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= Combining multiple incomplete samples of an
information, through an adequate process, leads to
a more complete and accurate information.
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For a given band-limited
image, the Nyquist
sampling theorem
states that if a uniform
sampling is fine enough
(=D), perfect
reconstruction is
possible.




Due to our limited
camera resolution, we
sample using an
insufficient 2D grid




However, if we take a
second picture,
shifting the camera
slightly to the right’
we obtain:
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Similarly, by
shifting down we
get a third image:




And finally, by
shifting down and
to the right we get
the fourth image:
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It is trivial to see that
interlacing the four
images, we get that
the desired resolution
is obtained, and thus
perfect
reconstruction is
guaranteed.




Rotation/Scale/Disp.

What if the camera
displacement is
Arbitrary ?

What if the camera
rotates? Gets closer to
the object (zoom)?
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Rotation/Scale/Disp.
here isno [ PRI
= B
theorem
covering this
case
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A Small Example
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3:1 scale-up in each axis using 9 images, with pure
global translation between them

Can you read thas?




Image formation model

1
l Optical Effect: w;

Finite Aperture

Spatial Integration: a;

CCD Sensor /
| -



Example - Video

53 images, ratio 1:4




Example — Surveillance

40 images
ratio 1:4




Example — Enhance Mosaics
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= Rich literature, numerous algorithms,

Dating back to the fregeuncy domain approch of
Huang an Tsai:

« Multiple Image restoration and registration »,
Advences in computer Vision and Image Processing,
1/317-339, 1984.
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Over all Process

= Assumptions

® A. Some small relative motion between camera and the
scene

® B. Or other imaging parameters, such as the amount of
defocus blur, variation
= Stages
® |. Registration : pixels motion estimation from one image to
others
®ll. Fusion based on some constraints from the image
formation process model’s
= Results
® Improvement over the input images

® High frequency of components are usually not recontructed

very well s =
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Some practical experiments

= High resolution > random translation - blurred with a guassian
- down-sampled

= As many LR pixels in total as the pixels in the HR image
= Providing the exact knowledge of the point spread function
(Gaussian) and the sub-pixel translations to SR [Hardie et al.]
® High resolution components are not well recovered
® A decent reconstruction from input images
® The performance gets much worse as the magnification increases

16

Nb of Input Images/ ! 1 l
Down sampling ratio _

Linear Magnification




iInverse problem

= Find the best model such that (at least approximately)

d =G(m)

= Operator G

® Describes the explicit relationship between the observed
data, d, and the model parameters

® Also called forward operator, observation operator,
or observation function

® Represents the governing equations that relate the model
parameters to the observed data
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SR : Position of the problem

= A set of N low images Lo,(m), =1,.,.N

= m(m,n) a vector in Z? is the pixel coordinates

= The continuous irradiance light-field: E,

= The Point Spread Function: PSF (.)

= x=(x) in R? the coordin. in the image plane of Lo,
= Continuous image formation equation

LOi(m) — (El * PSFl)(m) = j EI(X)PSF(X = m) dx

LO;

The pixel intensity is the result of convolving the irradiance function
with the point-spread function and then sampling it at the discrete

pixel locations



Point Spread Function Model

= w;(x) models the blurring:

® defocus factor (pillbox function — E.
low pass filter) j Optical Effect: w,

) Lens System —7

Finite Aperture

@ diffraction-limited optical transfer
(first-order Bessel function of the
first kind)

QIR ()7
2 2 2, o
X F-I_xa-l_(x — )f_O K~ 777 6eD Sensor

L s
Loj(m,n) = E; xw; = a;(m,n) ~ S,
= (E; * PSF)(m)

i

4 _ S B S;
a;(x) = § if |x| < Ean |}’|—5 =
= and a;(x) spatisal integration: 0  otherwise.
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Super-Resolution

= Su(p) is a superresolved image, where p=(p,q) in Z? according to
coordinate frame of Lo,(m)

Lo;(m) = | Ei(ri(2)).PSF,(ri(2) - m).:_“a—J:: dz
Su Z
p = m/M, x = ri(z) registration transformation \

Determinant of the Jacobian of the
registration transformation r(.)
= Assuming the registration under the pinhole model is correct,
the radiance of the scene is transformed, in the same way, by all
Lo, and Suimages, we have:

61‘,;
Loy (1) = f E(Z). PSF(r;(z) — m). ‘E dz

Su




Observation model

= Formulation
® Su the high resolution image of size Ns = L, NI, x L, NI, written
as a vector x = [x, X,, ..., Xy]!
® L, L, down sampling facors
® Loi the low resoltion image of size NI = NI, x Nl,, i in {1,.,N}
written as a vector y; = [y, ,..., ¥inl
® The observation model is y=H D, W. x + n,where
® H represente the blur matrix
® D, the subsampling matrix
® W.the motion matrix
® n,the noise matrix
®y=Mx+n,iin {1,.,N}



Categorization of super-resolution approaches

SR Image
Reconstruction
Algorithms
[ | | ) | — |
Nonuniform Frequency Regularized Pro'ePcOtignSE)nto MAI_IID'E%CS
Interpolation * Domain * Reconstruction * ‘ C (J) nvex Sets Reconystruction
| | |
I
[ | y
Deterministic Stochastic *
-
(]
4 _ N\




Image Formation

Geometric Optical : :

S

cene o Blur Sampling  Noise
HR \VY; H, D, LR

k
Can we write these steps as linear operators?

LR=D H W -HR -

ﬁ
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Geometric Transformation

Geometric

Scene :
transformation

= Any appropriate motion model
= Every frame has different transformation
= Usually found by a separate registration algorithm =

ﬁ:
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Geometric Transformation

Can be modeled as a linear operation

W X
Wk
# \\~\\\\. oo Il oo HE ocee|° O
» W X : IR
k W, I =
7 - N
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Optical Blur

Geometric Optical
transformation Blur

= Due to the lens PSF and pixel integration
- Usually Hk = H

L!R:S
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Optical Blur

Can be modeled as a linear operation

HX
H
j - oo BENENN --- NN --- DENE --- | © E =|
X HX J U
H X =
o
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Optical Blur Sampling

= Pixel operation consists of area integration followed by
decimation

= D is the decimation only
= Usually Dk =D



Decimation

Can be modeled as a linear operation

DX

D

-

=
[ T T T TTT]
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Super-Resolution - Model

Geometric warp Blur Decimation
High : l : Y
l -
Resolution W, =Tm=h H D I\LOW'
Image\ Resolution
X

Exposures

o

e Add ’rlveNOISe/
°

| HN I DN %}

» {X.k:DkaWkA_I_\Lk, \L NN OG

k=1
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Simplified Model

Geometric warp Blur Decimation

}
High- : : y1 ~
ReIso ution Wi =1 = H b Rei'ooln,’;mn
mage\ Exposures
X

o

e Add ’rlveNOISe/
o

W, = H | D lr%)-

»{Y -DHW.X+V,, V, ~N{0,0°}

k=1
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The Super-Resolution Problem

Y, =DHW X +V,, V, ~N{0,0’}

= Given
Y, — The measured images (noisy, blurry, down-sampled ..)
H — The blur can be extracted from the camera characteristics
D — The decimation is dictated by the required resolution ratio
W, — The warp can be estimated using motion estimation
o,— The noise can be extracted from the camera / image

= Recover
X — HR image



Xl | D1H1W1 ]
Y,| | DHW,
Y = ~ .
_XN _ _DNHNWN _

r = resolution factor = 4

X +

v,

v,

MXM = size of the frames = 1000X1000

N = number of frames = 10

Y of size [Nszl] =[10Mx1]

G of size [NszrzMz] =[10Mx16M]

X,V of size [rzszl] =[16Mx1]

The Model as One Equation

L!R;S



SR - Solutions

= Maximum LikeIihooNd (ML):
X = argmxinZH DHW X -Y,

2

Often ill posed problem!

= Maximum Aposteriori Probability (MAP)
e 2
X = argmilnIZ‘H DHWKL—XkH +

Smoothness constraint
regularization

= —
LITaS



ML Reconstruction (LS)

Minimize: g2 (X)=3 DHW, X —Y |

Thus, require: agg;EX) - 2ZN: WHD (DHWkX —\ik)

0

> W H'D'DHW, -X = i Y,

A

<
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Algorithme du gradient

On se donne un point/itéré initial zo € E et un seuil

de tolérancec = 0 . L'algorithme du gradient définit une suite d'itérés z1,zs, ... € E,
jusqu'a ce qu'un test d'arrét soit satisfait. Il passe de 2+ a *++1 par les étapes suivantes.
1. Simulation : calcul de V f(x).

2. Test d'arrét : si [|[Vf(x)|| <2, arrét.

3. Calcul du pas a; > 0 par une régle de recherche linéaire sur f enz: le long de la
direction —Vf(zx),

4. Nouvel itéré zr+1 = o — oV f(a).




LS - Iterative Solution

= Steepest descent

X, =X, - B WH D' (DHW, X, -Y, )

\ )\ J
RO .Y
Back projection Simulated
error

All the above operations can be interpreted as
operations performed on images.

There is no actual need to use the Matrix-Vector
notations as shown here. -

= —
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LS - Iterative Solution

= Steepest descent

For k:IN Xnﬂ - ln B ﬂ; Wk H D (DHWkKn _Xk)

..............................................................................................................................................................................................................................................

—nN —_
geomeftry | convolve | down T\ up | convolve X Ienovrizri
wrap | withH “| sample >V sample | with HT [ 9 Y
wrap
T T T
W, H D D H W,
...................................................................................................................................................................................................................
B 1
N
lnﬂ —
I 4 - \



HR image LR + noise
X4

Simulated example from Farisu at al.
IEEE trans. On Image Processing, 04 -




Robust Reconstruction

= Cases of measurements outlier:
@®Some of the images are irrelevant
®Error in motion estimation
®Error in the blur function
@®General model mismatch

L!R;S



Robust Reconstruction

Minimize: gz(X) = ZN:H DHW X _YKH1

X, =X, - B> WHD sign(DHW, X, -, |

L!R;S



Robust Reconstruction

= Steepest descent
X,.=X,-BYWHD sign(DHW, X -V, |

For k=1..N

X, Yy
v inverse
geometry | | convolve | down Dl sian | wup | convolve | o
wrap | withH “| sample A Znd ICI e sample [ | with HT [ | 9 Y
wrap
................................................ HDDT
A k




Example - Outliers

HR image LR + noise
X4

Simulated example from Farisu at al.
IEEE trans. On Image Processing, 04

Robust Reconstruction =
ﬁ:
LITaS




L, norm based L, norm based

20 images, ratio 1:4



MAP Reconstruction

e (X)= X DHW, X - Y, [ + 2A1X]

=Regularization term:

@®Tikhonov cost function

A X} =[x
@®Total variation
Ary {L} — HV X H
®Bilateral filter AB {l} _ S Z ‘ Mm‘ i A —
|=—P m=-P =

L!RIS



Robust Estimation + Regularization

Minimize:
£(X)=3| DHW,X ~Y,| + 13 3 a" "X ~8s;

X.. =X, = B E/H'W sign(DHW, X , -,

_I_/»LZ 0[‘ \+\m\[| _S S ]Slgn( —S)I(S;nxn)}

LITaS



Robust Estimation + Regularization

N———

Rpn=X,y- ﬂ{ﬁ:FkT H'W sign[DHW, X, =Y, }- 2> ¥ a""[1 -5 "]sign(X, -'s" X, )

|I=—P m=-P

For k=1..N Y
L
geomeftry convolve | | down /L Jsion up e olve lenov:;ii
wrap [ | withH [] sample [T 23 7| sample [ with HT [~] 9 B Y

...............................................................................................................................................................................................................................

...........................................................................................................................................................................................................................

horizontal | | vertical | - AN <ian | horizontal vertical - AN\ lam*‘
shift | [ | shiftm [ O L2 [ | shift -l shift -m %
................................................................................................................................................................................. h-uunn
LIRS



= 8 frames
= Resolution factor of 4

From Farisu at al. TEEE trans. On Image Processing, 04
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Handling Color in SR

N (X}

MAP ( ) kz
Handling color: the classic approach is to convert the
measurements to YCbCr, apply the SR on the Y and use
trivial interpolation on the Cb and Cr.

L

Better treatment can be obtained if the statistical
dependencies between the color layers are taken into
account (i.e. forming a prior for color images).

In case of mosaiced measurements, demosaicing followed
by SR is sub-optimal. An algorithm that directly fuse the
mosaic information to the SR is better. i

= '
LITaS



Nonuniform Interpolation Approch

= Relative motion information estimation

= Uniformly spaced sampling Su grid obtained by the
single step or iterative method

J. J. Clark et al., “A transformation method for the reconstruction of functions
from nonuniformly spaced samples,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-33, pp. 1151-1165, 1985.

J.L. Brown, “Multi-channel sampling of low pass signals,” IEEE Trans.
Circuits Syst., vol. CAS-28, pp. 101-106, 1981.

= Application of a deconvolution method to remove
blurring and noise

Restoration
for Blur and
noise
Removal

Registration g Interpolation
or Motion g onto an Su
Estimation ' Grid




Nonuniform Interpolation Approach

(a) nearest neighbor interpolation
= (b) bilinear interpolation

= (c) non uniform interpolation with
4 Lo images

= (d) Deblurring part




Freqguency Domain Approach

= Based on
® Shifting property of the Fourier Transform

® Aliasing relationship between the CFT of an Su image and
the DFT of Lo, images

® Bandlimited property of the Su image

R.Y. Tsai and T.S. Huang, “Multipleframe image restoration and
registration,” in Advances in Computer Vision and Image Processing.
Greenwich, CT: JAl Press Inc., 1984, pp. 317-3309.



Freqguency Domain Approach

= LetaSuimage x and its CFT X

= Global translation yield the ith shifted image where the translation
vector is known: x.=x +t

By the shifting property of the CFT, the CFT shifted image Su image can
be written: X,=f(X)

X, is sampled to generate the observed y, Lo image

A system of equations is formulated from the relationship between the
CFT of Su and the DFT of the ith observed Lo image

Finally, the inverse problem is resolved to determine first the DFT of the
observed Lo, images and then CFT coefficient of x -

ﬁ
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Regularized SR Recons. Approach

= Stochastic Approach based on Bayesian estimation methods

® PDF (Probability Density Function) of the original image can be
established

® MAP (Maximum A Posteriori) estimator of x maximises the a
posteriori PDF with respect to x

o — argmaXP(Xb/l, ---JYn)

® Taking the logarithmic function and applying Bayes’ theorem to the
conditionnal probability, we have

x = argmax{ln P(y; ...yy |x) + In P(x)}

S. Baker and T. Kanade, “Limites on Super-Resoltion and How to Break
Them,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Sep 2002, Vol. 24(9), pp. 1167 — 1183.



Regularized SR Recons. Approach

(a) nearest neighbor interpolation
= (b) bilinear interpolation

= (c) non uniform interpolation with
4 Lo images

= (d) MAP with edge-preserving
Prior




Interesting application of SR

= |. Hybrid Stereo Camera
= ll. Super-Resolution of Face Images

= lll. Depth Superresolution for ToF 3D Shape
Scanning

L!R;S 61



l. Hybrid Stereo Camera

H. S. Sawhney, Y. Guo, K. J. Hanna, R. Kumar, S. Adkins, S. Zhou ”’ Hybrid stereo
camera: an IBR approach for synthesis of very high resolution stereoscopic
image sequences. *’ SIGGRAPH 2001: 451-460.

INPUT ——j— OUTPUT

LEFT EYE ' LEFT EYE, '
(Typically 1.5K) : ;

A schematic depicting the hybrid resolution N
stereo input and the full resolution output. HE y '

I ,; ; ;
! r  RIGHTEYE ;, RIGHTEYE
(Typically 6K)




l. Hybrid Stereo Camera

(A1} Input: Right Original Fall-res (2K = 2K}

(A1) Output: Left Synthesizad Full-res (28 = 2K

(A3) Input- Left Dow-resoluton (512 = 512 (BY) Input: Right T ow-resohution (1A = LA

{BI) Input- Left Omiginal Full-ras (44 = 44 (B3) Ontput: Rizht Syothesized Full-res (1K = 4K

LgRiS 63



Il. Super-Resolution of Face Images

S. Baker and T. Kanade, “Limites on Super-Resoltion and How to Break Them,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep 2002, Vol.
24(9), pp- 1167 — 1183.

(a) Input 24 x 32 (b) Hallucinated (c) Hardie et al. (d) Onginal (e) Cubic B-spline

(f) Input 24 x 32 (g) Hallucinated (h) Hardie ef al. (1) Original (j) Cubic B-spline =



Il. Super-Resolution of Face Images

e A

(a) Random

Hallucinated (b) Misc. Hallucinated (¢) Constant Hallucinated

The results of applying our hallucination algorithm to images not containing faces.
As is evident, a face is hallucinated by the proposed algorithm even when none is
present, hence the term “hallucination algorithm.”



lll. Depth Super-Resolution for ToF 3D Shape Scanning

S. Schuon, C. Theobalt, J. Davis, S. Thrun, "LidarBoost: Depth superresolution for
ToF 3D shape scanning,” Computer Vision and Pattern Recognition, IEEE
Computer Society Conference on, pp. 343-350, 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009.

(a) Remrd.mg Resolution (c) LidarBoost {d) Ground Truth

A ,

(z) LidarBoost {h) Ground Truth

}f\i A 10.0 %

: : I 4.0%

ol ) 1.0%

5: il | 0.1% =
f 0.0%
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lll. Depth Super-Resolution for ToF 3D Shape Scanning

i e

{a) Color Image (b} Recording Resolution




Amélioration de qualité de plaque d’immatriculation

= Performance des algorithmes de super-résolution

® Données de vidéosurveillance en contexte réel [Projet UCSD]

[ﬁﬂ"ﬂ"‘l m m ujlu.[“

W‘ﬁ"l
[Usn 56 |779—_‘1 (B [77'9_1 5K 557

® (a) 2> (d): 4 observations; de (e) a (k): résultats de super—resolut1on (facteur 2,
utilisant 10 observations) de NIL, ML, MAP_GMRF, MAP_HMRF, MAP_DAMREF,
MAP_CRE_DAMRF —

ﬁ:_
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