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Hyperthermia example

Local hyperthermia using electromagnetic waves

Treatment of a cancerous tumour by a local increase of the temperature
inside the tumour.
Means: use of a radio-frequency or microwave electromagnetic field.

(ZIB, Lab. AMPERE, ...)
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Hyperthermia example

Therapeutic planification

1 Segmenting the scanar cuts,

2 Meshing the body,

3 Electromagnetic and thermal computing + optimization of the
parameters.

3 / 28



Motivation: numerical dosimetry
Optimized Schwarz methods for time-harmonic Maxwell’s equations

Discontinuous Galerkin method for Maxwell’s equations
Conclusion and perspectives

Problem under consideration

First-order time-harmonic Maxwell’s system (dimensionless):{
iωεrE− rotH = −Jimp,

iωµrH + rotE = 0.

ω: angular wave frequency, µr : relative permeability, εr : relative
permittivity, Jimp: imposed current, (E,H): electromagnetic field.

Other features:

Free space,
Antenna: source term in current, internal to the domain. (Incident
plane wave also considered in the following),
Linear isotropic material at a given frequency,
Complex-shaped geometry (unstructured mesh) and heterogeneous
media.
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Mobile phone example

(HEADEXP collaborative research team.)

Normalization purpose

1 Segmenting the scanar cuts,

2 Meshing the head,

3 Electromagnetic and thermal computing,

4 Generating statistics among a lot of configurations.
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Outline of the talk

1 Motivation: numerical dosimetry

2 Optimized Schwarz methods for time-harmonic Maxwell’s equations
From Maxwell to Helmholtz
Optimized Schwarz for the Helmholtz equation
From Helmoltz to Maxwell
Numerical example: the finite difference method on staggered grids

3 Discontinuous Galerkin method for Maxwell’s equations
Formulation
2D results
3D extension
Difficulties

4 Conclusion and perspectives
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General approach

A Lot of work about optimized Schwarz methods for scalar
problems: Laplacian, convection-diffusion, Helmholtz, . . .

Some Separate works led concerning problem with underlying
systems of PDEs.
Ex.: for Maxwell, several works concerning the second-order vector
wave equation.

A more systematic approach

1 Find a systematic way to reduce a system of PDEs to a scalar PDE,

2 Apply the optimized Schwarz to the scalar PDE deduced,

3 Go back to the system of PDEs with the optimized conditions.

(V. Dolean, F. Nataf and G. Rapin, New constructions of domain

decomposition methods for systems of PDEs. CRAS, 340, (2005), no 9,

693–696.)
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Application to the Maxwell’s system in 2D

Maxwell equations in the whole space:

A(E,Hz) =

 iεrω 0 −∂y

0 iεrω ∂x

−∂y ∂x iµrω

  Ex

Ey

Hz

 = J. (1)

Fourier transform with respect to y , ∂y → ik

Â(Ê, Ĥz) =

 iεrω 0 −ik
0 iεrω ∂x

−ik ∂x iµrω

  Êx

Êy

Ĥz

 . (2)
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Application to the Maxwell’s system in 2D

Using the Smith factorization, it can also be written under the form:

Â = Ê D̂F̂ , (3)

with:

D̂ =

1 0 0
0 1 0
0 0 (εrµrω

2 − k2 + ∂xx)



Ê =

iεrω
εrω∂x

k

i

k
0 iεrω 0
−ik 0 0

 and F̂ =


1

i∂x

k
−µrω

k

0 1 − i∂x

εrω
0 0 1


Using this factorization, the Fourier transformed version of problem (1)
can be formally written as:

D̂Û = Ê−1Ĵ, Û = F̂Ŵ. (4)
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Brief overview of the strategy

Using the previous equivalence, the following problem is considered:

the Helmholtz equation on the domain Ω = R2

−
“
ω̃2 + ∆

”
Hz = f̃ , (5)

the Sommerfeld radiation conditions

lim
r→∞

r

„
∂Hz

∂r
− iω̃u

«
= 0, (6)

where r = |x|.
Decomposition in two half-space Ω1 = (−∞, b)× R and
Ω2 = (a,∞)× R. L = b − a: overlap.
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Brief overview of the strategy

An initial magnetic field component H l,0
z on each subdomain Ωl ,

l = 1, 2.

The n-th iterates H1,n
z and H2,n

z are the solutions of:{
−(ω̃2 + ∆)H1,n

z = f̃ , in Ω1

B1(H
1,n
z )(b, y) = B1(H

2,n−1
z )(b, y), y ∈ R,{

−(ω̃2 + ∆)H2,n
z = f̃ , in Ω2

B2(H
2,n
z )(a, y) = B2(H

1,n−1
z )(a, y), y ∈ R,

(7)

with, moreover, Sommerfeld radiation conditions on the unbounded
part of each subdomain.

Optimized Schwarz question

How to find the most efficient interface operators B1 and B2?
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Brief overview of the strategy

The canonical approach to determine the nicest transmission operator:

1 Fourier transform following the variables tangential to the interfaces,
i.e. here y .

2 Find the analytic solution of the equations on each subdomain and
express the convergence rate ρ.
→ the best operator is non local :-(.

3 Find the best approximant into a class of simple interface operators:
order 0 or order 2.
Ex.: order 0 operators. B1 = ∂x + α1 and B2 = ∂x + α2.

Express ρ with this particular local operator,
Minimize ρ on the a range of frequency valid on the discretization
grid: (kmin, k−) ∪ (k+, kmax).
kmin = C1/L (L: diameter of the subdomain), kmax = C2/h, k− and
k− used to exclude ω from the range.
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Brief overview of the strategy

Different choices:
α1 = α2 = iω̃. Després interface conditions (1991).
α1 = α2 Symmetric optimized Robin interface conditions.
α1 6= α2 Two-sided optimized Robin interface conditions (Gander,
Nataf and Magoulès, 2002).

With overlap, L = h Without overlap, L = 0
Case ρ parameters ρ parameters

Després 1−
√

k+ − ω̃2h None 1 None

Symmetric 1− 2C
1
6

ω̃ h
1
3 p =

C
1
3

ω̃

2h
1
3

1−
√

2C
1
4

ω̃√
C

√
h p =

√
CC

1
4

ω̃√
2
√

h

Two-sided 1− 2
2
5 C

1
10

ω̃ h
1
5


p1 =

C
2
5

ω̃

2
7
5 h

1
5

p2 =
C

1
5

ω̃

2
6
5 h

3
5

1− C
1
8

ω̃

C
1
4
h

1
4


p1 =

C
3
8

ω̃ C
1
4

2h
1
4

p2 =
C

1
8

ω̃ C
3
4

h
3
4

Asymptotic convergence factor and optimal choice of the parameters for the

transmission conditions. αl = pl(1− i), l = 1, 2. 13 / 28
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Optimized transmission conditions for Maxwell’s system

The following algorithm applied to Maxwell’s equations with Silver-Müller
radiation conditions on the unbounded part of the domain:

lim
r→∞

r (H× n− E) = 0 (8)

where r = |x|, n = x/|x| and H = (0, 0,Hz)
t , E = (Ex ,Ey , 0)t{

A(E,Hz)
1,n = J̃1, in Ω1

(−Ey +
α1

iεrω
Hz)

1,n(b, y) = (−Ey +
α1

iεrω
Hz)

2,n−1(b, y), y ∈ R,

{
A(E,Hz)

2,n = J̃2, in Ω2

(Ey +
α2

iεrω
Hz)

2,n(a, y) = (Ey +
α2

iεrω
Hz)

1,n−1(a, y), y ∈ R,

(9)
is equivalent to the iterative procedure (7).
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Schwarz algorithm: algorithmic aspects

Global system (two-sudomain case)
A1 0 R1 0
0 A2 0 R2

0 −B2 Id 0
−B1 0 0 Id




W1
h

W2
h

λ1
h

λ2
h

 =


f1
h

f2
h

0
0


Interface system: Thλh = gh

Th =

 Id B2A
−1
2 R2

B1A
−1
1 R1 Id

 and gh =

B2A
−1
2 F 2

B1A
−1
1 F 1


Schwarz iteration ⇔ λp+1

h = (Id− Th)λ
p
h + dh

Accelerated iteration: Krylov method
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A widely used discretization for Maxwell’s system

hx

hy

Hz(i, j)

Hz(i, j + 1)

Hz(i + 1, j)

Ex(i, j)

Ex(i, j + 1)

Ey(i, j) Ey(i + 1, j)

Primal (solid lines) and dual (dashed lines) grids for discretizing the Maxwell

equations. The component Hz is approximated on the dual grid contrary to E

which is approximated on the primal grid.
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A widely used discretization for Maxwell’s system

hx

hy

Hz(i, j)

Hz(i, j + 1)

Hz(i + 1, j)

Ex(i, j)

Ex(i, j + 1)

Ey(i, j) Ey(i + 1, j)


iεrωEx(i , j)− (D−y Hz)(i , j) = 0,

iεrωEy (i , j) + (D−x Hz)(i , j) = 0,

iµrωHz(i , j)− (D+
y Ex)(i , j)− (D+

x Ey )(i , j) = 0, ∀i , j ∈ Z.

(10)

where D±x and D±y are the classical finite difference operators.
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Toy problem for testing the theory

Ω = (0; 1)2, Ω1 = (0; α)× (0; 1), Ω2 = (β; 1)× (0; 1).

Incident plane wave (Einc,H inc) = exp(−iωx)(0, 1, 1) with ω = 2π.

Overlapping when used is equal to h.
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Results obtained

10-2
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Two-sided
Est. exponent: -0.2

Overlapping subdomains.
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Results obtained

10-2

Discretization step size h
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Est. exponent: -0.5

Two-sided
Est. exponent: -0.25

Non-overlapping subdomains.
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A non-conforming approximation space

The approximate solution (Eh,Hz,h) of the Maxwell system is an element
of V 3

h where Vh:

Vh =
{
V ∈ L2(Ω) / ∀K ∈ Th, V|K ∈ Pk(K )

}
. (11)

No particular continuity constraint is enforced at the interface of each
element.

A total flexibility for the approximation inside each element:

makes easier hp-adaptivity,
treatment of non-admissible mesh is included.

Main drawback: a huge number of unknowns compared to
conforming finite element methods.
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Weak formulation


a(Hz,h,G) + b(G,Eh) =

∫
∂Ω

1

2

(
Hinc − N t

nE
inc

)
Gds,

b(Hz,h,F)− c(Eh,F) =

∫
∂Ω

1

2
(NnH

inc − NnN
t
nE

inc)tFds,

∀F ∈ V 2
h ,G ∈ Vh.

where Nn =
(
nx ny

)t
, J·KT : jump of the tangential component, {·}:

average.

a(Hz,h,G) =

∫
Ωh

iωµHz,hGdv +
∑
F∈Γ0

∫
F

αHz,hGds +

∫
∂Ω

1

2
Hz,hGds,

b(G,Eh) =
∑
K∈Th

∫
K

G rot(Eh)dv −
∑
F∈Γ0

∫
F

{G}tJEhKTds −
∫

∂Ω

1

2
G(N t

nEh)ds,

and finally:

c(Eh,F) =

∫
Ωh

iωεEt
hFdv +

∑
F∈Γ0

∫
F

αJEhKt
T JFKTds +

∫
∂Ω

1

2
(N t

nEh)(N
t
nF)ds.
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Validation of the optimized transmission conditions

Triangular uniform mesh. P1(K ) as the local space in each element K .
Upwind flux is considered.

10-2

Discretization step size h
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s

Symmetric
Est. exponent: -0.5

Two-sided
Est. exponent: -0.25

Number of iterations against the mesh size h. Logarithmic scale.
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Validation of the optimized transmission conditions

Three polynomial orders for the element interpolation (here quadrilateral
elements are considered) and two different fluxes.

Flux Q0 Q1 Q2

Centered symmetric 0.48 0.46 0.49
Centered two-sided 0.27 0.26 0.23
Upwind symmetric 0.45 0.47 0.47
Upwind two-sided 0.37 0.26 0.25

Estimated value of δ where ρ = 1− Chδ.

Summary

It seems that the behavior predicted by the theory is:

roughly independent of the polynomial approximation,

roughly independent of the numerical flux used.
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Variation of the number of subdomains
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Number of iterations against the number of subdomains. The number of
dof is constant. Results for the centered flux.
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Number of subdomains
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Despres
Est. exponent: 0.31

Symmetric
Est. exponent: 0.28

Two-sided
Est. exponent: 0.31

Number of iterations against the number of subdomains. The number of
dof is constant. Results for the upwind flux.
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Schwarz algorithm: numerical and parallel performances

Diffraction of a plane wave (F=1800 MHz)

Model (artificial) problem

Tissue εr σ (S/m) ρ (Kg/m3) λ (mm)

Skin 4.0 0.0 1100.0 26.73
Skull 1.5 0.0 1200.0 42.25
CSF 6.5 0.0 1000.0 20.33
Brain 4.0 0.0 1050.0 25.26

Characteristics of the tetrahedral meshes (no telephone model)

Mesh # tetrahedra Lmin (mm) Lmax (mm) Lavg (mm)

M1 361,848 1.85 45.37 11.65
M2 1,853,832 1.15 24.76 6.93
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Overview of the solutions

Real part of Ey

Mesh M2, P0-DGTH method Mesh M1, P1-DGTH-c method Mesh M1, P1-DGTH-u method

24 / 28



Motivation: numerical dosimetry
Optimized Schwarz methods for time-harmonic Maxwell’s equations

Discontinuous Galerkin method for Maxwell’s equations
Conclusion and perspectives

Formulation
2D results
3D extension
Difficulties

Overview of the solutions

Real part of Ey

Mesh M2, P0-DGTH method Mesh M1, P1-DGTH-c method Mesh M1, P1-DGTH-u method

24 / 28



Motivation: numerical dosimetry
Optimized Schwarz methods for time-harmonic Maxwell’s equations

Discontinuous Galerkin method for Maxwell’s equations
Conclusion and perspectives

Formulation
2D results
3D extension
Difficulties

Details for the solution

Interface system
BiCGstab(`) (G.L.G. Sleijpen and D.R. Fokkema, ETNA, Vol.1,
1993)
` = 6

Local systems
MUMPS multifrontal sparse solver
(P.R. Amestoy, I.S. Duff and J.-Y. L’Excellent
Comput. Meth. App. Mech. Engng., Vol 184, 2000)
L and U factors in 32 bit accuracy
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Computational results

Cluster of AMD Opteron/2.6 GHz nodes, Gigabit Ethernet/Myrinet
DG-P1-c: DGTH method with centered flux
DG-P1-u: DGTH method with upwind flux

Mesh Method Strategy Ns # it CPU (min/max) REAL

M1 DG-P1-c DD-itref 96 47 346 sec/466 sec 714 sec
- - - - - 524 sec/715 sec 717 sec
- DG-P1-u DD-itref 96 47 347 sec/547 sec 765 sec
- - - - - 636 sec/685 sec 686 sec

M2 DG-P0-c DD-itref 48 27 545 sec/770 sec 1350 sec
- - - 96 33 228 sec/322 sec 428 sec
- - - - - 415 sec/416 sec 417 sec

Mesh Method Ns CPU (min/max) RAM (min/max) # dof

M1 DG-P1-c 96 64 sec/125 sec 640 MB/852 MB 8,684,352
- DG-P1-u 96 80 sec/134 sec 633 MB/866 MB -

M2 DG-P0-c 48 234 sec/374 sec 1432 MB/1836 MB 11,122,992
- - 96 53 sec/ 98 sec 519 MB/ 684 MB - 26 / 28
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Some hidden difficulties

The straightforward formulation of the Schwarz algorithm using a
DG discretization for each sudomain leads to a discrete solution
which is different from the discrete solution obtained by the DG
discretization in the mono-domain.
This is not the case with the staggered grid strategy and more
generally with conforming finite element.
=⇒ possible deteriotation of the accuracy of the method compared
to the mono-domain solution.

Second order optimized conditions leads to couple some elements
wich have no relations in the initial scheme.
=⇒ possible deterioration of the load balance for factorizing the
subdomain problem.
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Conclusion

A Well-known strategy for time-harmonic Maxwell’s system.
Some promising results: theory and practice are compatible in 2D
and Després conditions gives the first impression for 3D...

Perpectives

... But a lot of work remains to do: optimized conditions in 3D, a
trick to keep the accuracy...
Switch from subdomain direct solver to an iterative solver: algebraic
multigrid solver?
Addition of a coarse grid solver.
Equivalent approach in test for time-implicit situation.
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