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Super Resolution



Intuition

Combining multiple incomplete samples of an
information, through an adequate process, leads to
a more complete and accurate information.
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D

For a given band-limited 
image, the Nyquist 
sampling theorem 
states that if a uniform 
sampling is fine enough 
(D), perfect 
reconstruction is 
possible.
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Intuition



Due to our limited 
camera resolution, we 
sample using an 
insufficient 2D grid
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Intuition



However, if we take a 
second picture, 
shifting the camera 
‘slightly to the right’ 
we obtain:
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Intuition



Similarly, by 
shifting down we 
get a third image:
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Intuition



And finally, by 
shifting down and 
to the right we get 
the fourth image:
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Intuition



It is trivial to see that 
interlacing the four 
images, we get that 
the desired resolution 
is obtained, and thus 
perfect 
reconstruction is 
guaranteed.

Intuition



What if the camera 
displacement is 
Arbitrary ? 
What if the camera 
rotates? Gets closer to 
the object (zoom)?

Rotation/Scale/Disp.



There is no 
sampling 
theorem 
covering this 
case

Rotation/Scale/Disp.
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3:1 scale-up in each axis using 9 images, with pure 
global translation between them 

A Small Example



Image formation model
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Ei

Ei * wi

Lens System

Finite Aperture

CCD Sensor

Optical Effect: wi

Spatial Integration: ai

Si
Si



Example - Video

53 images, ratio 1:4
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40 images 
ratio 1:4

Example – Surveillance 

14



Example – Enhance Mosaics

Lieu de la présentation - 17/11/2003 15



Example – Enhance Mosaics

Lieu de la présentation - 17/11/2003 16



Literature

Rich literature, numerous algorithms,

Dating back to the freqeuncy domain approch of
Huang an Tsai:

« Multiple image restoration and registration »,
Advences in computer Vision and Image Processing,
1/317-339, 1984.
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Over all Process

Assumptions
A. Some small relative motion between camera and the

scene
B. Or other imaging parameters, such as the amount of

defocus blur, variation
Stages
 I. Registration : pixels motion estimation from one image to

others
 II. Fusion based on some constraints from the image

formation process model’s
Results
 Improvement over the input images
High frequency of components are usually not recontructed

very well
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Some practical experiments

High resolution random translation blurred with a guassian
 down-sampled
As many LR pixels in total as the pixels in the HR image
Providing the exact knowledge of the point spread function
(Gaussian) and the sub-pixel translations to SR [Hardie et al.]
 High resolution components are not well recovered
 A decent reconstruction from input images
 The performance gets much worse as the magnification increases
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Nb of Input Images/
Down sampling ratio

Linear Magnification

1 4 16 64 256

x1 X2 x4 x8 x16



inverse problem

Find the best model such that (at least approximately)

Operator
Describes the explicit relationship between the observed

data, , and the model parameters
Also called forward operator, observation operator,

or observation function
Represents the governing equations that relate the model

parameters to the observed data
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SR : Position of the problem

A set of N low images Loi m , i 1,..,N
m m,n a vector in Z² is the pixel coordinates
The continuous irradiance light-field: Ei
The Point Spread Function: PSFi .
x x,y in R² the coordin. in the image plane of Loi
Continuous image formation equation

The pixel intensity is the result of convolving the irradiance function
with the point‐spread function and then sampling it at the discrete
pixel locations
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Point Spread Function Model
wi x 	models the blurring:
 defocus factor (pillbox function –

low pass filter)

diffraction-limited optical transfer
(first-order Bessel function of the 
first kind)

and ai x 		spatisal integration:
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Ei

Ei * wi

Lens System

Finite Aperture

CCD Sensor

Optical Effect: wi

Spatial Integration: ai

Si
Si
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Super-Resolution

Su p is a superresolved image, where p p,q in Z² according to
coordinate frame of Loi m

Assuming the registration under the pinhole model is correct,
the radiance of the scene is transformed, in the same way, by all
Loi and Su images, we have:

23

Determinant of the Jacobian of the 
registration transformation ri(.)

p = m/M, x = ri(z) registration transformation 



Observation model

Formulation
 Su the high resolution image of size Ns L1 Nl1 x L2 Nl2 written

as a vector x x1, x2, …, xN T

 L1, L2 down sampling facors
 Loi the low resoltion image of size Nl Nl1 x Nl2 , i in 1,..,N

written as a vector yi yi,1,…, yi,Nl
 The observation model is yi H Di Wi x niwhere

 H represente the blur matrix
 Di the subsampling matrix
 Wi the motion matrix
 ni the noise matrix

yi Mi x ni , i in 1,..,N
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Categorization of super-resolution approaches
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SR Image 
Reconstruction 

Algorithms

Nonuniform
Interpolation *

Frequency
Domain *

Regularized
Reconstruction *

Deterministic Stochastic *

POCS-
Projection Onto 

Convex Sets

MAP-POCS 
Hybrid

Reconstruction



Image Formation

Scene Noise

HR LR
Can we write these steps as linear operators?

Geometric
transformation

kW

Optical
Blur

kH

Sampling

kD

HRWHDLR  kkk



Geometric Transformation

Any appropriate motion model
Every frame has different transformation
Usually found by a separate registration algorithm

Scene Geometric
transformation

kW



Geometric Transformation

Can be modeled as a linear operation
XkW

kW

X

=

kW X
XkW



Optical Blur

Due to the lens PSF and pixel integration
Usually

Geometric
transformation

Optical
Blur

kH

HH k



H

PSF PIXEL H* =



Optical Blur

Can be modeled as a linear operation
XH

H

X

=

XH
XH



Sampling

Pixel operation consists of area integration followed by
decimation
D is the decimation only
Usually

Optical Blur Sampling

kD

DD k



Decimation

Can be modeled as a linear operation
XD

D

X

=

X

01
01

...
01

01
01 o

o
D
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XD



Super-Resolution - Model
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Simplified Model
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The Super-Resolution Problem

Given
Yk – The measured images (noisy, blurry, down-sampled ..)
H – The blur can be extracted from the camera characteristics
D – The decimation is dictated by the required resolution ratio
Wk – The warp can be estimated using motion estimation
n – The noise can be extracted from the camera / image

Recover
X – HR image

 2,0~ nkkkk VVXY N ,WDH 
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The Model as One Equation
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MrVX
MrNM

NMY
G

r = resolution factor
MXM = size of the frames
N = number of frames

r = resolution factor = 4
MXM = size of the frames = 1000X1000
N = number of frames = 10

=[10M×1]
=[10M×16M]
=[16M×1]



SR - Solutions

Maximum Likelihood (ML):
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2minarg WDH 

Smoothness constraint
regularization

Often ill posed problem!

 XAYXX
N

k
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2minarg WDH 
Maximum Aposteriori Probability (MAP)



ML Reconstruction (LS) 
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Algorithme du gradient
On se donne un point/itéré initial et un seuil 
de tolérance . L'algorithme du gradient définit une suite d'itérés , 
jusqu'à ce qu'un test d'arrêt soit satisfait. Il passe de à par les étapes suivantes.
1. Simulation : calcul de .
2. Test d'arrêt : si , arrêt.
3. Calcul du pas par une règle de recherche linéaire sur en le long de la 
direction         .
4. Nouvel itéré :



LS - Iterative Solution

Steepest descent
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Simulated 
error

Back projection

All the above operations can be interpreted as 
operations performed on images.

There is no actual need to use the Matrix-Vector 
notations as shown here. 



LS - Iterative Solution

Steepest descent
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Example

Simulated example from Farisu at al.
IEEE trans. On Image Processing, 04

HR image Least squaresLR + noise
X4



Robust Reconstruction

Cases of measurements outlier:
Some of the images are irrelevant
Error in motion estimation
Error in the blur function
General model mismatch



Robust Reconstruction
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Robust Reconstruction

Steepest descent
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Example - Outliers

Simulated example from Farisu at al.
IEEE trans. On Image Processing, 04

HR image LR + noise
X4

Least squares

Robust Reconstruction



20 images, ratio 1:4

L2 norm based

Example – Registration Error

L1 norm based    



MAP Reconstruction

Regularization term:

Tikhonov cost function

Total variation

Bilateral filter
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Robust Estimation + Regularization

   
 






P

Pl

P

Pm

m
y

l
x

ml
N

k
kk XSSXYXX

11
1

2  WDH 

Minimize:

 
    



 









P

Pl

P

Pm
n

m
y

l
xn

m
y

l
x

ml

N

k
knk

TTT
knn

XSSXSSI

YXXX

ˆˆsign

ˆsignˆˆ
1

1



 WDHWHF



Robust Estimation + Regularization
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Example

8 frames
Resolution factor of 4

From Farisu at al.  IEEE trans. On Image Processing, 04



Example

Images from Vigilant Ltd.



Handling Color in SR

   XAYXX
N

k
kkMAP   

1

22 WDH 

Handling color: the classic approach is to convert the 
measurements to YCbCr, apply the SR on the Y and use 
trivial interpolation on the Cb and Cr.

Better treatment can be obtained if the statistical 
dependencies between the color layers are taken into 
account (i.e. forming a prior for color images).

In case of mosaiced measurements, demosaicing  followed 
by SR is sub-optimal. An algorithm that directly fuse the 
mosaic information to the SR is better. 
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Nonuniform Interpolation Approch

Relative motion information estimation
Uniformly spaced sampling Su grid obtained by the

single step or iterative method
J. J. Clark et al., “A transformation method for the reconstruction of functions

from nonuniformly spaced samples,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-33, pp. 1151-1165, 1985.

J.L. Brown, “Multi-channel sampling of low pass signals,” IEEE Trans.
Circuits Syst., vol. CAS-28, pp. 101-106, 1981.

Application of a deconvolution method to remove
blurring and noise
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Registration 
or Motion 
Estimation 

Interpolation 
onto an Su 

Grid

Restoration
for Blur and 

noise 
Removal

.
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Nonuniform Interpolation Approach

(a) nearest neighbor interpolation
(b) bilinear interpolation
(c) non uniform interpolation with
4 Lo images
(d) Deblurring part
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Frequency Domain Approach

Based on
Shifting property of the Fourier Transform
Aliasing relationship between the CFT of an Su image and

the DFT of Loi images
Bandlimited property of the Su image

R.Y. Tsai and T.S. Huang, “Multipleframe image restoration and
registration,” in Advances in Computer Vision and Image Processing.
Greenwich, CT: JAI Press Inc., 1984, pp. 317-339.
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Frequency Domain Approach
Let a Su image x and its CFT X

Global translation yield the ith shifted image where the translation
vector is known: xi x t

By the shifting property of the CFT, the CFT shifted image Su image can
be written: Xi f X

Xi is sampled to generate the observed yi Lo image

A system of equations is formulated from the relationship between the
CFT of Su and the DFT of the ith observed Lo image

Finally, the inverse problem is resolved to determine first the DFT of the
observed Loi images and then CFT coefficient of x
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Regularized SR Recons. Approach

Stochastic Approach based on Bayesian estimation methods
 PDF (Probability Density Function) of the original image can be

established
 MAP (Maximum A Posteriori) estimator of x maximises the a

posteriori PDF with respect to x

 Taking the logarithmic function and applying Bayes’ theorem to the
conditionnal probability, we have

S. Baker and T. Kanade, “Limites on Super-Resoltion and How to Break
Them,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
Sep 2002, Vol. 24(9), pp. 1167 – 1183.
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Regularized SR Recons. Approach

(a) nearest neighbor interpolation
(b) bilinear interpolation
(c) non uniform interpolation with
4 Lo images
(d) MAP with edge-preserving
Prior
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Interesting application of SR

I. Hybrid Stereo Camera
II. Super-Resolution of Face Images
III. Depth Superresolution for ToF 3D Shape
Scanning
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I. Hybrid Stereo Camera
H. S. Sawhney, Y. Guo, K. J. Hanna, R. Kumar, S. Adkins, S. Zhou ’’ Hybrid stereo

camera: an IBR approach for synthesis of very high resolution stereoscopic
image sequences. ’’ SIGGRAPH 2001: 451-460.
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A schematic depicting the hybrid resolution 
stereo input and the full resolution output.



I. Hybrid Stereo Camera
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II. Super-Resolution of Face Images
S. Baker and T. Kanade, “Limites on Super-Resoltion and How to Break Them,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep 2002, Vol.
24(9), pp. 1167 – 1183.
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II. Super-Resolution of Face Images
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The results of applying our hallucination algorithm to images not containing faces. 
As is evident, a face is hallucinated by the proposed algorithm even when none is 
present, hence the term “hallucination algorithm.”



III. Depth Super-Resolution for ToF 3D Shape Scanning

S. Schuon, C. Theobalt, J. Davis, S. Thrun, "LidarBoost: Depth superresolution for
ToF 3D shape scanning," Computer Vision and Pattern Recognition, IEEE
Computer Society Conference on, pp. 343-350, 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009.
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III. Depth Super-Resolution for ToF 3D Shape Scanning
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Performance des algorithmes de super‐résolution
Données de vidéosurveillance en contexte réel [Projet UCSD]

 (a)  (d): 4 observations; de (e) à (k): résultats de super‐résolution (facteur 2,
utilisant 10 observations) de NIL, ML, MAP_GMRF, MAP_HMRF, MAP_DAMRF,
MAP_CRE_DAMRF

Amélioration de qualité  de plaque d’immatriculation Amélioration de qualité  de plaque d’immatriculation 


