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Focus

Effective facial description methods and robust matching
schemes in different recognition scenarios:
Only 3D Shape based Face Recognition
Textured 3D Face Recognition
Asymmetric Face Recognition

2D Probes Gallery Set 3D Probes
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Background

Advantages of Face Recognition
Universal
Facile
Acceptable
Contactless
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Background

Challenges in Face Recognition
Inter-Class Similarities

All faces are similar !

Intra-class Variations
Illumination
Facial Expressions
Pose
Aging
Occlusion
Make-up
…

Illumination

Expressions

Pose

Twins

Father & Son

(B)  Inter-Class Similarities 

(A) Intra-Class Variations

Class i

Class j
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Background

3D face models capture exact geometric shapes of facial surfaces
(along with their texture maps):
Main merits

 Illumination variation invariance
 Convenient pose correction
 Cosmetic use tolerance

Main limitations
 Facial expression changes
Data acquisition and computation cost
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Problem Statement

Key Issues:
How to represent 3D facial surfaces
How to achieve robust matching across expression variations
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Literature Review

3D Facial Representation Taxonomy
Original Feature:

Uses the entire face area as the input to compute similarities
Ref. PCA on facial range images [2003 Bronstein et al. AVBPA]

ICP-based matching using 3D point-clouds [2006 Lu et al. TPAMI]…
Region or Point Feature:

 Detects representative facial areas or points to construct feature spaces
Ref. Eye and nose regions [1992 Gordon et al. CVPR]

Segmented facial regions [2003 Moreno et al. IMVIP] …
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Literature Review

3D Facial Representation Taxonomy
Curve Feature:

 Extracts discriminative facial curves
Ref. Three main curves [1992 Nagamine et al. ICPR]

A union of the level curves[2006 Samir et al. TPAMI] …
Shape Feature:

 Focuses on the attributes of local surfaces
Ref. Curvatures [1992 Gordon et al. CVPR]

Point signature [2000 Chua et al. FG]
…
Signed Shape Difference Map (SSDM) [2010 Wang et al. TPAMI]
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Literature Review

3D Face Matching Taxonomy
Holistic Matching:

 It requires accurate normalization with respect to pose and scale changes,
and proves sensitive to facial expression changes and partial occlusion.

Ref. Subspace based [2003 Bronstein et al. AVBPA]
Isometry Invariant [2005 Bronstein et al. IJCV]
ICP based [2006 Lu et al. TPAMI]…

Local Matching:
 It is robust to expression, pose variations, and even to partial occlusions.

But it is difficult to extract sufficient informative features from similar or
smooth 3D facial surfaces.

Ref. Point signature [2000 Chua et al. FG]
Region ICP [2009 Ouji et al. MMM]
Signed Shape Difference Map (SSDM) [2010 Wang et al. TPAMI]...
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Motivation

3D face recognition approach using Multi-scale-extended LBP (MS-
eLBP) facial Representation and SIFT based local matching
Why we eLBP to describe 3D facial surfaces? (Shape Feature based)

Accurate description and excellent performance in 2D face recognition
 LBP is not powerful enough for 3D face recognition

Why we apply local Matching? (Local Matching)
Registration tuning free for nearly frontal faces

Range 
Face Score

Score

Score

Fusion DecisionExtended
LBP

Additional LBP 
Face Map 1

Additional LBP 
Face Map n

LBP Face Map

... ...

Local 
Matching
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MS-Extended LBP Maps

Local Binary Patterns (LBP)
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MS-Extended LBP Maps

LBP based facial representation
Histogram Based
Image Based

Reserve all 2D spatial information
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MS-Extended LBP Maps

LBP describes texture in 2D facial images
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MS-Extended LBP Maps

LBP describes shape in 3D facial surfaces (range images)
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MS-Extended LBP Maps

Problem!!!
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MS-Extended LBP Maps

Solutions:
Extended LBP
Multi-Scale Strategy
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MS-Extended LBP Maps

Solutions:
Extended LBP
Multi-Scale Strategy
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SIFT based Local Matching

Local Feature Extraction
SIFT Keypoint Detection
 SIFT Feature Descriptor
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SIFT based Local Matching

Matching Strategy
SIFT Feature Matching

NELRi denotes the number of the matched keypoints respectively in the ith

layer of MS-eLBP Face Map pair generated using the ELBP operator from
facial range images with the neighborhood of Ri.

Facial Component Constraint
Facial Configuration Constraint
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SIFT based Local Matching

Matching Strategy
SIFT Feature Matching
Facial Component Constraint

 Emphasizes matching between points within corresponding components
in gallery and probe face respectively.

Facial Configuration Constraint

Divide the entire face region roughly into 3×3 components
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SIFT based Local Matching

Matching Strategy
Feature-based Matching
Facial Component Constraint
Facial Configuration Constraint

 Computes errors between corresponding vertices and edges

Vg(xg, yg, zg) Vp(xp, yp, zp)
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SIFT based Local Matching

Similarity Fusion
All the fusion weights are computed dynamically during the online

step

where i corresponds to the three similarity measurements: N, C, and
D, and operators min1(Si) and min2(Si) produce the first and second
minimum value of the vector Si.
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Experimental Results

Database: FRGC v2.0
4007 3D models of 466 subjects;
Median filter is utilized for removing spikes;
Cubic interpolation is adopted for filling holes;
Costly registration step is not necessary.

Protocol Settings: FRGC v2.0
The first facial scan with a neutral expression of each subject makes up of a

gallery set; and the remaining faces(4007-466=3541) are treated as probes.
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Experimental Results

P=4 R=2 R=3 R=4 R=5 R=6 R=7 R=8
LBP 81.6% 84.8% 86.9% 87.7% 87.6% 86.2% 85.9%

eLBP L2 75.2% 83.3% 85.7% 87.1% 87.6% 87.3% 87.0%
eLBP L3 76.9% 74.7% 71.6% 68.8% 67.4% 63.7% 61.9%
eLBP L4 4.5% 8.0% 12.7% 16.0% 25.9% 33.2% 40.6%

eLBP 90.0% 90.9% 92.0% 92.6% 92.4% 92.3% 92.3%

Parameter Evaluation
Rank-one recognition rates based on different eLBP depth maps of single
scale with various parameter settings on the FRGC v2.0 dataset.

P=8 R=2 R=3 R=4 R=5 R=6 R=7 R=8
LBP 86.1% 87.8% 88.5% 88.3% 87.7% 86.6% 86.0%

eLBP L2 73.6% 84.6% 88.6% 89.2% 89.2% 89.3% 89.9%
eLBP L3 80.1% 78.3% 76.4% 76.3% 75.6% 76.6% 76.3%
eLBP L4 6.6% 11.1% 17.8% 29.8% 40.3% 50.8% 55.6%

eLBP 91.3% 92.5% 93.5% 93.4% 93.0% 92.7% 92.6%
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Experimental Results

P=12 R=2 R=3 R=4 R=5 R=6 R=7 R=8
LBP 85.3% 86.1% 86.2% 87.2% 85.8% 85.4% 84.6%

eLBP L2 71.7% 84.4% 87.3% 88.6% 89.3% 88.9% 88.4%
eLBP L3 81.9% 78.7% 78.1% 76.6% 78.5% 78.9% 79.6%
eLBP L4 6.2% 12.3% 22.1% 35.6% 48.7% 57.4% 63.2%

eLBP 90.9% 92.1% 92.9% 93.3% 92.3% 92.3% 91.5%

P=16 R=2 R=3 R=4 R=5 R=6 R=7 R=8
LBP 82.1% 82.9% 85.3% 84.2% 84.3% 83.5% 82.7%

eLBP L2 73.7% 86.1% 87.9% 88.6% 88.2% 87.5% 87.7%
eLBP L3 81.6% 80.0% 78.7% 78.4% 79.4% 79.1% 79.7%
eLBP L4 7.2% 11.8% 27.7% 42.3% 52.3% 60.0% 66.1%

eLBP 90.6% 91.9% 92.4% 92.4% 91.8% 91.6% 91.6%

Parameter Evaluation
Rank-one recognition rates based on different eLBP depth maps of single
scale with various parameter settings on the FRGC v2.0 dataset.
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Experimental Results

Rank-one recognition rate
(1) ICP 72.2%
(2) SI Faces 91.8%
(3)   MS-LBP-DFs 93.8%
(4)   [2005 Chang FRGC Workshop] 91.9%
(5)   [2006 Cook BMVC] 94.6%
(6)   [2007 Wang CVPR] 87.7%
(7)   [2007 Mian TPAMI] 96.2%
(8)   [2007 Kakadiaris TPAMI] 97.0%
(9)   [2008 Mian IJCV] 93.5%
(10) [2008 Faltemier TIFS] 98.1%
(11) [2010 Huang BTAS] 96.1%
(12) [2010 Wang TPAMI] 98.4%
(13) MS-eLBP-DFs 97.6%

Face Recognition
Rank-one recognition rates on the FRGC v2.0 dataset.
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Experimental Results
Expression Validation in Face Recognition

Rank-one face recognition rates using the expression protocol on the 
FRGC v2.0 dataset.

Subset I: Neutral vs. Neutral ;  
Subset II: Neutral vs. Non-Neutral;  

Subset I Subset II Degradation
SI Faces 97.2% 84.1% 13.1%
MS-LBP-DFs 97.7% 88.9% 8.8%
MS-eLBP-DFs 99.0% 94.9% 4.1%
SI and MS-LBP [2010 Huang BTAS] 99.1% 92.5% 6.6%
3D [2008 Mian IJCV] 99.0% 86.7% 12.3%
2D+3D [2008 Mian IJCV] 99.4% 92.1% 7.3%
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Experimental Results
Expression Validation in Face Verification
Face verification rates at FAR = 0.001 using the expression protocol on 
the FRGC v2.0 dataset.

I: Neutral vs. All;  II: Neutral vs. Neutral;  III: Neutral vs. Non-Neutral

VR I VR II VR III
SI Faces 94.4% 98.9% 87.5%
MS-LBP-DFs 96.1% 99.1% 91.9%
MS-eLBP-DFs 98.4% 99.6% 97.2%
[2005 Maurer FRGC Workshop] 92% 97.8% NA
[2005 Passalis FRGC Workshop] 85.1% 94.9% 79.4%
[2005 Husken FRGC Workshop] 89.5% NA NA
[2006 Cook BMVC] 95.8% NA NA
[2007 Mian TPAMI] 98.5% NA NA
[2008 Mian IJCV] 97.4% 99.9% 92.7%
[2010 Wang TPAMI] 98.6% NA NA
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Experimental Results
Aging Validation in Face Verification
Comparisons of verification rates at 0.001 FAR using ROC I, ROC II, ROC 
III and All vs. All protocol on the FRGC v2.0 dataset.

Roc I Roc II Roc III All vs. All
[2005 Maurer FRGC Workshop] NA NA 92.0% 87.0%
[2005 Husken FRGC Workshop] NA NA 89.5% NA
[2006 Cook BMVC] 93.7% 92.9% 92.0% 92.3%
[2007 Mian TPAMI] NA NA NA 86.6%
[2007 Kakadiaris TPAMI] 97.3% 97.2% 97.0% NA
[2008 Faltemier TIFS] NA NA 94.8% 93.2%
[2010 Wang TPAMI] 98.0% 98.0% 98.0% 98.1%
MS-eLBP-DFs 95.1% 95.1% 95.0% 94.2%
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Experimental Results
Degradation Validation

Noisy data correspond to error injection by a Gaussian distribution on Z
coordinates in depth facial images. This tends to simulate the behavior of
electronic noise of acquisition devices in a simplistic manner. We set the
RMS value of the error respectively to 0.2mm, 0.4mm and 0.8mm.
Decimation aims at removing a certain number of vertices from original

surfaces. Vertices are picked up randomly and removed respectively from
a ratio of 2, 4 and 8.
Missing data (holes) are generated at random locations on 3D surfaces. A

random vertex is selected and the hole is cropped according to a sphere
with a radius value of 10mm centered at the given vertex. For each level,
1, 2, 3 holes are produced on the entire face respectively.

15 January 2018 32



Experimental Results
Degradation Validation
Performance comparison with Iterative Closest Point (ICP, violet), Thin-Plate
Spline (TPS, green), as well as the Elastic Radial Curve Matching [2010 Drira
BMVC] (blue). The proposed method is marked in red.

Gaussian noise                                    Decimation                                   Random holes
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Experimental Results

Database: Gavab DB (Occlusion Validation)
549 3D models of 61subjects;
Median filter is utilized for removing spikes;
Cubic interpolation is adopted for filling holes;
Costly registration step is not necessary.

Experiment Settings: Face Recognition in Gavab DB
The first 3D facial scan with a neutral expression of each subject makes up of

a gallery set; and the remaining models (488) are treated as probes.
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Experimental Results

Face Recognition
Comparisons of rank-one recognition rates on the Gavab DB dataset: (A)
without pose variations; (B) only with pose variations

(A)

I. Neutral II. Expressive I + II
[2005 Moreno ISPA] 90.16% 77.90% NA
[2006 Berretti AMR] 94.00% 81.00% 84.25%
[2008 Mousavi ICCIS] NA NA 91.00%
[2009 Li CVPR] 96.67% 93.33% 94.68%
[2009 Mahoor PR] 95.00% 72.00% 78.00%
[2010 Drira BMVC] 100.00% NA 94.67%
MS-eLBP-DFs 100.00% 93.99% 95.49%

15 January 2018 35



Experimental Results

Face Recognition
Comparisons of rank-one recognition rates on the Gavab DB dataset: (A)
without pose variations; (B) only with pose variations

(a): Looking down
(b): Looking up
(c): Right Profile
(d): Left profile
(e): Overall

(B)

(a) (b) (c) (d) (e)
[2006 Berretti AMR] 85.30% 88.60% NA NA NA
[2009 Mahoor PR] 80.00% 79.00% NA NA NA
[2010 Drira BMVC] 100.00% 98.36% 70.49% 86.89% 88.94%
MS-eLBP-DFs 96.72% 96.72% 78.69% 93.44% 91.39%

15 January 2018 36



Summary

Only 3D Shape based Face Recognition
We propose to exploit LBP Depth Faces to represent 3D facial surfaces and

introduce eLBP and Multi-Scale strategy to improve its discriminative power
for distinguishing similar shapes;

We design a SIFT based local matching scheme that combines feature based
matching, facial component and configuration constraints;

The final performance is comparable to the best ones in the literature on the
FRGC v2.0 and Gavab DB datasets, showing the effectiveness and robustness
of the entire system;

The proposed method requires no training samples, and can perform without
surface registration on nearly frontal faces.
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Outline

Background
Only 3D Shape based Face Recognition
Texture 3D Face Recognition
Asymmetric Face Recognition
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Problem Statement

Important Factors:
How to describe both types of face data, i.e. texture and shape
How to fuse complementary information from both modalities
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Literature Review

Multi-modal Systems
Sensor Fusion:

 considers both texture and shape as an entire input of the system
Ref. 4D ICP [2004 Papatheodorou et al. FG]

Texture and shape image combination [2008 Kusuma et al. ICIAR]…
Feature Fusion:

 extracts features from multiple data sources and builds a final feature set
to represent faces

Ref. 2D Gabor and 3D profile[2007 Arca et al. KES]…

15 January 2018 40



Literature Review

Multi-modal Systems
Matching Score/Rank/Decision Fusion:

 outputs a set of matching scores by various classifiers which are fused to
generate a single scalar score , or own class label.

Ref. [2005 Chang et al. TPAMI]
[2007 Husken et al. CVPR]
[2008 Gökberk et al., TSMC-C ]…

Multi-level Fusion:
 applies fusion at different levels
Ref. Feature and decision level [2005 Li et al. AMFG]

Feature and score level [2010 Ben Soltana et al. ICPR].
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Motivation

Oriented Gradient Maps and GA based optimized weighted score sum
fusion for textured 3D face recognition.
Why Oriented Gradient Maps (OGMs)?

Biological vision based description on both range and texture faces
Highly distinctive
Robust to affine lighting and geometric transformations

Why learning based score level fusion?
 Late (score) fusion generally provides better results
With a learning process, the method can find an optimal set of weights to

combine matching scores (GA, SA…)
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Oriented Gradient Maps

Complex Neuron Response
Complex cells and Object Recognition

(1997 Edelman et al. Unpublished documents)
Complex neurons combine the responses of different orientations

of simiple neurons
Complex neurons prove more insensitive to positions of receptive

fields (RF)
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Oriented Gradient Maps
A Biological vision based facial representation
Oriented Gradient Maps (OGMs)
Each gradient map describes gradient norms of the input original

image in an orientation o at every pixel.

 I: input image
 L1, L2,…, Lo: gradient maps for each quantized direction o

Each gradient map is convolved with a Gaussian kernel G, and the
standard deviation of G is proportional to the radius value of the
given neighborhood area, R, as :

o
IL
o

+∂ =  ∂ 

*R
o R oG Lρ =

The purpose of the convolution with Gaussian kernels is to allow the gradients to shift within a neighborhood without abrupt changes.
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Oriented Gradient Maps

A Biological vision based facial representation
Oriented Gradient Maps (OGMs)
At a pixel location (x, y), we collect all the values of the convolved

gradient maps at that location and form the vector, ρR(x, y) and it
has a response value of complex neurons for each orientation o.

The vector ρR(x, y) is further normalized to an unit norm vector to
produce the complex neuron response vector

1( , ) ( , ), , ( , )
tR R R

Ox y x y x yρ ρ ρ =  

Rρ
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Oriented Gradient Maps
A Biological vision based facial representation
Oriented Gradient Maps (OGMs)
The facial representation, OGM Jo , is achieved by response vectors

for each orientation o defined as: ( , ) ( , )R
o o

J x y x yρ=
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Local Feature Matching

Local Feature Extraction
SIFT Keypoint Detection
 SIFT Feature Descriptor

SIFT Feature based Matching
The similarity measurement is the number of matched keypoints

in corresponding facial representation pairs.
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Optimized Weighted Score Sum Fusion
A weighted sum rule is used:
Widely adopted for its performance and simplicity

 Si is a similarity score; wi is its corresponding weight;
 N is the number of generated similarity scores.

The proposed weighting scheme
Learning-based

1
*

N

i i
i

S w S
=

=∑
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Experimental Results

Database and Settings
FRGC v1.0

943 3D models of 275 subjects for training optimized weights;

FRGC v2.0
4007 3D models of 466 subjects for evaluation;

(The first scan with a neutral expression of each subject makes up
of a gallery set; and the remaining are treated as probes)
Median filter is utilized for removing spikes;
Cubic interpolation is adopted for filling holes;
Histogram equalization (2D facial texture images)
Costly registration step is not necessary.
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Experimental Results

2D Feature Evaluation in Face Recognition
Comparisons with the state-of-the-art using only 2D face data.
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2D Approaches Rank-one  RR
Eigenface 49.8%
LBP Histogram 71.8%
Gabor 77.9%
Original Texture + SIFT 79.3%
Texture LBP Face + SIFT 44.8%
Texture OGMs + SIFT 95.9%



Experimental Results

3D Feature Evaluation in Face Recognition
Comparisons with the state-of-the-art using only 3D face data.
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3D Approaches Rank-one RR
[2005 Chang et al. FRGC Workshop] 91.9%
[2007 Kakadiaris et al. TPAMI] 97.0%
[2007 Mian et al. TPAMI] 96.2%
[2008 Mian et al. IJCV] 93.5%
[2010 Huang et al. BTAS] 93.8%
[2011 Huang et al. FG] 97.2%
Original Range + SIFT NA
Range LBP Face + SIFT 80.1%
Range OGMs + SIFT 95.5%



Experimental Results

Face Recognition and Verification
Comparisons with the state-of-the-art using textured 3D face data.

15 January 2018 52

Systems Rank-one RR VR@FAR=0.1%
[2005 Maurer et al. FRGC Workshop] NA 95.8%
[2005 Husken et al. FRGC Workshop] NA 97.3%
[2007 Mian et al. TPAMI] 97.4% 99.3%
[2008 Mian et al. IJCV] 96.1% 98.6%
[2008 Gokberk et al. TSMC-B] 95.5% NA
[2009 Xu et al. PR] NA 97.5%
[2010 Ben Soltana et al. 3DPVT] 95.5% 97.0%
Texture OGMs + SIFT 95.9% 97.3%
Range OGMs + SIFT 95.5% 97.1%
Multi-Modal OGMs +SIFT 98.0% 98.9%



Experimental Results
Neighborhood Size Analysis

Rank-one results using  different neighborhood size on texture faces.

Fusion I: Fusion method used in [2008 Mian et al. IJCV]
Fusion II: The GA based fusion approach

Texture R = 1.0 R = 1.5 R = 2.0 R = 2.5 R = 3.0 R = 3.5
OGM1 78.00% 81.42% 82.60% 83.23% 83.56% 83.20%
OGM2 83.08% 84.69% 86.19% 85.31% 84.61% 83.51%
OGM3 85.17% 87.18% 87.49% 87.97% 87.63% 87.09%
OGM4 86.22% 87.49% 88.62% 87.77% 87.49% 86.33%
OGM5 80.06% 81.90% 83.65% 82.43% 82.15% 80.66%
OGM6 80.74% 82.97% 84.89% 86.02% 85.77% 85.03%
OGM7 84.44% 86.02% 85.26% 85.63% 84.67% 82.01%
OGM8 84.19% 85.63% 86.39% 87.46% 86.64% 85.99%

Fusion I 95.31% 95.74% 95.51% 95.51% 95.54% 94.38%
Fusion II 95.45% 95.85% 95.54% 95.71% 95.76% 94.78%
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Experimental Results
Neighborhood Size Analysis

Rank-one results using  different neighborhood size on range faces.

Fusion I: Fusion method used in [2008 Mian et al. IJCV]
Fusion II: The GA based fusion approach

Range R = 1.0 R = 1.5 R = 2.0 R = 2.5 R = 3.0 R = 3.5
OGM1 79.95% 80.54% 80.68% 78.96% 76.76% 74.10%
OGM2 84.33% 83.95% 82.91% 81.30% 78.68% 76.67%
OGM3 89.04% 88.84% 87.97% 87.01% 85.37% 84.16%
OGM4 85.09% 85.43% 83.71% 82.10% 79.70% 78.17%
OGM5 82.91% 83.39% 82.58% 81.05% 78.62% 76.28%
OGM6 89.24% 88.93% 87.18% 85.43% 83.96% 82.15%
OGM7 84.75% 84.24% 82.01% 79.53% 76.73% 72.83%
OGM8 88.20% 88.68% 86.90% 85.65% 84.07% 81.73%

Fusion I 95.14% 94.55% 93.67% 92.26% 91.10% 90.06%
Fusion II 95.48% 94.94% 94.07% 92.54% 91.67% 90.43%
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Experimental Results
Expression Validation in Face Recognition

Rank-one results using expression protocol on the FRGC v2.0 dataset.

Subset I: Neutral vs. Neutral ; Subset II: Neutral vs. Non-Neutral; 

Subset I Subset II Degradation
[2008 Mian et al. IJCV] 99.4% 92.1% 7.3%
[2010 Ben Soltana et al. 3DPVT] 98.6% 90.7% 7.9%
Texture OGMs + SIFT 98.8% 92.1% 6.7%
Range OGMs + SIFT 98.5% 91.7% 6.8%
Multi-Modal OGMs +SIFT 99.6% 96.0% 3.6%
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Experimental Results
Expression Validation in Face Verification

Comparison of verification rates at 0.001 FAR using the expression protocol 
on the FRGC v2.0 dataset.

I: Neutral vs. All;  II: Neutral vs. Neutral;  III: Neutral vs. Non-Neutral

VR I VR II VR III
Mian et al. [IJCV, 08] 97.4% 99.9% 92.7%
Texture PFI + SIFT 97.3% 99.7% 93.7%
Range PFI + SIFT 97.1% 99.4% 93.5%
Multi-Modal PFI +SIFT 98.9% 99.9% 97.1%
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Experimental Results

Evaluation on distinguishing twins
Dataset: 3DTEC

107 Pairs of identical twins;
Each subject has two 3D face models: one is neutral, and the other is

with a smile expression

15 January 2018 57



Experimental Results

Evaluation on distinguishing twins
Experimental Settings

One model as gallery and the other as probe
Experiment Design

Four experimental protocols
Face Recognition
Face Verification

Experiment No. Gallery Probe
Exp.I A Smile, B Smile A Neutral , B Neutral 
Exp.II A Neutral , B Neutral A Smile, B Smile
Exp.III A Smile, B Neutral A Neutral , B Smile
Exp.IV A Neutral , B Smile A Smile, B Neutral
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Experimental Results

Face recognition and verification
Rank-one recognition rates of four experiments on the 3DTEC dataset

Verification rates of four experiments at 0.1% FAR on the 3DTEC dataset

Rank-one RR RR I RR II RR III RR IV
Texture OGMs + SIFT 95.8% 96.3% 92.1% 92.5%
Range OGMs + SIFT 91.6% 93.9% 69.2% 71.0%

Multi-modal OGMs + SIFT 96.3% 96.3% 88.8% 88.8%

Rank-one RR RR I RR II RR III RR IV
Texture OGMs + SIFT 96.7% 96.7% 93.0% 93.5%
Range OGMs + SIFT 94.9% 94.4% 68.7% 69.2%

Multi-modal OGMs + SIFT 96.7% 96.7% 88.3% 89.7%
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Summary

Textured 3D Face Recognition
Biological vision-inspired facial representation, namely Oriented Gradient

Maps (OGMs) and apply it to both facial texture and range images for the
issue of textured 3D face recognition;

The designed score level fusion scheme further improves final performance
when combining the results of OGMs at different orientations and fusing the
accuracies of range and texture faces;

The final rank-one recognition and verification rates at 0.1% FAR are 98.0%
and 98.9% on the FRGC v2.0 dataset, respectively.
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Outline

Background
Only 3D Shape based Face Recognition
Texture 3D Face Recognition
Asymmetric Face Recognition
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Problem Statement

Comparison of 2D & 3D Face Recognition
3D data has more information for face representation
3D face recognition is robust to illumination and pose
2D data is easier for acquisition
2D face recognition needs less computation cost

Goal: Combining advantages of 2D and 3D data for robust
face recognition; and limiting the use of 3D data to where
it really helps to improve performance.
Accuracy: better than 2D-2D, comparable to 3D-3D
Time-Consuming: under control, much less than 3D-3D
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Background

Geometrical Invariants
 [2005 Riccio and Dugelay ICIAP]

 Partial Principle Component Analysis (P2CA)
 [2006 Rama et al. ICASSP]

 Patch based Kernel Canonical Correlation Analysis
 [2008 Yang et al. FG]
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Canonical Correlation Analysis

What’s new?
More information

Gallery Set: Textured 3D facial models (3D point-clouds and their 2D
texture counterparts)

Probe Set: Facial texture images
Illumination normalization and pose correction
Distinctiveness enhanced facial representations

Multi-Scale LBP Maps
Oriented Gradient Maps
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Overview

The Proposed Method Overview

     Test Set

Gallery
2D Image

Illumination
Preprocess AAM Fitting 

Gallery
3D Point-Cloud

CCA
Regression

Probe 
2D Image

Illumination
Preprocess AAM Fitting Convert to 

Mean Shape
PCA Subspace
Texture Facial 
Representation

Facial Texture
Representation

PCA Subspace
Range Facial 

Representation

SRC
Matching

Final
Decision

Facial Texture
Representation

ICP 
Registration

Range Image 
Extraction
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Asymmetric 3D-2D Face Recognition
Score Fusion
Finally, by the Min-Max normalization, the two matching scores from 2D-2D and 3D-2D are
normalized to [0, 1], and a weighted sum rule is used for fusion.

Their weights wS and wR are calculated dynamically during the online step using:

where i corresponds to the two similarity measures: S, and R, and operators min1(Si) and
min2(Si) produce the first and second minimum value of the vector Si.

* *(1 )S S R RF w S w S= + −

1

2

( ) min ( )
( ) min ( )i

i i
S

i i

mean S Sw
mean S S

−
=

−
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Experimental Results

Database and Settings
FRGC v2.0

4007 3D models of 466 subjects for evaluation;
(The first scan with a neutral expression of each subject makes up
of a gallery set; and the remaining are treated as probes)

Experiment Design: FRGC v2.0
The Effectiveness of the Preprocessing Pipeline
The Performance of Individual Matching steps
Radius Analysis of OGM Neighborhood
Identification of Asymmetric Face Recognition
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Experimental Results

The Effectiveness of the Preprocessing Pipeline
2D-2D Face Matching (SRC)

3D-2D Face Matching (CCA)

2D-2D Face Matching PCA LBP Histogram
Original Faces 46.68% 75.74%

Preprocessed Faces 78.54% 79.95%
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2D-2D Face Matching PCA LBP Histogram
Original Faces 36.18% 42.42%

Preprocessed Faces 81.70% 76.36%



Experimental Results

The Performance of Individual Matching Steps
2D-2D Face Matching (SRC)

3D-2D Face Matching (CCA)
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2D-2D Face Matching Accuracy
(S1): OGMs + LBP Histogram 93.90%
(S2): OGMs + PCA 93.65%
(S3): Original Faces + MS-LBP 89.18%
(S4): Original Faces + PCA 78.54%

3D-2D Face Matching Accuracy
(A1): OGMs 94.04%
(A2): MS-LBP 87.00%
(A3): PCA 81.70%



Experimental Results

Radius Analysis of OGM Neighborhood

2D-2D face matching 3D-2D face matching
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Experimental Results

Identification of Asymmetric Face Recognition
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Different Fusion Accuracy
(S4) + (A3) PCA 89.01%
(S3) + (A2) MS-LBP 91.27%
(S1) + (A1) OGM 95.37%



Summary

Asymmetric Face Recognition
We propose a new framework, asymmetric 3D-2D face recognition, enrolling

in textured 3D while performing identification using 2D images;
We design an effective preprocessing pipeline for illumination reduction and

pose correction;
MS-LBP and OGM Maps improve the distinctiveness of original facial texture

and range images, and OGMs perform better than MS-LBP;
The proposed asymmetric 3D-2D face recognition achieves satisfying results

on the entire FRGC v2.0 dataset, which is better than 2D-2D, since it uses 3D
information, while it also avoids the high online cost of data acquisition and
registration in 3D-3D.
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Outline

Background
Only 3D Shape based Face Recognition
Textured 3D Face Recognition
Asymmetric Face Recognition
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