

Super Resolution

Laboratoire d'InfoRmatique en Image et Systèmes d'information

LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumière Lyon 2/Ecole Centrale de Lyon Université Claude Bernard Lyon 1, bâtiment Nautibus 43, boulevard du 11 novembre 1918 — F-69622 Villeurbanne cedex http://liris.cnrs.fr

Université Claude Bernard 🕼 Lyon 1

June 11th 2010

Combining multiple incomplete samples of an information, through an adequate process, leads to a more complete and accurate information.

For a given band-limited image, the Nyquist sampling theorem states that if a uniform sampling is fine enough (≥D), perfect reconstruction is possible.

Due to our limited camera resolution, we sample using an insufficient 2D grid

However, if we take a second picture, shifting the camera 'slightly to the right' we obtain:

Similarly, by shifting down we get a third image:

And finally, by shifting down and to the right we get the fourth image:

It is trivial to see that interlacing the four images, we get that the desired resolution is obtained, and thus perfect reconstruction is guaranteed.

Rotation/Scale/Disp.

What if the camera displacement is Arbitrary ? What if the camera rotates? Gets closer to the object (zoom)?

Rotation/Scale/Disp.

There is no sampling theorem covering this case

A Small Example

Image formation model

Example - Video

53 images, ratio 1:4

Example – Surveillance

40 images ratio 1:4

14

LIRIS

Example – Enhance Mosaics

Example – Enhance Mosaics

E Rich literature, numerous algorithms,

Dating back to the frequency domain approch of Huang an Tsai:

« Multiple image restoration and registration », Advences in computer Vision and Image Processing, 1/317-339, 1984.

Over all Process

Assumptions

- A. Some small relative motion between camera and the scene
- B. Or other imaging parameters, such as the amount of defocus blur, variation
- Stages
 - I. Registration : pixels motion estimation from one image to others
 - II. Fusion based on some constraints from the image formation process model's

Results

- Improvement over the input images
- High frequency of components are usually not recontructed very well

Some practical experiments

- High resolution → random translation → blurred with a guassian → down-sampled
- **a** As many LR pixels in total as the pixels in the HR image
- Providing the exact knowledge of the point spread function (Gaussian) and the sub-pixel translations to SR [Hardie et al.]
 - High resolution components are not well recovered
 - A decent reconstruction from input images
 - The performance gets much worse as the magnification increases

inverse problem

Find the best model such that (at least approximately)

$$d = G(m)$$

\blacksquare Operator *G*

- Describes the explicit relationship between the observed data, d, and the model parameters
- Also called forward operator, observation operator, or observation function
- Represents the governing equations that relate the model parameters to the observed data

SR : Position of the problem

- **A set of** N **low images** Lo_i(**m**), *i*=1,...,N
- **m**(m,n) a vector in Z^2 is the pixel coordinates
- **The continuous irradiance light-field:** E_i
- **The Point Spread Function**: PSF_i(.)
- $\mathbf{z} = \mathbf{x} = (x, y)$ in \mathbb{R}^2 the coordin. in the image plane of Lo_i
- **E** Continuous image formation equation

$$Lo_i(\boldsymbol{m}) = (E_i * PSF_i)(\boldsymbol{m}) = \int_{LO_i} E_i(x) \cdot PSF(x - \boldsymbol{m}) dx$$

The pixel intensity is the result of convolving the irradiance function with the point-spread function and then sampling it at the discrete pixel locations

Point Spread Function Model

 $\mathbf{=} \mathbf{w}_{i}(\mathbf{x})$ models the blurring: defocus factor (pillbox function – low pass filter) **Optical Effect: w**_i Lens System · • diffraction-limited optical transfer (first-order Bessel function of the $\mathbf{E}_{i*} \mathbf{w}_{i}$ **Finite Aperture** first kind) **Spatial Integration:** a_i $x^{2}\frac{d^{2}f}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - \alpha^{2})f = 0$ **CCD Sensor** $Lo_i(m,n) = E_i * w_i * a_i(m,n) \overset{\bullet}{\underset{\mathbf{S}_i}{\overset{\bullet}{\overset{\bullet}{\mathsf{S}_i}}} S_i$ 0.8 -0.6 - $= (E_i * PSF_i)(\mathbf{m})$ 0.4 -(x)^u 0.2 -.02. .04 $a_{i}(\boldsymbol{x}) = \begin{cases} \frac{1}{S_{i}^{2}} & \text{if } |\boldsymbol{x}| \leq \frac{S_{i}}{2} & \text{and } |\boldsymbol{y}| \leq \frac{S_{i}}{2} \\ 0 & \text{otherwise.} \end{cases}$ and a_i(x) spatisal integration: LIRIS 22

Super-Resolution

Su(p) is a superresolved image, where p=(p,q) in Z² according to coordinate frame of Lo_i(m)

$$Lo_{i}(\boldsymbol{m}) = \int_{Su} E_{i}(r_{i}(\boldsymbol{z})) \cdot PSF_{i}(r_{i}(\boldsymbol{z}) - \boldsymbol{m}) \cdot \left| \frac{\partial r_{i}}{\partial \boldsymbol{z}} \right| d\boldsymbol{z}$$

p = m/M, x = ri(z) registration transformation

Determinant of the Jacobian of the registration transformation r_i(.)

23

......

Assuming the registration under the pinhole model is correct, the radiance of the scene is transformed, in the same way, by all Lo_i and Su images, we have:

$$Lo_i(\boldsymbol{m}) = \int_{Su} E(\boldsymbol{z}) \cdot PSF_i(r_i(\boldsymbol{z}) - \boldsymbol{m}) \cdot \left| \frac{\partial r_i}{\partial \boldsymbol{z}} \right| d\boldsymbol{z}$$

Observation model

Formulation

- Su the high resolution image of size Ns = L₁ Nl₁ x L₂ Nl₂ written as a vector x = [x₁, x₂, ..., x_N]^T
- L₁, L₂ down sampling facors
- Loi the low resoltion image of size $Nl = Nl_1 \times Nl_2$, i in {1,..,N} written as a vector $y_i = [y_{i,1}, ..., y_{i,Nl}]$

- The observation model is $y_i = H D_i W_i x + n_i$ where
 - H represente the blur matrix
 - D_i the subsampling matrix
 - W_i the motion matrix
 - n_i the noise matrix

$$y_i = M_i x + n_i$$
, i **in** {1,...,N}

Categorization of super-resolution approaches

Image Formation

Geometric Transformation

Scene

Geometric transformation

IRIS

Any appropriate motion model
 Every frame has different transformation
 Usually found by a separate registration algorithm

Geometric Transformation

Can be modeled as a linear operation

Geometric transformation Optical Blur

LIRIS

E Due to the lens PSF and pixel integration **E** Usually $\mathbf{H}_k = \mathbf{H}$

Can be modeled as a linear operation

 $\mathbf{H}X$

Sampling

Optical Blur

Sampling

LIRIS

Pixel operation consists of area integration followed by decimation
D is the decimation only
Usually D_k = D

Decimation

Can be modeled as a linear operation

DX

Super-Resolution - Model

Simplified Model

The Super-Resolution Problem

 $\underline{Y}_{k} = \mathbf{DHW}_{k} \underline{X} + \underline{V}_{k}, \quad \underline{V}_{k} \sim \mathbf{N}\{0, \sigma_{n}^{2}\}$

= Given

 $\label{eq:product} \underline{Y}_k - \text{The measured images (noisy, blurry, down-sampled ..)} \\ H - \text{The blur can be extracted from the camera characteristics} \\ D - \text{The decimation is dictated by the required resolution ratio} \\ W_k - \text{The warp can be estimated using motion estimation} \\ \sigma_n - \text{The noise can be extracted from the camera / image} \end{aligned}$

ERecover X – HR image

The Model as One Equation

$$\underline{Y} = \begin{bmatrix} \underline{Y}_{1} \\ \underline{Y}_{2} \\ \vdots \\ \underline{Y}_{N} \end{bmatrix} = \begin{bmatrix} \mathbf{D}_{1} \mathbf{H}_{1} \mathbf{W}_{1} \\ \mathbf{D}_{2} \mathbf{H}_{2} \mathbf{W}_{2} \\ \vdots \\ \mathbf{D}_{N} \mathbf{H}_{N} \mathbf{W}_{N} \end{bmatrix} \underline{X} + \begin{bmatrix} \underline{V}_{1} \\ \underline{V}_{2} \\ \vdots \\ \underline{V}_{N} \end{bmatrix} = \mathbf{G} \underline{X} + \underline{V}$$

r = resolution factor = 4 MXM = size of the frames = 1000X1000 N = number of frames = 10

 $\underline{Y} \text{ of size } \begin{bmatrix} NM^2 \times 1 \end{bmatrix} = \begin{bmatrix} 10M \times 1 \end{bmatrix}$ $\mathbf{G} \text{ of size } \begin{bmatrix} NM^2 \times r^2M^2 \end{bmatrix} = \begin{bmatrix} 10M \times 16M \end{bmatrix}$ $\underline{X}, \underline{V} \text{ of size } \begin{bmatrix} r^2M^2 \times 1 \end{bmatrix} = \begin{bmatrix} 16M \times 1 \end{bmatrix}$

SR - Solutions

E Maximum Likelihood (ML): $\underline{X} = \arg \min_{\underline{X}} \sum_{k=1}^{N} \| \mathbf{DHW}_{k} \underline{X} - \underline{Y}_{k} \|^{2}$

Often ill posed problem!

E Maximum Aposteriori Probability (MAP) $\underline{X} = \arg \min_{\underline{X}} \sum_{k=1}^{N} \| \mathbf{DHW}_{k} \underline{X} - \underline{Y}_{k} \|^{2} + \lambda A \{ \underline{X} \}$

Smoothness constraint regularization

IRIS

ML Reconstruction (LS)

Minimize:

$$\mathcal{E}_{ML}^{2}(\underline{X}) = \sum_{k=1}^{N} \| \mathbf{DHW}_{k} \underline{X} - \underline{Y}_{k} \|^{2}$$

Thus, require: $\frac{\partial \varepsilon_{ML}^{2}(\underline{X})}{\partial \underline{X}} = 2\sum_{k=1}^{N} \mathbf{W}_{k}^{T} \mathbf{H}^{T} \mathbf{D}^{T} \left(\mathbf{D} \mathbf{H} \mathbf{W}_{k} \, \underline{\hat{X}} - \underline{Y}_{k} \right) = 0$

Algorithme du gradient

On se donne un point/itéré initial $x_0 \in \mathbb{E}$ et un seuil

de tolérance $\varepsilon \ge 0$. L'algorithme du gradient définit une suite d'itérés $x_1, x_2, \ldots \in \mathbb{E}$, jusqu'à ce qu'un test d'arrêt soit satisfait. Il passe de x_k à x_{k+1} par les étapes suivantes.

1. Simulation : calcul de $\nabla f(x_k)$.

2. Test d'arrêt : si $\|\nabla f(x_k)\| \leq \varepsilon$, arrêt.

3. Calcul du pas $\alpha_k > 0$ par une <u>règle de recherche linéaire</u> sur *f* en x_k le long de la direction $-\nabla f(x_k)$.

4. Nouvel itéré $x_{k+1} = x_k - \alpha_k \nabla f(x_k)$.

LS - Iterative Solution

Steepest descent

$$\underline{\hat{X}}_{n+1} = \underline{\hat{X}}_n - \beta \sum_{k=1}^{N} \mathbf{W}_k^T \mathbf{H}^T \mathbf{D}^T \left(\mathbf{D} \mathbf{H} \mathbf{W}_k \underline{\hat{X}}_n - \underline{Y}_k \right)$$

Back projection Simulated error

All the above operations can be interpreted as operations performed on images.

There is no actual need to use the Matrix-Vector notations as shown here.

I IRis

LS - Iterative Solution

ESteepest descent

HR image

LR + noise X4

Least squares

LIRIS

Simulated example from Farisu at al. IEEE trans. On Image Processing, 04

Robust Reconstruction

Cases of measurements outlier:
 Some of the images are irrelevant
 Error in motion estimation
 Error in the blur function
 General model mismatch

Robust Reconstruction

Minimize:
$$\mathcal{E}^{2}(\underline{X}) = \sum_{k=1}^{N} \| \mathbf{DHW}_{k} \underline{X} - \underline{Y}_{k} \|_{1}$$

$$\underline{\hat{X}}_{n+1} = \underline{\hat{X}}_n - \beta \sum_{k=1}^N \mathbf{W}_k^T \mathbf{H}^T \mathbf{D}^T \operatorname{sign} \left(\mathbf{D} \mathbf{H} \mathbf{W}_k \underline{\hat{X}}_n - \underline{Y}_k \right)$$

Robust Reconstruction

ESteepest descent

$$\underline{\hat{X}}_{n+1} = \underline{\hat{X}}_n - \beta \sum_{k=1}^N \mathbf{W}_k^T \mathbf{H}^T \mathbf{D}^T \operatorname{sign} \left(\mathbf{D} \mathbf{H} \mathbf{W}_k \underline{\hat{X}}_n - \underline{Y}_k \right)$$

Example - Outliers

HR image

LR + noise X4

Simulated example from Farisu at al. IEEE trans. On Image Processing, 04

Least squares

Robust Reconstruction

LIRIS

LIRIS

20 images, ratio 1:4

MAP Reconstruction

$$\mathcal{E}_{MAP}^{2}\left(\underline{X}\right) = \sum_{k=1}^{N} \left\| \mathbf{DHW}_{k} \underline{X} - \underline{Y}_{k} \right\|^{2} + \lambda A \left\{ \underline{X} \right\}$$

Tikhonov cost function

$$A_{T}\left\{\underline{X}\right\} = \left\|\Gamma\underline{X}\right\|^{2}$$

Total variation

Bilateral filter

$$A_{TV} \{ \underline{X} \} = \left\| \nabla \underline{X} \right\|_{1}$$
$$A_{B} \{ \underline{X} \} = \sum_{l=-P}^{P} \sum_{m=-P}^{P} \alpha^{|l|+|m|} \left\| \underline{X} - S_{x}^{l} S_{y}^{m} \underline{X} \right\|_{1}$$

LIRIS

Robust Estimation + Regularization

Minimize:

$$\varepsilon^{2}(\underline{X}) = \sum_{k=1}^{N} \|\mathbf{DHW}_{k} \underline{X} - \underline{Y}_{k}\|_{1} + \lambda \sum_{l=-P}^{P} \sum_{m=-P}^{P} \alpha^{|l|+|m|} \|\underline{X} - S_{x}^{l} S_{y}^{m} \underline{X}\|$$

$$\hat{\underline{X}}_{n+1} = \hat{\underline{X}}_n - \beta \left\{ \sum_{k=1}^{N} \mathbf{F}_k^T \mathbf{H}^T \mathbf{W}^T \operatorname{sign} \left(\mathbf{D} \mathbf{H} \mathbf{W}_k \hat{\underline{X}}_n - \underline{Y}_k \right) + \lambda \sum_{l=-P}^{P} \sum_{m=-P}^{P} \alpha^{|l|+|m|} \left[I - S_x^{-l} S_y^{-m} \right] \operatorname{sign} \left(\hat{\underline{X}}_n - S_x^{l} S_y^{m} \hat{\underline{X}}_n \right) \right\}$$

LIRIS

Robust Estimation + Regularization

$$\underline{\hat{X}}_{n+1} = \underline{\hat{X}}_{n} - \beta \left\{ \sum_{k=1}^{N} \mathbf{F}_{k}^{T} \mathbf{H}^{T} \mathbf{W}^{T} \operatorname{sign} \left(\mathbf{D} \mathbf{H} \mathbf{W}_{k} \underline{\hat{X}}_{n} - \underline{Y}_{k} \right) + \lambda \sum_{l=-P}^{P} \sum_{m=-P}^{P} \alpha^{|l|+|m|} \left[I - S_{x}^{-l} S_{y}^{-m} \right] \operatorname{sign} \left(\underline{\hat{X}}_{n} - S_{x}^{l} S_{y}^{m} \underline{\hat{X}}_{n} \right) \right\}$$

Example

8 frames Resolution factor of 4

LIRIS

From Farisu at al. IEEE trans. On Image Processing, 04

Handling Color in SR

$$\mathcal{E}_{MAP}^{2}\left(\underline{X}\right) = \sum_{k=1}^{N} \left\| \mathbf{DHW}_{k} \underline{X} - \underline{Y}_{k} \right\|^{2} + \lambda A\left\{\underline{X}\right\}$$

Handling color: the classic approach is to convert the measurements to YCbCr, apply the SR on the Y and use trivial interpolation on the Cb and Cr.

Better treatment can be obtained if the statistical dependencies between the color layers are taken into account (i.e. forming a prior for color images).

In case of mosaiced measurements, demosaicing followed by SR is sub-optimal. An algorithm that directly fuse the mosaic information to the SR is better.

Nonuniform Interpolation Approch

- Relative motion information estimation
- Uniformly spaced sampling Su grid obtained by the single step or iterative method
 - J. J. Clark et al., "A transformation method for the reconstruction of functions from nonuniformly spaced samples," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-33, pp. 1151-1165, 1985.
 - J.L. Brown, "Multi-channel sampling of low pass signals," IEEE Trans. Circuits Syst., vol. CAS-28, pp. 101-106, 1981.

Application of a deconvolution method to remove blurring and noise

Nonuniform Interpolation Approach

- (a) nearest neighbor interpolation Ξ
- **(b)** bilinear interpolation
- **=** (c) non uniform interpolation with 4 Lo images
- **=** (d) Deblurring part

(a)

LIRIS

56

(c)

Frequency Domain Approach

Based on

- Shifting property of the Fourier Transform
- Aliasing relationship between the CFT of an Su image and the DFT of Lo_i images
- Bandlimited property of the Su image
 - R.Y. Tsai and T.S. Huang, "Multipleframe image restoration and registration," in Advances in Computer Vision and Image Processing. Greenwich, CT: JAI Press Inc., 1984, pp. 317-339.

Frequency Domain Approach

- **Let a** Su **image** x **and its** CFT X
- Global translation yield the ith shifted image where the translation vector is known: x_i=x + t
- By the shifting property of the CFT, the CFT shifted image Su image can be written: X_i=f(X)
- \mathbf{z} X_i is sampled to generate the observed y_i Lo image
- **A system of equations is formulated from the relationship between the** CFT of Su and the DFT of the ith observed Lo image
- Finally, the inverse problem is resolved to determine first the DFT of the observed Lo_i images and then CFT coefficient of x

Regularized SR Recons. Approach

Stochastic Approach based on Bayesian estimation methods

- PDF (Probability Density Function) of the original image can be established
- MAP (Maximum A Posteriori) estimator of x maximises the a posteriori PDF with respect to x

 $x = \arg \max P(x|y_1, \dots, y_n)$

 Taking the logarithmic function and applying Bayes' theorem to the conditionnal probability, we have

 $x = \arg \max\{\ln P(y_1, \dots y_N | x) + \ln P(x)\}$

S. Baker and T. Kanade, "Limites on Super-Resoltion and How to Break Them," IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep 2002, Vol. 24(9), pp. 1167 – 1183.

Regularized SR Recons. Approach

- **a** (a) nearest neighbor interpolation
- **(b)** bilinear interpolation
- (c) non uniform interpolation with4 Lo images
- (d) MAP with edge-preserving Prior

(c)

LIRIS

Interesting application of SR

- I. Hybrid Stereo Camera
- **E**II. Super-Resolution of Face Images
- III. Depth Superresolution for ToF 3D Shape Scanning

I. Hybrid Stereo Camera

H. S. Sawhney, Y. Guo, K. J. Hanna, R. Kumar, S. Adkins, S. Zhou "Hybrid stereo camera: an IBR approach for synthesis of very high resolution stereoscopic image sequences." SIGGRAPH 2001: 451-460.

A schematic depicting the hybrid resolution stereo input and the full resolution output.

LIRIS

I. Hybrid Stereo Camera

(A1) Input: Right Original Full-res (2K × 2K)

(A3) Input: Left Low-resolution (512 \times 512)

(B2) Input: Left Original Full-res (4K × 4K)

(A2) Output: Left Synthesized Full-res $(2K \times 2K)$

(B1) Input: Right Low-resolution (1K × 1K)

(B3) Output: Right Synthesized Full-res $(4K \times 4K)$

II. Super-Resolution of Face Images

S. Baker and T. Kanade, "Limites on Super-Resoltion and How to Break Them," IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep 2002, Vol. 24(9), pp. 1167 – 1183.

II. Super-Resolution of Face Images

The results of applying our hallucination algorithm to images not containing faces. As is evident, a face is hallucinated by the proposed algorithm even when none is present, hence the term "hallucination algorithm."

III. Depth Super-Resolution for ToF 3D Shape Scanning

S. Schuon, C. Theobalt, J. Davis, S. Thrun, "LidarBoost: Depth superresolution for ToF 3D shape scanning," Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, pp. 343-350, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.

III. Depth Super-Resolution for ToF 3D Shape Scanning

Amélioration de qualité de plaque d'immatriculation

Performance des algorithmes de super-résolution

Données de vidéosurveillance en contexte réel [Projet UCSD]

