 if j = (ind(i1), ind(i2)),
−1 if j = (ind(i2), ind(i1)),
0 else.

(2.9)

This operator verifies the commutativity relation (2.8).
Unfortunately, the efficiency of this multilevel method is not quite opti-

mal, which may be due to the simplicity of the edge interpolation. However,
this approach has been extended by the Sandia team, R. Bochev et al. [5],
who improve the construction of the transfer operators.

Improvements of transfer operators The improvements introduced by
the Sandia team follow two directions.
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The first one concerns the prolongation operator for edge elements. The
trick is the construction of a coarse basis, verifying the commutativity rela-
tion (2.8) and whose energy is as low as possible, in order to ensure good
properties of the prolongation. The construction is iterative. Let us recall
that it is equivalent to seek a basis, or the matrix β. The method used is
the following:

- a first operator β̂, satisfying the commutativity relation is defined: for
instance, the operator of Reitzinger and Schöberl,

- it is smoothed by using one or several damped Jacobi iteration(s):

β = (I − γD−1Sµ)β̂, (2.10)

where I is the identity matrix, γ a relaxation coefficient, Sµ denotes
the “curlµ−1 curl” part of the matrix of the system to be solved, and
D is the diagonal matrix made out of the diagonal coefficients of Sµ.

The new basis is given by the columns of β. The energy of the basis given
by β is less than the energy of the basis given by β̂. Moreover, the commu-
tativity relation remains verified even after smoothing. Observe, however,
that Bochev et al. consider the case where the matrix is symmetric definite
positive, and that the support of the coarse basis functions spreads out and
usually only one Jacobi iteration is used.

The second improvement consists in taking a better nodal prolongation
operator and constructing an edge prolongation operator, which still verifies
Condition (2.8). Then they may use the first improvement again (see [5]).

2.3 Conclusion

The principle of the multilevel methods has been recalled and some features
of these methods for Maxwell’s equations discretized by edge elements have
been described.

An efficient method will have to verify the commutativity relation (2.8).
We will return to this question, when using coarse bases, which are slightly
different from those proposed by Reitzinger and Schöberl.



Chapter 3

Energy-minimising
construction of coarse nodal
elements for multilevel
methods

Two-level algebraic methods are introduced for solving linear systems co-
ming from a finite element discretization.

Two methods are considered: one takes into account the boundary con-
ditions, the other does not. Indeed, the choice of the coarse level seems to
be sensitive to the presence of Dirichlet boundary conditions.

A simple problem is considered on an elementary geometry. The strong
formulation of the test case is:











−4u = f in Ω =]0; 1[×]0; 1[,

u = 0 on ∂Ω,

f = π sin(πx) sin(πy).

(3.1)

The weak formulation is the following:






To find u ∈ H1
0(Ω) such that:

∫

Ω
gradu · grad v =

∫

Ω
fv ∀v ∈ H1

0(Ω).
(3.2)

3.1 Principle of the method

An unstructured mesh is given on the domain Ω where a discretization by
P1 finite elements is used.

In the two-level method proposed for solving the linear system, the main
point is the construction of the coarse basis. This basis must satisfy the
following constraints:

18



Technical Report 19

- the basis must span a subspace of the initial P1 finite element space;

- the support of every coarse basis function is a subdomain Ωi of Ω. Ωi

is defined so that the matrix at the coarse level has a very regular
structure. This regular structure will be exhibited later;

- Given the supports of these coarse functions, an optimisation problem
is solved to compute them; it consists in minimising the energy of the
coarse basis under appropriate constraints.

3.1.1 Formulation of the optimisation problem

Suppose that Ω is decomposed into overlapping subdomains (Ωi)i=1...dH

and that each subdomain is not completely overlapped by its neighbours.
(Ii)i=1...dH

denotes the set of nodes belonging to each subdomain Ωi.
Let (Φi)i=1..dH

be the coarse basis functions. This basis is the solution
of the following problem:



























To find (Φi)i=1..dH
minimising

dH
∑

i=1

a(Φi, Φi) under the constraints:

dH
∑

j=1

Φj(x) = 1, ∀x ∈ Ω and supp(Φi) ⊂ Ωi, ∀i = 1 . . . dH .

(3.3)
Observe that H1

0(Ω) is equipped with an energy norm by the bilinear form
a(u, v) =

∫

Ω gradu · grad v; it would be a semi-norm if Neumann conditions
were assigned, and then we would work in H1(Ω), as is the case in [16].

Let (φi)i=1..dh
be the fine basis on the initial mesh. The coarse space is

included in the fine one, and thus it is possible to write:

∀i = 1 . . . dH , Φi =

dh
∑

j=1

φjαji

with αji = 0 if j /∈ Ii (support constraints).

(3.4)

The prolongation operator for the two-level method is denoted by α, which
is a dh × dH matrix.

In order to describe the problem in an algebraic fashion, a matrix Pj is
introduced, with j varying from 1 to dH . Denoting by ei the i-th vector of
the canonical basis of R

dh , the rows of Pj are the vector et
i whose index i

belongs to Ij . The dimension of Pj is nj × dh where nj is the number of
nodes in Ij .

Then, dH vectors (αi)i=1...dH
of respective dimension ni can be defined

so that: αi = Piα•i. Here and in what follows, α•i denotes the column
vector (αji)j . Let K be the matrix whose elements are a(φj , φi) and let
Ki = PiKP t

i ; its dimension is ni × ni.
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Then, the problem takes the matrix form:


























To find (αi)i=1...dH
minimising

dH
∑

i=1

αt
iKiαi under the constraints:

dH
∑

i=1

P t
i αi = 1dh×1.

(3.5)

The notation 1dh×1 denotes a column vector with dh components equal to
1.

3.1.2 Method of resolution

This optimisation problem with constraints is solved by introducing La-
grange multipliers.

An iterative method is used to compute the multiplier vector. The prin-
ciple of the resolution is sketched.

Let us define:

α =







α1
...

αdH






, Q = diag(Ki, i = 1 . . . dH), B =







P1
...

PdH






, γ = 1dh×1.

(3.6)
The notation diag(Ai, i = 1 . . . n) refers to a block-diagonal matrix,

whose diagonal blocks are the Ai’s, i = 1 . . . n. Denoting the Lagrange
multiplier vector by µ ∈ R

dh , the optimisation problem takes the form:






To find the saddle-point (αc, µc) of the Lagrangian L defined by:

L(α, µ) =
1

2
αtQα + µt(Btα − γ).

(3.7)

The critical point of L must then satisfy the following equations:
{

Qαc = −Bµc

Btαc = γ.
(3.8)

This system can be solved in the following way:

- first, compute the multiplier vector µc by an iterative method applied
to the system:

BtQ−1Bµ = −γ, i.e.

dH
∑

i=1

P t
i K

−1
i Piµ = −γ.

- then obtain α by solving:

Qα = −Bµc, i.e. αi = −K−1
i Piµc, ∀i = 1 . . . dH .
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All the Ki’s are symmetric positive definite, and so is BtQ−1B. Then
the system for µ can be solved by the conjugate gradient method. The fac-
torisation of every Ki, which is a local representation of the matrix of the
problem, is needed for the matrix-vector product. This product is imple-
mented as follows:

1. for i = 1 . . . dH compute bi ← Riµ,

2. for i = 1 . . . dH solve Kixi = bi,

3. finally compute
∑dH

i=1 P t
i xi.

Of course, the multiplications by Pi and P t
i can be computed very fast

because these matrices only contain ni non-zero coefficients. Observe that
the matrix-vector product in the conjugate gradient algorithm does not need
to assemble the matrix, which is too expensive in computational time and
memory.

The computation of the αi’s can be simply obtained from the factorisa-
tions of the local matrices Ki.

3.1.3 Decomposition into subdomains

The subdomain decomposition is constructed as follows (see Fig. 3.1):

1. the domain Ω is cut according to regular geometric shapes;

2. the nodes are partitioned according to the geometric partition;

3. each node set is extended by taking all its nearest neighbours, in order
to increase the overlap between subdomains. Thus, dH overlapping
node sets (Ii)i=1..dH

have been created;

4. the subdomain Ωi is the union of all the elements which have a node
of the set Ii, as one of their vertices.

3.1.4 Quantitative information on the different meshes

The results obtained for the algorithms are compared on the three meshes
shown in Fig. 3.2. The number of nodes and elements of these meshes, are
given in Table 3.1.

Number of elements Number of nodes

Mesh 3.2(a) 312 177

Mesh 3.2(b) 1248 665

Mesh 3.2(c) 4992 2577

Table 3.1: Quantitative information on meshes.
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(a) Regular cutting.
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(b) Geometric partition of nodes.
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(c) Central set: overlapping by
extension to the nearest neigh-
bours.
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(d) Central set: corresponding
subdomain.

Figure 3.1: Decomposition into subdomains. Observe that this mesh is very
coarse, and consequently, the central subdomain Ωi is close to the whole
domain Ω.
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Figure 3.2: Mesh 3.2(a): hmax < 0.1, meshes 3.2(b) and 3.2(c) are obtained
by regular refinement.
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3.2 Dirichlet fine and Dirichlet coarse bases
(DFDC)

In this case, the constraint is imposed only on the interior nodes. Moreover,
every coarse basis functions is a linear combination of the fine basis functions
from the finite element space included in H1

0(Ω).
The domain Ω is subdivided into squares of length: H = 1/

√
dH . The

lexicographical numbering is used for the subdomains.
In Fig. 3.3, the partitions obtained with meshes 3.2(a) and 3.2(b) are

presented. After solving the optimisation problem, one obtains the coarse
basis functions. Two examples are shown in Fig. 3.4, they are obtained from
mesh 3.2(a).
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Figure 3.3: Node partitions for meshes 3.2(a) and 3.2(b).
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Figure 3.4: Basis functions on the boundary and in the interior of the do-
main, generated with Dirichlet boundary conditions.

In Fig. 3.4(a), observe the large gradient of the basis function on the
boundary where Dirichlet conditions are imposed: the isovalue curves are
very close. This generates large diagonal coefficients, though the problem
is homogeneous. This is demonstrated on the stiffness matrix (3.9) of the
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coarse level for mesh 3.2(a) and for the coefficients (1, 1), (3, 3), (7, 7) and
(9, 9).





























11.3 −0.31 0 −0.54 −0.46 0 0 0 0
−0.31 7.17 −0.22 −0.46 −0.85 −0.45 0 0 0

0 −0.22 9.88 0 −0.37 −0.24 0 0 0
−0.54 −0.46 0 7.56 −0.67 0 −0.29 −0.20 0
−0.46 −0.85 −0.37 −0.67 4.99 −0.97 −0.46 −0.98 −0.24

0 −0.45 −0.24 0 −0.97 7.03 0 −0.4 −0.22
0 0 0 −0.29 −0.46 0 10.22 −0.54 0
0 0 0 −0.20 −0.98 −0.4 −0.54 6.71 −0.38
0 0 0 0 −0.24 −0.22 0 −0.38 10.81





























(3.9)
If we only look at its non-zero entries, we can see that the matrix (3.9) has
a regular structure, which is comparable to that which would be obtained
with a nine-point stencil and a lexicographical numbering. Moreover, all the
off-diagonal entries are negative.

3.3 Neumann fine and Dirichlet coarse bases
(NFDC)

In order to avoid the boundary effects that appeared in the previous method
and to enforce on the whole domain Ω the constraint

∑

i Φi(x) = 1, we will
define coarse elements satisfying a Neumann condition on the boundary of
the large domain. Moreover we adopt a different cutting strategy (compare
Fig. 3.3 and Fig. 3.5) and we discard the coarse elements on the boundary.

The decomposition is indeed adapted to this NFDC method; the coarse
size is the same as in the previous method but boundary elements have nor-
mal size H/2; we choose H = (

√
dH − 1)−1. With this choice, all the fine

basis functions contribute to coarse elements. The lexicographical number-
ing is kept for the subdomains.

In Fig. 3.5, the partitions obtained with meshes 3.2(a) and 3.2(b) are
presented. After solving the optimisation problem, one obtains the coarse
basis functions. Two examples are shown in Fig. 3.6, corresponding to a
computation on mesh 3.2(a).

Fig. 3.6(a) demonstrates the isovalue lines of a basis function whose
support intersects the boundary. In comparison with Fig. 3.4(a), we observe
that the gradients here are smaller. However, this basis function is not used
in the coarse basis; indeed, on one hand, Dirichlet conditions are imposed on
the original problem and on the other hand, we have enough basis functions.

In the case of partition 3.5(a), only four coarse basis functions remain af-
ter removing the basis functions whose support intersects the boundary. The
coarse stiffness matrix corresponding to this choice of coarse basis functions
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Figure 3.5: Node partitions for meshes 3.2(a) and 3.2(b).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Fonction de base 

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Fonction de base 

(b)

Figure 3.6: Basis functions on the boundary and in the interior of the do-
main, generated with Neumann boundary conditions.
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is:








5 −1.06 −0.8 −0.47
−1.06 4.82 −0.21 −1.01
−0.8 −0.21 4.38 −0.82
−0.47 −1.01 −0.82 4.99









(3.10)

Observe that the variation of coefficients is much smoother than in ma-
trix (3.9). In Fig. 3.7, we display the regular structure of the non-zero
entries in the coarse matrix used for solving the problem on mesh 3.2(b)
with partition 3.5(b).

0 5 10 15 20 25

0
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10

15
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25

nz = 169

Figure 3.7: Pattern of the non-zero entries in the coarse matrix associated
with mesh 3.2(b).

3.4 Adjusting the matrix at the coarse level

The construction of the coarse basis is only the first step towards our aim.
It allows us to obtain a matrix with a regular pattern of non-zero elements.
Moreover, we observe that every point receives contributions only from its
eight direct neighbours and that the similar connectivity relations (diagonal,
lateral neighbours) yield coefficient of the same order, which was one of the
aims of this construction.

The idea is then to build a mean nine-point stencil and to assemble a
new coarse matrix using only this stencil; we can even rewrite it on the old
matrix because the pattern is preserved. We conjecture that the new coarse
matrix is spectrally equivalent to the old one.



Technical Report 28

Let us begin by case (3.10), which has only one block. If the mean of
the coefficients is calculated separately for each kind of connectivity rela-
tion between coarse basis functions i.e. the means of, respectively, central,
vertical and horizontal, and diagonal interactions, we obtain the matrix:









4.8 −0.92 −0.92 −0.34
−0.92 4.8 −0.34 −0.92
−0.92 −0.34 4.8 −0.92
−0.34 −0.92 −0.92 4.8









(3.11)

that corresponds to the nine-point stencil given by:

−0.34 −0.92 −0.34
−0.92 4.8 −0.92
−0.34 −0.92 −0.34

(3.12)

More generally, studying Fig. 3.7 indicates a block-Toeplitz-Toeplitz-
block (BTTB) pattern but the matrix itself is not BTTB. Then, we com-
pute the means of the coefficients corresponding to the similar connectivity
relations and we obtain the nine-point stencil given by (3.13):

−0.36 −0.83 −0.36
−0.83 4.72 −0.83
−0.36 −0.83 −0.36

(3.13)

By using this mean stencil, the matrix which is obtained is BTTB. This
property allows us to consider using fast direct solvers.

In order to evaluate the accuracy of this process and more precisely the
distance to the original matrix, Fig. 3.8 and Table 3.2 give a statistical view
of the results. The stencil obtained by using the means is called the mean
stencil.

Coefficient Central Horizontal Vertical Diagonal

Mean 4.72 -0.82 -0.84 -0.36

Standard deviation 0.49 0.24 0.20 0.09

Maximal deviation 0.95 0.35 0.27 0.16

L1 deviation 0.43 0.20 0.18 0.08

Table 3.2: Statistics comparing the mean stencil with the original coarse
basis matrix.

3.5 Comparison of the number of iterations and
of the conditioning on different meshes

For solving the linear systems coming from the discretization by finite ele-
ments, the stopping criterion is ‖r‖2 ≤ 10−10‖r0‖2, with r being the current
residual and r0 being the initial residual.
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Figure 3.8: Distribution of the coefficients compared to the mean coefficient:
central, horizontal, diagonal and vertical.
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Table 3.3 compares for different cases the number of unknowns on the
coarse grid.

DFDC NFDC

Mesh 3.2(a) 9 4

Mesh 3.2(b) 36 25

Mesh 3.2(c) 144 121

Table 3.3: Dimensions of the coarse space.

Table 3.4 compares the condition number based on the 2-norm of the
matrix BA where A is the matrix of the system and B the preconditioning
matrix. Five different preconditioning methods are used:

• symmetric Gauss-Seidel (GSsym);

• two-level method with one presmoothing and one postsmoothing, u-
sing symmetric Gauss-Seidel and 4 different kinds of coarse matrix,
DFDC or NFDC, with or without using the mean stencil.

Mesh 3.2(a) Mesh 3.2(b) Mesh 3.2(c)

Without preconditioning 56.7 273.5 1343.5

Symmetric Gauss-Seidel 20 81 304.8

V-cycle(1, 1) 2.5 4.1 8.9
GSsym smoothing — DFDC

Idem + mean stencil 3.4 7.6 19.7

V-cycle(1, 1) 2.3 3.85 7
GSsym smoothing — NFDC

Idem + mean stencil 2.3 4 7.8

Table 3.4: Condition number based on the 2-norm of the matrix BA, B
being the preconditioning matrix.

We observe that the two-level methods are comparable in the case when
we use the original matrix on the coarse space. Moreover, if the mean stencil
is used, the best case is with the NFDC method (see Section 3.3). In this
case, we obtain a similar behaviour for the original matrix and for the BTTB
matrix deduced from the mean stencil.

Let us add that the behaviour of two-level methods does not seem opti-
mal, although it is much more effective than the one-level method.

In Table 3.5, the number of iterations for solving the linear system with
the same preconditioning techniques is given.

We can also benefit from the factorisations accomplished during the com-
putation of the coarse basis functions, in order to implement a preconditioner
or a smoother using the multiplicative Scharwz method (GSsymblc). The
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Mesh 3.2(a) Mesh 3.2(b) Mesh 3.2(c)

Without preconditioning 45 98 X

Symmetric Gauss-Seidel 23 45 88

V-cycle(1, 1) 12 15 18
GSsym smoothing — DFDC

Idem + mean stencil 12 19 25

V-cycle(1, 1) 13 15 17
GSsym smoothing — NFDC

Idem + mean stencil 13 15 17

Table 3.5: Number of iterations for solving the linear system for different
preconditioners. X means that the algorithm did not converge after 100
iterations.

Mesh 3.2(a) Mesh 3.2(b) Mesh 3.2(c)

Symmetric block Gauss-Seidel 8 12 22
DFDC

Symmetric block Gauss-Seidel 7 12 22
NFDC

V-cycle(1, 1) 5 7 10
GSsymblc smoothing — DFDC

Idem + mean stencil 5 8 13
DFDC

V-cycle(1, 1) 5 7 9
GSsymblc smoothing — NFDC

Idem + mean stencil 5 7 9
NFDC

Table 3.6: Number of iterations for solving the linear system for different
preconditioners.

number of iterations needed then to solve the system are reported in Ta-
ble 3.6.

3.6 Comparison for other boundary conditions

We infer from the numerical experiments reported in Table 3.4, 3.5 and
3.6 that the NFDC method is the best. In this section, we explore the
applicability of this method to problem involving boundary conditions which
are not everywhere Dirichlet conditions. Thus, we replaced the Dirichlet
conditions on some parts of the boundary by periodicity conditions. The
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problem to solve can then be written:



















−4u = f on Ω =]0; 1[×]0; 1[,

u(0, y) = u(1, y) = 0 ∀y ∈]0; 1[,

u(x, 0) = u(x, 1) ∀x ∈]0; 1[,

f = 5π sin(πx) sin(2πy).

(3.14)

We solved this linear system and we obtained the results gathered in
Table 3.7.

Mesh 3.2(a) Mesh 3.2(b) Mesh 3.2(c)

Without preconditioning 53 X X

Symmetric Gauss-Seidel 26 51 99

V-cycle(1, 1) 13 16 17
GSsym smoothing — NFDC

Idem + mean stencil 14 16 17

Table 3.7: Number of iterations for solving the linear system for different
preconditioners. X means that the algorithm did not converge after 100
iterations.

Then, we also added Neumann conditions on the part of the boundary
where x = 1 and changed the right-hand side (f = 4.25 sin(π

2 x) sin(2πy)).
The results obtained are gathered in Table 3.8. There is now a difference
between the results with the mean stencil or the initial matrix. This should
be due to the rough way used to compute the mean stencil or to the dis-
agreement between the boundary conditions implicitly chosen by the mean
stencil and the true boundary conditions.

Mesh 3.2(a) Mesh 3.2(b) Mesh 3.2(c)

Without preconditioning 62 X X

Symmetric Gauss-Seidel 29 58 X

V-cycle(1, 1) 14 15 17
GSsym smoothing — NFDC

Idem + mean stencil 16 20 25

Table 3.8: Number of iterations for solving the linear system for different
preconditioners. X means that the algorithm did not converge after 100
iterations.

3.7 Some results about the Helmholtz equation

In order to test the robustness of the NFDC algorithm and in view of the
applications, Laplace’s equation is replaced by Helmholtz’ equation. The
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formulation of the problem then becomes:











−4u − k2u = f on Ω =]0; 1[×]0; 1[,

u = 0 on ∂Ω,

f = (2π − k2) sin(πx) sin(πy).

(3.15)

The wave number is denoted by k. It can also be written k = 2π/λ
where λ is the wavelength. Thus, a study can be performed with varying
wavelength. An interesting comparison can be made by following the evo-
lution of the number of iterations as a function of the ratio H/λ where H
is the width of the initial subdomains. The results given in Table 3.9 are
obtained with mesh 3.2(b).

H/λ 1/12 1/6 1/3 5/12 1/2

Without preconditioning X X X X X

Symmetric Gauss-Seidel 48 57 92 X X

V-cycle(1, 1) GSsym smoothing 16 20 42 48 87
NFDC

Idem + mean stencil 16 19 42 47 87

Table 3.9: Number of iterations for solving the linear system for different
preconditioners. X means that the algorithm did not converge after 100
iterations.

In the case H/λ = 1/2, all the diagonal coefficients became negative,
and we observed a serious deterioration of the results.

The mean of the diagonal coefficients for the coarse matrix as a function
of the ratio H/λ is given in Table 3.10.

H/λ 1/12 1/6 1/3 5/12 1/2

Mean of the diag. coeff. 4.56 4.07 2.08 0.9 -1.3

Table 3.10: Mean of the diagonal coefficients for the coarse matrix with the
ratio H/λ.

3.8 Conclusion

These different tests allowed us to understand the principle of the coarse
basis construction by energy minimisation. They also demonstrated the
possibility, in very simple cases, to use well-structured matrices close to the
original matrix and this gave satisfactory results. However, we also observe
the limits of this approach for the Helmholtz problem.

We will extend this method by energy minimisation to the case of edge
elements, also for a simple problem and a simple geometry.
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Extension to edge elements

Our aim, now, is to extend the algebraic multilevel method introduced in
Chapter 3 for the nodal element case, to the edge elements. The following
simple problem will be considered for numerical validation; we work on the
unit square, and a very similar formulation is used on the unit cube:

{

curl curlE + E = 0 on Ω =]0; 1[×]0; 1[,

E × n = 1 on ∂Ω.
(4.1)

Let Eess be a field satisfying the essential boundary conditions on ∂Ω.
The E field can be decomposed into: E = E0 + Eess. The variational
formulation can be written:



















To find E0 ∈ H0(curl, Ω) such that :

a′(E0,E
′) = −a′(Eess,E

′), ∀E′ ∈ H0(curl, Ω),

with a′(E,E′) =

∫

Ω
curlE · curlE′ +

∫

Ω
E · E′.

(4.2)

4.1 Principle of the construction

We want to compute two coarse bases viz. a nodal and a edge coarse basis,
which minimise an appropriate energy to be described below, and satisfy a
number of constraints among which the commutativity relation (2.8) plays
a prominent rôle.

4.1.1 Notations and description of the basis constraints

Let us denote as follows the elements:

- (φi)i=...dh
is the fine nodal basis,

- (λi)i=...d′
h

is the fine edge basis,

- (Φi)i=...dH
is the coarse nodal basis,

34
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- (Λi)i=...d′
H

is the coarse edge basis.

These coarse bases are constructed so as to satisfy the inclusion of finite
element spaces, the “coarse” being included in the “fine”, which is expressed
by the following algebraic relations:

Φi =

dh
∑

j=1

φjαji, ∀i = 1 . . . dH ,

Λi =

d′
h

∑

j=1

λjβji, ∀i = 1 . . . d′H .

(4.3)

We already know a fundamental property linking the edge elements to
the nodal elements: the gradient of a fine nodal element belongs to the space
of fine edge elements; it can be recast as:

gradφi =

d′
h

∑

j=1

λjaji, ∀i = 1 . . . dh. (4.4)

Our aim is to preserve this relation for the coarse bases, which is natural
in the geometric multigrid context. Thus, a coherent representation of the
kernel of the curl operator is preserved, which permits the efficient use of
the smoothers proposed by Hiptmair and by Arnold et al.. Therefore the
gradient of a coarse nodal element must be a combination of coarse edge
elements; this condition is written algebraically as:

grad Φi =

d′
H

∑

j=1

ΛjAji, ∀i = 1 . . . dH . (4.5)

By using in (4.5) the prolongation operators α and β defined in (4.3)
which contain the components of the coarse basis functions on the fine bases,
we obtain:

dh
∑

j=1

gradφjαji =

d′
H

∑

j=1

d′
h

∑

k=1

λkβkjAji, ∀i = 1 . . . dH . (4.6)

Substituting (4.4) in (4.6), we eventually obtain:

dh
∑

j=1

d′
h

∑

k=1

λkakjαji =

d′
H

∑

j=1

d′
h

∑

k=1

λkβkjAji, ∀i = 1 . . . dH . (4.7)

Relation (4.7) is equivalent to:

aα = βA. (4.8)
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and we will determine our coarse nodal and edge elements so as to sat-
isfy (4.8).

We recall the dimensions of our matrices:

a ∈ R
d′

h
×dh , A ∈ R

d′
H
×dH , α ∈ R

dh×dH , β ∈ R
d′

h
×d′

H . (4.9)

The matrix a is known; more precisely, a is the node-edge incidence
matrix on the fine mesh. It is a discrete analogue of the grad operator on
this mesh. If a coarse mesh existed, A would be the discrete analogue of
grad on this mesh. In the algebraic context, A is still the discrete analogue
of the grad operator and should resemble a node-edge incidence matrix.
However, there are many possible choices of A which will be studied below
(Subsection 4.1.7). In a first approach, we tried to consider A as an unknown
in the minimisation problem. This was a terrible idea, leading to difficult
non-linear problems, whose solution was numerically inefficient.

4.1.2 Minimisation: global coupling

Ω is decomposed into overlapping subdomains Ωi, ∀i = 1 . . . dH ; this en-
ables us to define the supports of the nodal coarse basis functions (as in
Chapter 3). Denote by Ii the set of indices of the nodes which belong to
interior of the subdomain Ωi.

In the same way, Ω is decomposed into overlapping subdomains Ui, i =
1 . . . d′H in order to localise the supports of the coarse edge basis functions.
The subdomain Ui will usually be the intersection of two subdomains Ωj

and Ωk.
Given the subdomains Ωj , the choice of the matrix A determines the

definition of the subdomains Ui.
A natural extension of the Laplace equation case is:



































































To find (Φi)i=1..dH
, (Λi)i=1..d′

H
minimising

dH
∑

i=1

a(Φi, Φi) +

d′
H

∑

i=1

b(Λi, Λi) under the constraints:

dH
∑

j=1

Φj(x) = 1, ∀x ∈ Ω and supp(Φi) ⊂ Ωi, ∀i = 1 . . . dH ,

gradΦi =

d′
H

∑

j=1

ΛjAji, ∀i = 1 . . . dH and supp(Λi) ⊂ Ui, ∀i = 1 . . . d′H .

(4.10)
A priori, a is the bilinear form associated with the Laplace’s equation, b

is a bilinear form which can be a′ but variants will be also implemented.
We introduce algebraic notations which encode the support constraints.

The operators Pi, Qi and Ri are canonical projection operators; Pi maps
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R
dh to R

ni by keeping all the components indexed by Ii. Similarly, if I ′i
denotes the indices of edges in Ui, Qi maps R

d′
h to R

n′

i by keeping all the
components indexed by I ′i; here n′

i is the number of elements of I ′i written
|I ′i|. Finally, denoting by I ′′i an appropriate subset of indices of edges in
Ωi, to be described in Subsection 4.1.4, Ri maps R

d′
h to R

n′′

i , n′′
i = |I ′′i | by

keeping all the components indexed by I ′′i .

Pi : R
dh → R

ni , ∀i = 1 . . . dH ,

Qi : R
d′

h → R
n′

i , ∀i = 1 . . . d′H ,

Ri : R
d′

h → R
n′′

i , ∀i = 1 . . . dH .

(4.11)

In order to obtain a matrix form of the minimisation problem, we define
more operators which are restrictions to the subdomains under consideration
of the bilinear forms:

Ki = P t
i KPi and K ′

i = Qt
iK

′Qi. (4.12)

We also define:
αi = Piα•i, βi = Qiβ•i (4.13)

We want now to minimise:

dH
∑

i=1

αt
iKiαi +

d′
H

∑

i=1

βt
iK

′
iβi (4.14)

under the constraints:

dH
∑

i=1

P t
i αi = γ, (4.15)

aP t
i αi =

d′
H

∑

j=1

Qt
jβjAji, ∀i = 1 . . . dH . (4.16)

4.1.3 Method of resolution

In order to solve this problem, we introduce Lagrange multipliers: one vector
µ ∈ R

dh and dH vectors ρi ∈ R
n′′

i . Indeed, the constraint (4.15) must be
applied to the dh nodes of the initial mesh. The dimensions of the vectors
ρi are determined from the choice of the subdomains Uj and Ωi, and from
the properties of the systems obtained; this process will be made clearer in
the following.

The reader should be aware now that the matrices Ri have not yet been
fully defined, and that their construction can be explicitly given and justified
only after the following algebraic construction. We trust that the reader will
be patient, and wait until Subsection 4.1.4 to get the end of the story.
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Let us define column vectors α, β, ρ, γ and matrices B, Q, Q′, C, D:

α =







α1
...

αdH






, β =







β1
...

βd′
H






, ρ =







ρ1
...

ρdH






, γ = 1dh×1, (4.17a)

B =







P1
...

PdH






, (4.17b)

Q = diag(Ki, i = 1 . . . dH), Q′ = diag(K ′
i, i = 1 . . . d′H), (4.17c)

C = diag(Pi, i = 1 . . . dH)(IdH
⊗ at) diag(Rt

i, i = 1 . . . dH), (4.17d)

D = diag(Qi, i = 1 . . . d′H)(A ⊗ Id′
h
) diag(Rt

i, i = 1 . . . dH). (4.17e)

Here, ⊗ denotes the tensor (or equivalently) Kronecker product under the
convention M ⊗N = (MijN)i,j . The notation diag(Ai, i = 1 . . . n) refers to
a block-diagonal matrix, whose diagonal blocks are the Ai’s, i = 1 . . . n.

The minimisation problem can now be written:







To find a critical point (αc, βc, µc, ρc) of the Lagrangian L defined by:

L(α, β, µ, ρ) =
1

2
αtQα +

1

2
βtQ′β + µt(Btα − γ) + ρt(Ctα − Dtβ).

(4.18)
This critical point must verify the following system of equations:

Qαc = −Bµc − Cρc, (4.19a)

Q′βc = Dρc, (4.19b)

Btαc = γ, (4.19c)

Ctαc = Dtβc. (4.19d)

As for the nodal element case, this linear system can be solved in the
following way:

- first, the vectors µc and ρc of Lagrange multipliers are determined
applying an iterative method to the system:

BtQ−1Bµ + BtQ−1Cρ = −γ, (4.20a)

CtQ−1Bµ + [CtQ−1C + DtQ′−1D]ρ = 0. (4.20b)

Relation (4.20a) is obtained by solving (4.19a) for αc and substituting
into (4.19c); relation (4.20b) is obtained by solving (4.19b) for βc and
substituting this value and the value of αc into (4.19d). At this point,
we see that (4.20) is symmetric, we do not know yet that is positive
definite; the construction of the Ri’s will precisely ensure this property.
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- then, we return to the computation of αc and βc by solving:
{

Qα = −Bµc − Cρc,

Q′β = Dρc.
(4.21)

The number of Lagrange multipliers is dh +
∑dH

i=1 n′′
i .

The dominant part is the computation of the Lagrange multipliers. The
second stage i.e. the computation of αc and βc is simpler to implement. The
matrix of the system:

M =

(

BtQ−1B BtQ−1C
CtQ−1B CtQ−1C + DtQ′−1D

)

, (4.22)

is symmetric, as we have observed above.
The first numerical tests demonstrated that our systems contained a

set of linearly dependent equations. We tried therefore to understand the
origin of this rank defect and for this purpose, we studied the properties of
the bilinear form:

(

µ
ρ

)t

M

(

µ
ρ

)

= (Bµ + Cρ)tQ−1(Bµ + Cρ) + (Dρ)tQ′−1(Dρ). (4.23)

The blocks K−1
i , ∀i = 1 . . . dH and K

′−1
i , ∀i = 1 . . . d′H are symmetric de-

finite positive, and so are the matrices Q−1 and Q′−1 defined by relation
(4.17c). The above bilinear form is consequently positive. Moreover, con-
sider:

(Bµ + Cρ)tQ−1(Bµ + Cρ) + (Dρ)tQ′−1(Dρ) = 0. (4.24)

Since Q and Q′ are symmetric positive definite, any solution of (4.24) satis-
fies:

{

Dρ = 0,

Bµ + Cρ = 0.
(4.25)

A sufficient condition for our bilinear form (4.23) to be definite, is that D
be injective; since we already know that B is injective.

4.1.4 Construction of the index sets I
′′
j and of the projections

Rj

Let us look for a sufficient condition implying that D is injective. It is
now that the choice of the index set I ′′j and therefore the definitions of the
projections Rj can be explicitly defined. The operator Ri maps n′′

i vectors
from the canonical basis of R

d′
h to the vectors of the basis of R

n′′

i . For all
i = 1 . . . dH , these vectors are called (el)l∈I′′i

. The (Riel)l∈I′′i
make up a basis

of Im(Ri) and we observe that Rt
iRiel = el. We define also:

∀k = 1 . . . d′H , Lk = {i, Aik 6= 0}, ∀i = 1 . . . dH , Ji = {k, Aik 6= 0}. (4.26)
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We consider:

Dρ = 0, (4.27)

or equivalently:

dH
∑

i=1

QkAikR
t
iρi = 0, ∀k = 1 . . . d′H , (4.28)

and substituting ρi by its decomposition on the basis of (Riel)l∈I′′i
:

dH
∑

i=1

QkAikR
t
i

(

∑

l∈I′′i

γi
lRiel

)

= 0, ∀k = 1 . . . d′H , (4.29)

this finally gives:

∑

i∈Lk

∑

l∈I′′i

γi
lAikQkel = 0, ∀k = 1 . . . d′H . (4.30)

We choose a particular i ∈ Lk and a particular l ∈ I ′′i and we are
interested in the coefficient γi

l . Let us suppose that:

∀k ∈ Ji, Qkel = 0 (4.31)

then D cannot be injective because in that case γi
l could take any value and

there would exist a non-zero vector ρ such that Dρ = 0. If this situation is
avoided, one necessarily has:

{el, l ∈ I ′′i } = Im(Rt
i) ⊂ ∪{Im(Qt

k), k ∈ Ji}. (4.32)

This should help us to define the support of the multiplier vectors ρi.
Let us suppose that condition (4.32) is verified. Then, in particular, there
exists a k in Ji satisfying Qkel 6= 0. Let E be the set {k ∈ Ji, Qkel 6= 0},
which of course depends on l and i.

Let us suppose that there is a k in E such that el is not in Im(Rt
j), for all

j in Lk \ {i}. If we decompose (4.30) by isolating the term Qkel, we obtain:

∑

j∈Lk−i

∑

n∈I′′j

γj
nAjkQken + γi

lAilQkel +
∑

n 6=l,n∈I′′i

γi
nAikQken = 0. (4.33)

The term Qkel will be independent of anything else and we will have
necessarily γi

l = 0. In that case, the matrix D is injective.
Consider the case where |Ji| is strictly larger 1. In contrast with the

previous situation, suppose that:

∀k ∈ E, el ∈ Im(Rt
m), ∀m ∈ Lk \ {i};
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then, we can define a non-zero vector in the kernel of D, once k1 and k2

have been found in Ji. It is given by:

(

0
1

Aik1

Rk1
el . . .

−1

Aik2

Rk2
el 0

)t

. (4.34)

Consequently, the condition:

∃k ∈ E such that el /∈ Im(Rt
m), ∀m ∈ Lk \ {i}, (4.35)

is required in order for D to be injective with |Ji|> 1 for all i — but here
this is satisfied; it is also sufficient until since we postulate (4.32). Condition
(4.35) is eventually sufficient for M to be definite positive.

In order to determine n′′
i constraints, the following process is used:

1. We start from the trial operator R̃i such that:
Im(R̃t

i) = ∪{Im(Qt
k), k ∈ Ji},

2. We decrease the dimension of the spaces Im(R̃t
i) in order to verify the

injectivity condition: this leads us to remove one unknown per edge
where we had initially enforced a constraint.

From our trial operators where all the edges are constrained, we remove
d′h constraints to obtain a full-rank matrix.

This yields a symmetric positive definite matrix and allows us to use
the conjugate gradient method. In the following, we give an appropriate
algorithm for computing the matrix-vector product.

4.1.5 Multiplication algorithm

In order to compute Mv = w, the multiplication can be seen as composed
of two distinct parts: Mv = Mnodv + Medgv.

The same block decomposition is kept for w as for v: w =

(

µ̃
ρ̃

)

.

1. For i = 1 . . . dH , compute: ui = Rt
iρi,

2. Computation of Mnodv = w:

• For i = 1 . . . dH , compute: bi = Pi(µ + atui),

• For i = 1 . . . dH , solve: Kixi = bi,

• µ̃ =
∑dH

i=1 P t
i xi,

• For i = 1 . . . dH , ρ̃i = RiaP t
i xi.

3. Computation of Medgv = w:

• For i = 1 . . . d′H , compute: bi =
∑dH

i=1 QiAijuj ,
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• For i = 1 . . . d′H , solve: K ′
ixi = bi,

• µ̃ = 0dh,1,

• For i = 1 . . . dH , ρ̃i = Ri(
∑d′

H

j=1 P t
j Ajixj).

4.1.6 Decoupling edge and nodal minimisations

The same decomposition into subdomains is made as in the global coupling
case. However, this time, the two minimisation problems under constraints
are decoupled and solved successively. First:



























To find (Φi)i=1..dH
minimising

dH
∑

i=1

a(Φi, Φi) under the constraints:

dH
∑

j=1

Φj(x) = 1, ∀x ∈ Ω and supp(Φi) ⊂ Ωi, ∀i = 1 . . . dH .

(4.36)
Next, the basis (Φi)i is computed and can be used to solve:































To find (Λi)i=1..d′
H

minimising

d′
H

∑

i=1

b(Λi, Λi) under the constraints:

gradΦi =

d′
H

∑

j=1

ΛjAji, ∀i = 1 . . . dH and supp(Λi) ⊂ Ui, ∀i = 1 . . . d′H .

(4.37)
The nodal minimisation problem can be solved using the techniques intro-
duced in Chapter 3. We must take care of the edge problem, which is
formulated algebraically as:































To minimise

d′
H

∑

i=1

βt
iK

′
iβi under the constraints:

aP t
i αi =

d′
H

∑

j=1

Qt
jβjAji, ∀i = 1 . . . dH .

(4.38)

Finding the critical point of the Lagrangian that can be associated with (4.38)
leads to solving the linear system:

{

Q′βc = −Dρc,

Dtρc = Ctαknown.
(4.39)

We observe that the injectivity of D is necessary and sufficient for the exis-
tence and uniqueness of a solution of (4.39).
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The dominant part is again the implementation of the matrix-vector
product and here, we are inspired by the algorithm introduced at the end
of Subsection 4.1.2, for the global coupling.

This algorithm is simpler than the global coupling and gives us some
freedom in the computation of the coarse basis. This allows us to use a coarse
nodal basis computed in another way than the one described in Chapter 3.
This method is relatively close to that used by the Sandia team (Bochev et
al., Chapter 2).

4.1.7 Choice of the coarse node-edge incidence matrix

We want to identify the features of the operator A. We look for a simple
definition for A. We must also check that the support of the (Λi)i=1...d′

H
is

not too large; the drawback would be a large overlap, and then it would be
difficult to control the fill-in of the operators.

To make the explanations simple, only a case with 4 sub-domains is
studied here.

Let Ωi be the support of the coarse nodal function Φi; we define:

Uij = Ωi ∩ Ωj\
⋃

k 6=i,j

Ωk,

Uijk = Ωi ∩ Ωj ∩ Ωk\Ωl (l 6= i, j, k),

U1234 =

4
⋂

i=1

Ωi.

We would like to have d′H = 4 with

supp(Λi) = Ωstartnod(i) ∩ Ωendnod(i),

where startnod(i) and endnod(i) refers respectively to the initial and the
final node of the edge, i.e. we would like to imitate the incidence graph
given in Fig. 4.1:

Figure 4.1: Coarse node-edge incidence graph
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The supports must be chosen so as to verify the constraint:

4
∑

j=1

gradΦj = 0. (4.40)

First case: U14 = ∅, U23 = ∅.
Concentrating on U12, we observe: gradΦ1+gradΦ2 = 0. Under the con-

ditions on the support of (Λi)i, a condition on the coefficients is: A11 = A12.
In the same way we obtain:

- on U24, A22 = A24,

- on U34, A33 = A34,

- on U24, A22 = A24,

- on U123, A11 + A12 + A13 = 0, and A21 + A22 + A23 = 0,

- on U234, A22 + A23 + A24 = 0, and A32 + A33 + A34 = 0,

- on U431, A31 + A33 + A34 = 0, and A41 + A43 + A44 = 0,

- on U1234,
∑4

j=1 Aij = 0, ∀i = 1 . . . 4.

The simplest solution for the operator A to satisfy these equalities is to
choose:

A =









A11 −A11 0 0
0 A22 0 −A22

0 0 A33 −A33

A41 0 A41 0









.

We must choose a non-zero value to the coefficients of A, otherwise the
minimisation problem will give a zero solution. The simplest choice is the
value which gives an A coinciding with the incidence matrix of the graph in
Fig. 4.1 i.e.:

A11 = A22 = −A33 = −A41 = −1.

This gives:

A =









−1 1 0 0
0 −1 0 1
0 0 1 −1
1 0 −1 0









.
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Figure 4.2: The triangles close to the intersection of four subdomains are
represented. The elements belonging to each subdomain are coloured. The
subdomains before overlapping appeared with darker colours. The white
triangle in Domain 3 belongs to U14.

Second case: U14 6= ∅, or U23 6= ∅. Some additional difficulties can be
encountered if U14 or U23 are not empty. These different cases are possible
as demonstrated in Fig. 4.2.

If U14 or U23 is not included in the support of any Λj , then it is possible
to obtain grad Φi 6= 0 (i = 1, 4 or 2, 3 following the context) and necessarily:
span(grad Φi, i = 1 . . . 4) 6⊂ span(Λi, i = 1 . . . 4).

Several ideas should enable us to remedy this difficulty:

- enlarge the supports of the functions Λi,

- create additional edges,

- modify the domains in order to avoid this situation.

Using 6 edges instead of 4 and keeping the same definition of supports,
enables us to remedy the problem; the incidence graph in Fig. 4.3 illustrates
this proposition:

A =

















−1 1 0 0
0 −1 0 1
0 0 1 −1
1 0 −1 0
−1 0 0 1
0 −1 1 0

















.

The drawback is that we created new edges, in particular, there will be
8 edges out of each node, we could imagine that we would obtain 26 edges in
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Figure 4.3: Coarse node-edge incidence graph with 6 edges.

3D. Moreover with the wide overlap of the subdomains, a huge optimisation
problem could be obtained.

We can also try to modify the domains in order to remove these para-
sitic phenomena, for instance to enlarge Ω3 and Ω2 to absorb the possible
difficulties related to Ω1 ∩ Ω4 6= ∅.

With the overlap we use, we are currently always in the case 4.1, without
any difficulties. With narrower overlaps, however, the problem becomes
systematic

Choosing 6 edges as in Fig. 4.3 coincide with the choice of Reitzinger
and Schöberl, preserved by the Sandia team, Bochev et al.; this choice is
currently used for this class of methods.

4.2 Numerical results in 2D

In the following tables, different bilinear forms are used for the edge part of
the minimisation. For convenience, we define a few abbreviations used in
the tables:

- M refers to the norm defined by the mass matrix on edge elements,

- K ′ refers to the energy norm associated with the matrix K ′ of the
problem in edge elements,

- K ′ + aM−1
φ at refers to the norm defined by this matrix, Mφ being

the mass matrix on nodal elements, with mass lumping; hence Mφ is
diagonal.

- γ denotes the empirical coefficient 0.1/number of coarse edges.

- Ai is the operator on level i, Ni is the number of unknowns at this
level and nnz(Ai) the number of non-zero elements in the matrix Ai;
our convention is that level 1 is the finest.

4.2.1 Structured meshes

We begin with a very simple mesh on the unit square which is regularly
refined (see Fig. 4.2.1). The decomposition of the domain and the choice of
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the coarse variables is made as if we wanted to use a geometric multigrid
method; the only change is the computation of the prolongation operator,
which does not take into account the geometrical information, but uses the
previously introduced algebraic method.
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Figure 4.4: Initial mesh (4.4(a)) and first refinement (4.4(b)).

Dimensions

The numbers of Lagrange multipliers coming (1) from the constraints (4.15)
associated with the vector µ, and (2) from the constraints (4.16) associated
with the vectors (ρi)i=1...dH

are given separately; they are presented under
the form:

dimension of µ + sum of the dimensions of (ρi).

in Table 4.1.

1st refinement 2nd 3rd 4th

Nb of multipliers 13+40 41+152 145+592 545+2336

Nb of unknowns 20 88 368 1504

Table 4.1: Number (Nb) of Lagrange multipliers and unknowns — struc-
tured meshes.

Computation of Lagrange multipliers

We start with vanishing multipliers. Whatever the approach (coupled or
decoupled minimisation), the conjugate gradient without preconditioning
is used to compute the Lagrange multipliers. The number of iterations
required to divide the residual by 103 during the iterative process is reported
in Table 4.2 for the coupled minimisation approach. These numbers are
given for different choices of norms in the edge case. In the first column, in
parentheses, the condition number is given; it is only given for the smallest
mesh.
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Norm 1st refinement 2nd 3rd 4th

M 18 (52.3) 28 30 30

K ′ 35 (541.4) 108 239 333

γ(K ′ + aM−1
φ at) 15 (36.5) 25 27 27

Table 4.2: Convergence of the multipliers computation (division of the resi-
dual by 103) — coupled minimisation, structured meshes.

In Table 4.3, results are also given for different choices of norms. This
time however, the number of iterations needed to compute the Lagrange
multipliers associated with the vector µ on one hand and to the vectors (ρi)
on the other hand are clearly separated. Indeed, in the decoupled case, µ
and (ρi) are computed separately. The conjugate gradient method with the
same stopping criterion, division of the residual by 103, is used.

Norm 1st refinement 2nd 3rd 4th

M 3+6 6+9 8+9 8+9

K ′ 3+5 6+43 8+64 8+79

K ′ + aM−1
φ at 3+4 6+9 8+9 8+8

Table 4.3: Convergence of the multipliers computation (division of the resi-
dual by 103) — decoupled minimisation, structured meshes.

Graphical representations of computed coarse basis functions are given
in Fig. 4.5.

Convergence for the two-level method

The system is solved by using a preconditioned conjugate gradient algo-
rithm. The preconditioner is a two-level method which uses one pre- and
one postsmoothing step by Arnold’s algorithm (Chapter 2); on the coarse
grid, a direct solver is used. The conjugate gradient method stops when
the initial residual has been divided by 1010. Table 4.4 gives the results in
the case of the coupled minimisation. The results obtained by using bili-
near interpolation for the prolongation operator, as in classical multigrid,
are also reported for comparison with a method whose behaviour is known.
The corresponding mention in the norm column is “geometric”.

Table 4.5 gives the results in the decoupled case. Apart from a not very
relevant test, the results are identical.

Statistics for the two-level method

Independently of the method chosen to compute the prolongation operator,
the parameters in Table 4.6 enable us to qualify, in part, the efficiency of
the two-level method.
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Figure 4.5: Coarse basis functions: on top two coarse nodal functions and
on bottom the coarse edge function linking them — structured mesh.

Norm 1st refinement 2nd 3rd 4th

M 5 7 10 11

K ′ 5 6 6 7

γ(K ′ + aM−1
φ at) 4 6 6 7

geometric 5 6 6 7

Table 4.4: Convergence of the conjugate gradient preconditioned by a two-
level method (division of the residual by 1010) — coupled minimisation,
structured meshes.

Norm 1st refinement 2nd 3rd 4th

M 5 7 10 11

K ′ 5 6 6 7

K ′ + aM−1
φ at 5 6 6 7

Table 4.5: Convergence of the conjugate gradient preconditioned by a two-
level method (division of the residual by 1010) — decoupled minimisation,
structured meshes.
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First, the “grid complexity” (GC) parameter is the ratio of the sum of
the unknowns on every level to the number of unknowns on the finest level
i.e.:

GC =

∑niv
i=1 Ni

N1
(4.41)

where niv refers to the number of levels. The GC parameter enables us to
check that the number of unknowns per level decrease fast enough; classically
we expect Ni/N1 to decrease geometrically for increasing i.

The operator complexity (OC) parameter is the ratio of the sum of the
number of non-zero elements on every level to the number of non-zero ele-
ments on the finest level i.e.:

OC =

∑niv
i=1 nnz(Ai)

nnz(A1)
(4.42)

This parameter enables us to check that the number of non-zero elements
in the matrices is proportional to the number of unknowns which means the
sparsity is approximately independent of the level; this aspect influences the
memory cost and also the computational cost of the matrix-vector product.

Parameters 1st 2nd 3rd 4th

grid complexity 1.2 1.23 1.24 1.25

operator complexity 1.15 1.21 1.23 1.24

Table 4.6: Some statistics for the two-level method — structured meshes.

4.2.2 Unstructured meshes

An mesh generator is used to produce an unstructured mesh without par-
ticular specification. The only parameter we set, is the maximal diameter
hmax of the elements (see Fig. 4.6 for hmax = 0.1). The decomposition
into subdomains is performed according to the method described in Subsec-
tion 3.3 with a narrower strip close to the boundary.

Dimensions

The number of Lagrange multipliers is given in Table 4.7. In parentheses,
the number of unknowns on the coarse grids is also reported.

Computation of Lagrange multipliers

The rules for computation are the same as for structured meshes. The results
for the coupled minimisation are given in Table 4.8.

The results for the decoupled minimisation are given in Table 4.9.



Technical Report 51

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.6: Unstructured mesh with hmax = 0.1.

hmax = 0.2 0.1 0.05 0.025

Nb of multipliers 52+272 182+1039 730+4926 2805+16946

Nb of unknowns 113 463 2027 8092

(coarse) (12) (40) (144) (544)

Table 4.7: Number (Nb) of Lagrange multipliers and unknowns — unstruc-
tured meshes.

Norm hmax = 0.2 0.1 0.05 0.025

M 25 (84.5) 30 34 33

K ′ 198 (1110) 488 898 X

γ(K ′ + aM−1
φ at) 30 (131.4) 40 48 48

Table 4.8: Convergence of the multipliers computation (division of the re-
sidual by 103). X : the convergence criterion is not reached after 1000
iterations — coupled minimisation, unstructured meshes.

Norm hmax = 0.2 0.1 0.05 0.025

M 10+18 13+18 14+20 14+21

K ′ 10+138 13+353 14+646 14+889

K ′ + aM−1
φ at 10+23 13+30 14+32 14+32

Table 4.9: Convergence of the multipliers computation (division of the resi-
dual by 103) — decoupled minimisation, unstructured meshes.
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For coupled or decoupled minimisation, the energy-norm gives unsatis-
factory results in this 2D case. The evolution of the number of iterations in
both formulations is comparable.

Convergence for a two-level method

Preconditioned conjugate gradient For the preconditioned conjugate
gradient, the parameters are the same as for structured meshes. The results
for the coupled minimisation are given in Table 4.10.

Norm hmax = 0.2 0.1 0.05 0.025

M 7 11 15 17

K ′ 7 10 12 13

γ(K ′ + aM−1
φ at) 7 10 12 13

Table 4.10: Convergence of the conjugate gradient preconditioned by a two-
level method (division of the residual by 1010) — coupled minimisation,
unstructured meshes.

Table 4.11 gathers the results for the decoupled minimisation. The re-
sults are almost the same in both cases.

Norm hmax = 0.2 0.1 0.05 0.025

M 8 11 15 17

K ′ 7 10 12 13

K ′ + aM−1
φ at 8 10 13 14

Table 4.11: Convergence of the conjugate gradient preconditioned by a two-
level method (division of the residual by 1010) — decoupled minimisation,
unstructured meshes.

Simple two-level method The number of iterations for the two-level
method without Krylov accelerator are given. The stopping criterion is the
same as for the preconditioned conjugate gradient (division of the residual
by 1010). Table 4.12 gathers the results for the coupled minimisation.

Norm hmax = 0.2 0.1 0.05 0.025

M 11 22 38 X

K ′ 11 17 X X

γ(K ′ + aM−1
φ at) 11 17 27 X

Table 4.12: Convergence of the two-level method (division of the residual by
1010). X : unsuccessful computation — coupled minimisation, unstructured
meshes.

The table 4.13 gathers the results for the decoupled minimisation.
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Norm hmax = 0.2 0.1 0.05 0.025

M 12 22 39 51

K ′ 11 17 25 27

γ(K ′ + aM−1
φ at) 11 18 29 34

Table 4.13: Convergence of the two-level method (division of the residual
by 1010) — decoupled minimisation, unstructured meshes.

The two-level solver is not optimal but the progression of the number of
iterations is not dramatically unfavourable.

Graphical representations of computed coarse basis functions are given
in Fig. 4.7.
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Figure 4.7: Coarse basis functions: on top two coarse nodal functions and
on the bottom the coarse edge function linking them — unstructured mesh.

Statistics for the two-level method

Table 4.14 gathers the same statistics as for the structured meshes, in Ta-
ble 4.6.
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Parameters hmax = 0.2 0.1 0.05 0.025

grid complexity 1.1 1.09 1.07 1.07

operator complexity 1.13 1.12 1.1 1.1

Table 4.14: Some statistics for the two-level methods — unstructured
meshes.

How to decrease overlap

It is also possible to decrease overlap which lets us decrease significantly the
number of unknowns in the computation of Lagrange multipliers. However,
some difficulties appear:

- many edges do not contribute to the interpolation;

- the second case described in Subsection 4.1.7 creates many difficulties.

4.3 3D numerical results

4.3.1 Structured meshes

The unit cube is decomposed into 6 tetrahedra that will be regularly refined
(see Fig. 4.8).

The decomposition of the domain and the choice of the coarse variables
is performed as if we wanted to use a geometric multigrid method; the only
change is, as in 2D, the computation of the prolongation operator.

(a) (b)

Figure 4.8: Initial mesh (4.8(a)) and first refinement (4.8(b))
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Dimensions

Data are gathered in Table 4.15. It contains the same information as in 2D
(see Table 4.1), in particular, the two kinds of multipliers are distinguished.

1st 2nd 3rd 4th

Nb of multipliers 27+164 125+1060 729+7544 4913+56752

Nb of unknowns 26 (1) 316 3032 26416

Table 4.15: Number (Nb) of Lagrange multipliers and unknowns — struc-
tured meshes.

Computation of Lagrange multipliers

The multipliers are computed with the same parameters as in 2D. We only
use the decoupled minimisation, which gave the best results in 2D; some
tests, which are not reported here, demonstrate that the coupled minimisa-
tion is not very efficient in 3D. The results are given in Table 4.16.

Norm 1st 2nd 3rd 4th

M 9+18 14+24 18+33 22+35

K ′ 9+25 14+32 18+47 22+60

K ′ + aM−1
φ at 9+42 14+94 18+189 X

Table 4.16: Convergence of the multipliers computation (division of the
residual by 103). X : unsuccessful computation — structured meshes.

Convergence for the two-level method

As in 2D, some tests are performed with the preconditioned conjugate gra-
dient method and the results are gathered in Table 4.17. The comparison
with the trilinear interpolation, used in classical geometric multigrid, is also
given.

Norm 1st 2nd 3rd 4th

M 4 7 10 X

K ′ 4 7 10 11

K ′ + aM−1
φ at 4 7 10 X

geometric 4 7 10 X

Table 4.17: Convergence of the conjugate gradient preconditioned by a two-
level method (division of the residual by 1010). X : unsuccessful computation
— structured meshes.
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The results obtained resemble those obtained with the standard geome-
tric multigrid method.

Statistics for the two-level method

The statistics have the same meaning as in 2D (see Table 4.6). The results
are gathered in Table 4.18.

Parameters 1st 2nd 3rd 4th

grid complexity 1.04 1.08 1.10 1.12

operator complexity 1.00 1.05 1.09 1.11

Table 4.18: Some statistics for the two-level method — structured meshes.

4.3.2 Unstructured meshes

As in the 2D case, an mesh generator is used to produce unstructured
meshes. The only parameter we set, is the maximal diameter hmax of the
elements; see Fig. 4.9 for hmax = 0.4).

Figure 4.9: Unstructured mesh for hmax = 0.4.

Dimensions

Data are given in Table 4.19, which contains the same data as in the 2D un-
structured case (see Table 4.7); in particular, the two kinds of multipliers are
distinguished and the numbers of coarse unknowns is written in parentheses.
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hmax = 0.4 0.2 0.1

Nb of multipliers 63+1100 271+6997 1718+51847

Nb of unknowns 158 1055 8994

(coarse) (12) (54) (300)

Table 4.19: Number (Nb) of Lagrange multipliers and unknowns — unstruc-
tured meshes.

Computation of Lagrange multipliers

The computation of the multipliers is performed with the same parameters
as in the 3D structured case. We also use the decoupled minimisation.
We only kept the norms defined by M and K ′; indeed, the case of the 3D
structured mesh lets us think that the regularised form was not as interesting
as in 2D. The results are given in the Table 4.20.

Norm hmax = 0.4 0.2 0.1

M 8+42 13+66 15+X

K ′ 8+56 13+106 15+X

Table 4.20: Convergence of the multipliers computation (division of the
residual by 103). X: the convergence criterion is not reached after 1000
iterations — unstructured meshes.

The increase in the number of iterations for computing the Lagrange
multipliers associated with the commutativity relation is dramatic.

Convergence for the two-level method

As in 2D or 3D with structured meshes, the preconditioned conjugate gradi-
ent is used and the results are given in Table 4.21. Here, the computation is
performed using the unconverged bases previously obtained; see Table 4.20.

Norm hmax = 0.4 0.2 0.1

M 5 8 8

K ′ 5 8 8

Table 4.21: Convergence of the preconditioned conjugate gradient (division
of the residual by 1010) — unstructured meshes.

The results concerning the number of iterations needed to solve the linear
system are very interesting, but the total cost must include the enormous
price of the computation of Lagrange multipliers.
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Statistics for the two-level method

The statistics have the same meaning as in 2D (see Table 4.6). The results
are given in Table 4.22.

Parameters hmax = 0.4 0.2 0.1

grid complexity 1.08 1.05 1.03

operator complexity 1.04 1.08 1.24

Table 4.22: Some statistics for the two-level method — unstructured meshes.



Chapter 5

Conclusion

Some known results relative to multilevel methods applied to Maxwell’s
equations and edge elements allows us to understand what we have accom-
plished, and we still have to accomplish. The implementation of an alge-
braic multilevel method for nodal elements and simple problems enabled us
to construct an extension of this methods to edge elements, also for simple
problems.

Some interesting and promising results have been obtained; however the
methods are not currently conclusive. Some research directions can be ima-
gined to evaluate the possibilities of this kind of method:

- full validation in 3D where we might relax the stopping criterion for
the computation of Lagrange multipliers,

- more than two levels,

- on a structured grid, choose the geometric coarse nodal basis, and
construct with the decoupled minimisation method the coarse edge
basis. The aim of this experiment is to provide one more validation,

- test with a coarse incidence matrix A closer to the one used by Reit-
zinger and Schöberl; this can make comparisons easier,

- construct subdomains without geometric information,

- use of variable coefficients and/or domains with more complex geom-
etry,

- efficient implementation to compare memory occupancy and compu-
tational time.

59
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