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Formulation

Our aim is the resolution of linear systems coming from the edge finite
element discretisation of:

To find E ∈ V such that: a(E,E′) = F (E′), ∀E′ ∈ V0,

with a(E,E′) =

∫
Ω

ν curlE · curlE′ +

∫
Ω

γE · E′.

with V ⊂ H(curl,Ω). We consider ν and γ > 0.

Straightforward applications: transient vector wave equation or eddy
current formulation.

Possible extensions: magnetostatics, time-harmonic problems.
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Finite element spaces

Two finite element spaces considered :

Edge element space W1(T ) included in H(curl,Ω): the lowest order
Nedelec elements. Degrees of freedom: path integral along the mesh
edges. Basis (λh

i )i∈{1,...,E h}.

Nodal element space W0(T ) included in H1(Ω): P1-Lagrange finite
elements. Degrees of freedom: values at the mesh vertices. Basis
(φh

p)p∈{1,...,Nh}.

1 1 2

4

4 2

3 3

G h =

−1 1 0 0
0 −1 0 1
0 0 −1 1
−1 0 1 0



Coming from continuous space properties, both
discrete spaces belong to a De Rham complex
with complete sequence property.
In particular:

grad φh
p =

E h∑
i=1

G h
ipλ

h
i , ∀p ∈ {1, . . . ,Nh}.

and range(grad) = ker(curl).
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Smoother choice

Laplacian case: a few iterations of damped Jacobi or Gauss-Seidel
provide an efficient smoothing.

curl ν curl case: classical algorithms do not deal with the component
in the kernel of curl, even if the dimension of this subspace is
proportional to the number of mesh nodes.

In order to supress this difficulty, a hybrid Gauss-Seidel algorithm has
been proposed by Hiptmair1:

Classical smoothing for the global system.
Specific smoothing on the kernel of curl.

1Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal., 36(1), 1999.
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Algebraic construction of prolongation operators

The coarse nodal and edge spaces are included in the fine spaces:

φH
n =

Nh∑
p=1

Pnod
pn φh

p, ∀n ∈ {1, . . . ,NH},

λH
e =

E h∑
i=1

Pedg
ie λh

i , ∀e ∈ {1, . . . ,EH}.

In order to use the same smoother as in the geometric case, the
following relation will be kept at the coarse level :

gradφH
n =

EH∑
e=1

GH
enλ

H
e , ∀n ∈ {1, . . . ,NH}. (1)

(φH
n )n∈{1,...,NH} is the coarse nodal basis and (λH

e )e∈{1,...,EH} is the
coarse edge basis.
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Algebraic construction of prolongation operators

Relation (1) is implicitly satisfied in geometric multigrid.
This relation is wished to be kept for algebraic methods, in particular to
define a coarse graph whose incident matrix GH will be used in this
relation.
By gathering the previous relations, the commutativity relation is
obtained:

PedgGH = G hPnod.

G h describes the fine graph, Pnod is the nodal prolongator computed by
existing methods.

To define or to compute:

GH and the edge prolongator Pedg.
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Remark on the computation of Pnod

Many algebraic multilevel methods for grad div operator can provide Pnod

operators satisfying the conditions required by our construction.
In particular, they build a decomposition of the domain Ω in overlapping
subdomains (ΩH

n )n=1,...,NH such that:

suppφH
n ⊂ ΩH

n

This is equivalent to enforce zero coefficients in the nth column of Pnod.
It is also required that Pnod satisfies a partition of unity property:

∀x ∈ Ω,

NH∑
n=1

φH
n (x) = 1 ⇔

NH∑
n=1

Pnod
pn = 1,∀p ∈ {1, . . . ,Nh}.
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Coarse graph and support of the functions

After the computation of the nodal prolongator Pnod:

Definition of a coarse graph or equivalently a coarse edge-node
incidence matrix GH .
For a coase edge of extremities coarse nodes n and m, the condition
ΩH

n ∩ ΩH
m 6= ∅ has to be ensured.

A coarse edge function λH
e is associated with each coarse edge e and

suppλH
e ⊂ ΩH

n ∩ ΩH
m.

As for Pnod, it is equivalent to enforce zero coefficients in the eth

column of Pedg.

Ie : Set of the non-zero coefficients in the eth column of Pedg.
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Final formulation

Reitzinger and Schöberl2 proposed a strategy to build nodal and
edge prolongators satisfying the relation PedgGH = G hPnod.
Their approach is attached to a particular choice for the nodal
prolongator Pnod which leads to a unique matrix Pedg satisfying the
commutation property.

We wished to extend this approach to other choices of the nodal
prolongator Pnod.
Several matrices Pedg can then satisfy the commutativity relation
and supplementary rules should be defined to make a judicious
choice.

2S. Reitzinger and J. Schöberl. An algebraic multigrid method for finite element
discretizations with edge elements. Numer. Linear Algebra App., 9(3), 2002.
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Final formulation

Ideas coming from nodal finite element strategy: constraints on the
supports (to keep the sparsity or the matrices) + minimisation of an
energy functional + approximation constraints.

Optimisation problem
Find Pedg minimising

EH∑
e=1

βt
eKeβe ,

under the constraint: PedgGH = G hPnod.

βe : contains the non-zero coefficients of the eth column of Pedg, i.e.
these indexed by Ie .

Ke : Local symmetric positive definite (SPD) matrix. The whole Ke

matrices define the energy functional for the minimisation.
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Subgraphs SH,i

SH,i : graph defined for each fine edge i such that one index e satisfies
i ∈ Ie .
Subgraph of the coarse graph obtained by keeping only the coarse edges
of index e such that i ∈ Ie .
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Flow problems

We have shown that solving PedgGH = G hPnod is equivalent to
solve on each subgraph SH,i a flow problem:

(GH,i )tPedg
i = (G hPnod)i .

To determine: Pedg
i , vector containing the components of the i th

row of Pedg indexed by the indices of the edges of SH,i .

Known: (G hPnod)i , vector containing the components of the i th row
of G hPnod indexed by the indices of the nodes of SH,i .
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Resolution of flow problems

Solution of the flow problem:

Pedg
i = (Pedg

i )′ + (Pedg
i )′′.

where:

(Pedg
i )′ is a particular solution of the flow problem, determined

thanks to a spanning tree of the subgraph,
(Pedg

i )′′ belongs to the kernel of (GH,i )t which is generated by the
independent cycles of the subgraph.

531

2

41

2 3

4

14 / 26



Introduction to the problem
Algebraic strategy for the computation of the edge prolongator

Preliminary numerical results
Conclusion

Formulation of an energy-minimisation problem
Resolution of the optimisation problem

Resolution of flow problems

Solution of the flow problem:

Pedg
i = (Pedg

i )′ + (Pedg
i )′′.

where:

(Pedg
i )′ is a particular solution of the flow problem, determined

thanks to a spanning tree of the subgraph,
(Pedg

i )′′ belongs to the kernel of (GH,i )t which is generated by the
independent cycles of the subgraph.

14 / 26



Introduction to the problem
Algebraic strategy for the computation of the edge prolongator

Preliminary numerical results
Conclusion

Formulation of an energy-minimisation problem
Resolution of the optimisation problem

Resolution of flow problems

Solution of the flow problem:

Pedg
i = (Pedg

i )′ + (Pedg
i )′′.

where:

(Pedg
i )′ is a particular solution of the flow problem, determined

thanks to a spanning tree of the subgraph,
(Pedg

i )′′ belongs to the kernel of (GH,i )t which is generated by the
independent cycles of the subgraph.

531

2

41

2 3

4

14 / 26



Introduction to the problem
Algebraic strategy for the computation of the edge prolongator

Preliminary numerical results
Conclusion

Formulation of an energy-minimisation problem
Resolution of the optimisation problem

Linear system for the minimisation

After determining the particular solutions, the minimisation problem is
equivalent to the resolution of a linear system of the form:

B tDBΓ = −B tDP̃edg,

where:

Γ is the vector whose components give the coefficients of ((Pedg
i )′′)t

in the bases of the kernel of (GH,i )t .

the matrix B gathers the basis vectors of these different kernels. It is
a sparse full-rank matrix which is assembled during the resolution of
flow problems.

the matrix D is block-diagonal and its diagonal blocks are the
matrices Ke involved in the energy functional.

the vector P̃edg gathers the particular solutions (Pedg
i )′ from all flow

problems.
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Properties of the linear system

The matrices Ke being SPD, B tDB is SPD and the system can be
solved by the conjugate gradient method.

Depending on the choice for Ke , the conditioning of D may be
strongly dependent of the global dimension of the problem.

However, if D = Id, the conditioning of B tB is low and independent
of the global dimension of the problem.

Moreover, a high accuracy is not required for the resolution of this
system; this is only a setup phase before solving the initial system.
The solution kept, whatever the accuracy is, always satisfies the
commutativity relation.
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Definition of ΩH
n and of GH

Partition of the nodes of the graph (initialy of the mesh):

{1, . . . ,Nh} =
NH⋃
n=1

Hn.

Definition of subdomains (Ω̃H
n )n=1,...,NH :

Ω̃H
n =

⋃
p∈Hn

supp(φh
p).

Creation of a coarse edge e of extremities n, m iff Ω̃H
n ∩ Ω̃H

m 6= ∅.
Subdomain ΩH

n defined by extending Ω̃H
n to the nearest neighbours.

Without this extension, no degree of freedom for the minimisation:
this is the Reitzinger and Schöberl method (RS method).
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Initial graph. Coarse graph representation.
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Choice for the matrices Ke

Different choices used for numerical experiments:

Matrices extracted from the global matrix K of the problem; it is
denoted by K ,

Matrices extracted from the matrix defined from
∫
Ω

ν curlE · curlE ′;
it is denoted by Sν ,

Matrices are all equal to the identity; it is denoted by Id.
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2D problem

Ω =]0; 1[2.

Tangential component of the field is enforced on the left side with
Ey = sin(2πy). On the remaining of the boundary: (curlE)× n = 0.

Constant coefficient in the subdomains with the following equations:

Basic test: curl curlE + E = 0.
Cavity in harmonic regime: curl curlE− ω2E = 0 with ω = 1.5π.

γ = 1 γ with ω = 1.5π
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Mesh used

Initial mesh τh
0 First refinement τh

1

For the mesh τh
i , i indicates the number of refinement.

NB: algebraic strategy works without knowledge of the grid structuration.
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Results

Resolution of the optimisation linear system

τh
2 τh

3 τh
4 τh

5 τh
6 τh

7

optimisation system size 62 253 1016 4081 16355 65479
initial system size 100 392 1552 6176 24640 98432

Table: Number of unknows for the optimisation linear system and for the initial
linear system — 2D, structured meshes.

The number of unknowns for the minimisation is roughly 2/3 of the
number of unknowns for the initial system.
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Constrution of the elements
Results

Resolution of the optimisation linear system

Resolution by a conjugate gradient method without preconditioning.

τh
2 τh

3 τh
4 τh

5 τh
6 τh

7

K 24 19 12 12 12 12

Sν 14 12 12 12 12 12

Id 3 1 1 1 1 1

Table: Number of iterations for solving the optimisation linear system (division
of the residual by 103) — 2D, structured meshes.

Results given only for the finest level.

Number of iterations independent of the dimension of the global
system.
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Results

Resolution of the initial linear system - Case 1

Conjugate gradient preconditioned by a multilevel method using
Hiptmair’s smoother.
Stopping criterion: division by 1010 of the residual norm.

geom: geometric
multigrid,
1 level: use only
one level,
smin: use only the
particular solution
of flow problems.
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Constrution of the elements
Results

Resolution of the initial linear system - Case 2

General deterioration of the results for γ = −(1.5π)2.
The hierarchy between the methods remains the same.
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Final results and perspectives

Final results

Description of the edge prolongators satisfying the commutativity
relation. Generic algorithms to compute these prolongators.

Addition of an optimisation process in order to optimise the choice
of the edge prolongator.

Perspectives

Introduction of other methods for the construction of the coarse
graph.

Optimisation of basis satisfying the commutativity relation but
initially computed by another strategy.
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