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Feature Extraction and Matching



Object Recognition

Widely used in the industry for
 Inspection
 Registration
 Manipulation
 Robot localization and mapping

Current commercial systems
 Correlation-based template matching
 Computationally infeasible when object rotation, scale,

illumination and 3D pose vary
 Even more infeasible with partial occlusion

Alternative: Local Image Features



Local Image Features
Local features are robust to
 Nearby clutter
 Partial occlusion

Invariant to
 Illumination
 3D projective transforms
 Common object variations

Distinctiveness
 Can differentiate a large database of objects

Quantity
 Hundreds/thousands in a single image

Efficiency
 Real-time performance



Related work

Line segments, edges and regions grouping
 Detection not good enough

Peaks detection in local image variations
 Example: Harris corner detector
 Drawback: only a single scale
 Key locations varies with the image scale changes

Eigenspace matching, color and receptive field
histograms
 Successful on isolated objects
 Unextendable to cluttered and partially occluded images



Contents

Feature point matching
 What is it?
 What is it for?

Feature point detection
 Moravec feature point detector
 Harris corner detector
 Scale space detection

Feature point extraction & matching
 Matching using templates

 Cross-correlation



Feature point matching

Feature Point:
 Useful for image processing (by human or computer)
 Local properties in the neighbourhood of the point

A key issue for feature point is matching process, which has in
general has 3 steps:
 Feature point detection
 Feature point extraction
 Feature point matching



Feature point matching

Useful for
 Motion detection
 Object tracking
 Object recognition
 Multi-view reconstruction

 Stereo+ vision
 Structure from motion

 Image stitching
 Localisation
 Simultaneous Localisation And Mapping



Feature point matching

Object tracking
 Useful for 3D localisation
 Resistant to occlusion (local features)
 Resistant to clutter (local features)

Motion detection
Defeats aperture problem (distinctive features)



Feature point matching - phases

Feature Point Detection:
The process of finding such useful points in an image in

the first place. One common example is the Harris
“Corner Detector”

Feature Point Extraction:
The process of finding a description of the local

properties of an image (its features) around a feature
point (this might just be a patch extracted from the image)

Feature Point Matching:
The process of using the local properties of images

around feature points to identify the points across images
that refer to the same points in the world



Extraction

Matching between images



Matching

Matching between images



Extraction

Matching to a known textured object



Matching

Matching to a known textured object



Feature point detection

Probably because it is not so well defined, feature
point detection is an ill-posed problem
 Change the matching method, and the criteria for a good

feature point changes
Many detection methods exist, such as
 Moravec (1977)
 Harris (1988)
 Scale space extrema (1999)

Often conceptualised as a search for a generalised
“corner”, but other definitions work!



Feature point detection

General Desiderata
 Points repeatably detectable under transforms
 Computationally efficient
 Easily localisable
 High detection rate
 Robust to noise

Useful for
 Finding candidates for point matching
 Creating salience maps (see previous lecture on

attention)



Some theory…
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Flat région: no 
change in all 
directions

Flat région: no change 
along the edge

Corner: large change in all 
directions, i.e., even the 
minimum change is large

How does the window change when 
it is shifted?

Find locations that imply the minimum change by 
shifting the window in any direction is large



Consider shifting the window W by 
(u,v)
• how do the pixels in W change?
• compare each pixel before and 

after using the Sum of Squared 
Differences (SSD)

• this defines an SSD “error” 
E(u,v): 𝐸𝐸 𝑢𝑢, 𝑣𝑣 = �

𝑥𝑥,𝑦𝑦 𝜖𝜖𝑊𝑊

𝐼𝐼 𝑥𝑥 + 𝑢𝑢, 𝑦𝑦 + 𝑣𝑣 − 𝐼𝐼 𝑥𝑥,𝑦𝑦 2

W

(u,v)

(1)
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𝐼𝐼 𝑥𝑥 + 𝑢𝑢,𝑦𝑦 + 𝑣𝑣 = 𝐼𝐼 𝑥𝑥,𝑦𝑦 +
𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑢𝑢 +
𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

𝑣𝑣 + ℎ𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖 𝑜𝑜𝑖𝑖𝑜𝑜𝑖𝑖𝑖𝑖

𝐼𝐼 𝑥𝑥 + 𝑢𝑢, 𝑦𝑦 + 𝑣𝑣 ≈ 𝐼𝐼 𝑥𝑥,𝑦𝑦 +
𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝑢𝑢 +
𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

𝑣𝑣

≈ 𝐼𝐼 𝑥𝑥,𝑦𝑦 + 𝐼𝐼𝑥𝑥 𝐼𝐼𝑦𝑦
𝑢𝑢
𝑣𝑣 ; 𝐼𝐼𝑥𝑥 =

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

, 𝐼𝐼𝑦𝑦 =
𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

𝐸𝐸 𝑢𝑢, 𝑣𝑣 = �
𝑥𝑥,𝑦𝑦 𝜖𝜖𝑊𝑊

𝐼𝐼 𝑥𝑥 + 𝑢𝑢, 𝑦𝑦 + 𝑣𝑣 − 𝐼𝐼 𝑥𝑥,𝑦𝑦 2

≈ �
𝑥𝑥,𝑦𝑦 𝜖𝜖𝑊𝑊

𝐼𝐼 𝑥𝑥,𝑦𝑦 + 𝐼𝐼𝑥𝑥 𝐼𝐼𝑦𝑦
𝑢𝑢

𝑣𝑣
− 𝐼𝐼 𝑥𝑥,𝑦𝑦

2

≈ �
𝑥𝑥,𝑦𝑦 𝜖𝜖𝑊𝑊

𝐼𝐼𝑥𝑥 𝐼𝐼𝑦𝑦
𝑢𝑢

𝑣𝑣

2

𝐸𝐸 𝑢𝑢, 𝑣𝑣 ≈ 𝑢𝑢 𝑣𝑣 �
𝑥𝑥,𝑦𝑦 ∈𝑊𝑊

𝐼𝐼𝑥𝑥2 𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦
𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦 𝐼𝐼𝑦𝑦2

𝑢𝑢

𝑣𝑣

Taylor Series expansion of I:

(2)

W

(2),

H



For the example above:
• You can move the center of the blue window to 

anywhere on the red unit circle
• How do we find directions that will result in the largest 

and smallest E values?
• Find these directions by looking at the eigenvectors of H

(u,v)

𝐸𝐸 𝑢𝑢, 𝑣𝑣 ≈ 𝑢𝑢 𝑣𝑣 �
𝑥𝑥,𝑦𝑦 ∈𝑊𝑊

𝐼𝐼𝑥𝑥2 𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦
𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦 𝐼𝐼𝑦𝑦2

𝑢𝑢

𝑣𝑣

H



𝐴𝐴𝑥𝑥 = 𝜆𝜆𝑥𝑥

𝑜𝑜𝑖𝑖𝑑𝑑 𝐴𝐴 − 𝜆𝜆𝐼𝐼 = 0

𝑜𝑜𝑖𝑖𝑑𝑑 ℎ11 − 𝜆𝜆 ℎ12
ℎ21 ℎ22 − 𝜆𝜆 =0

𝜆𝜆± =
1
2 ℎ11 + ℎ22 ± 4 ℎ12ℎ21 + ℎ11 − ℎ22 2

ℎ11 − 𝜆𝜆 ℎ12
ℎ21 ℎ22 − 𝜆𝜆

𝑥𝑥1
𝑥𝑥2 = 0

The eigenvectors of a matrix A are the vectors x that satisfy:

The scalar λ is the eigenvalue corresponding to x

• In our case, A= H is a 2x2 matrix, thus:

• The eigenvalues are found by solving:

• The solution:

• Once you know λ, you find x by solving:



(u,v)

𝐸𝐸 𝑢𝑢, 𝑣𝑣 ≈ 𝑢𝑢 𝑣𝑣 �
𝑥𝑥,𝑦𝑦 ∈𝑊𝑊

𝐼𝐼𝑥𝑥2 𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦
𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦 𝐼𝐼𝑦𝑦2

𝑢𝑢

𝑣𝑣

H

Eigenvalues and eigenvectors of H:
• Capture shifts with the smallest and largest change (E value)
• x+= direction of largest increase in E
• λ+= amount of increase in direction x+
• x-= direction of smallest increase in E
• λ-= amount of increase in direction x-

𝐻𝐻𝑥𝑥+ = 𝜆𝜆+𝑥𝑥+
𝐻𝐻𝑥𝑥− = 𝜆𝜆−𝑥𝑥−



𝐻𝐻𝑥𝑥+ = 𝜆𝜆+𝑥𝑥+
𝐻𝐻𝑥𝑥− = 𝜆𝜆−𝑥𝑥−

Flat 
région

𝜆𝜆+ ≫ 𝜆𝜆−𝜆𝜆2

𝜆𝜆1

𝜆𝜆+ ≫ 𝜆𝜆−

𝜆𝜆+ 𝑎𝑎𝑎𝑎𝑜𝑜 𝜆𝜆− 𝑎𝑎𝑖𝑖𝑖𝑖 𝑙𝑙𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖;

Corner

Edge

Edge

How are λ+, x+, λ-, and x- relevant for feature detection?



Want E(u,v) to be large in all directions
• the minimum of E(u,v) should be large over all unit 

vectors [u v]
• this minimum is given by the smaller eigenvalue λ- of 

H
• Look for large values of λ-

Algorithm for interest point detection
• Compute the gradient at each point in the image
• Create the H matrix from the entries in the gradient
• Compute the eigenvalues
• Find points with large λ- (i.e., λ- >  threshold)
• Choose points where λ- is a local maximum as interest 

points



Invariant to rotation of the  image by some angle
• Will you still pick up the same feature points? Yes (since 

eigenvalues remain the same)
What about the change of the brightness?
• Will you still pick up the same feature points? Mostly yes (uses 

gradients which involve pixel differences)
Scale?
• No!



Lets practice that…
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Feature point detection - Moravec

Recall Moravec point detector
 Used on the Stanford Cart in the 70s
 At each pixel an interest score is

calculated and local maxima in this score
are used (i.e. where the score at a pixel is
higher than in all other pixels in the
neighbourhood)

 This score at a point is the change in
intensity around the point in the direction
that the intensity changes slowest – BUT
you only check 4 key directions around
the point



The Stanford Cart
The Stanford Cart was a long-term research
project undertaken at Stanford University
between 1960 and 1980. In 1979, it successfully
crossed a room on its own while navigating
around a chair placed as an obstacle. Hans
Moravec rebuilt the Stanford Cart in 1977,
equipping it with stereo vision. A television
camera, mounted on a rail on the top of the
cart, took pictures from several different
angles and relayed them to a computer.
http://www.computerhistory.org/timeline/1979/

Lieu de la présentation - 17/11/2003 28



Feature point detection - Moravec

Recall Moravec point detector

 Here is how to calculate the interest score:

− Where P is the set of perturbations 
●{ (-1,1),(0,1),(1,0),(1,1)}

− W is the local window. I image intensity. x, y, u, v pixel indices.
− Example to follow

})],(),([{min),( 2

,, ∑
∈

∈
−++=

WyxPvu
yxIyvxuIyxScore



Feature point detection - Moravec

Moravec point detector

Local Window
W(x,y)

Shifted Window
W(x,y+1)

3

})],(),([{min),( 2

,, ∑
∈

∈
−++=

WyxPvu
yxIyvxuIyxScore

X
°
°

Sum(
(1-1)²=0
(1-1)²=0
(1-1)²=0
(1-1)²=0
(1-1)²=0
(0-0)²=0
(1-0)²=1
(0-1)²=1
(0-1)²=1
)=3



Feature point detection - Moravec

Moravec point detector

Local Window
W(x,y)

Shifted Window
W(x+1,y+1)

3 4

Sum(
(1-1)²=0
(1-1)²=0
(1-1)²=0
(1-1)²=0
(1-1)²=0
(0-1)²=1
(1-0)²=1
(0-1)²=1
(0-1)²=1
)=4

X
°

°

})],(),([{min),( 2

,, ∑
∈

∈
−++=

WyxPvu
yxIyvxuIyxScore



Feature point detection - Moravec

Moravec point detector

})],(),([{min),( 2

,, ∑
∈

∈
−++=

WyxPvu
yxIyvxuIyxScore

X
°

Shifted Windows

3

Minimum = 3

3

4 3



Feature point detection - Moravec

Moravec point detector

})],(),([{min),( 2

,, ∑
∈

∈
−++=

WyxPvu
yxIyvxuIyxScore

X

Minimum = 3
°



Feature point detection - Moravec

Moravec point detector

})],(),([{min),( 2

,, ∑
∈

∈
−++=

WyxPvu
yxIyvxuIyxScore

0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0

1 1 2 3 3 1 0 0

1 1 1 3 2 1 0 0

0 0 0 1 1 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



Feature point detection - Moravec

Moravec point detector

Thresholding...

})],(),([{min),( 2

,, ∑
∈

∈
−++=

WyxPvu
yxIyvxuIyxScore

2 3 3

3 2



Feature point detection - Moravec

Moravec point detector

Performing non-
maximal 
suppression...

})],(),([{min),( 2

,, ∑
∈

∈
−++=

WyxPvu
yxIyvxuIyxScore

3 3

3



Feature point detection - Moravec

Moravec point detector

Corner points!

X X

X

})],(),([{min),( 2

,, ∑
∈

∈
−++=

WyxPvu
yxIyvxuIyxScore



Feature point detection

Moravec point detector
 Fast
 Terrible with angles away from 45 deg
 Has problems with noise
 Not invariant to scale
 Not invariant to rotation
 In other words, obsolete.

More robust detectors exist.



Feature point detection - Moravec

Moravec point detector

 Terrible with angles away from 45 deg

• Lots of false 
matches away 
from the 
diagonal.

1 0

2 1

2 1

2 1 0

0

0

0

0



Feature point detection - Moravec

Moravec point detector

 Has problems with noise

0 0 1 2 2 1 0 0

2



Feature point detection - Moravec

Moravec point detector
 Implicit assumption is that points of interest are points

where the image brightness changes fast in all directions
 More recent approaches have attempted to create better

detectors, incorporating the same basic assumption
 But without the limitation of 4 cardinal directions



Feature point detection – Harris

The Harris detector generalises the Moravec
detector:

 Attempting to calculate the strength of image change in a
window in the direction of largest change and of smallest
change (rather than in 4 principal directions, which allows for
better rotational invariance)

 Using a circular gaussian window rather than a square one
(less noise)

 Taking into account both the direction of minimum change
in brightness and maximum change in brightness (to reduce
the probability of picking up edges)



X

Feature point detection – Harris

The Harris detector generalises the Moravec
detector:

Strength of fastest change

Strength of slowest change

Strength in 
direction of slowest 
change is low

Strength in 
direction of fastest 
change is high...

...so this must be 
an edge pixel!



Feature point detection – Harris

How to calculate these strengths?

Estimate the

X and Y gradients

for all pixels in the 
region of your point 
of interest.

(this can be done 
efficiently by 
convolution with a 
small mask.
e.g a sobel mask:) x

I
∂
∂

y
I
∂
∂

-3 1 4

-4 -2 4

-3 -2 3

-3 -1 0

-2 0 1

-1 -2 -1

-1 0 1
-2 0 2
-1 0 1

1 2 1
-0 0 0
-1 -2 -1



-3 1 4

-4 -2 4

-3 -2 3

-3 -1 0

-2 0 1

-1 -2 -1

Feature point detection – Harris

How to calculate these strengths?

The sum of squares 
of these values will 
give us an idea of the 
strength of change in 
the x direction.

The sum of squares 
of these values will 
give us an idea of the 
strength of change in 
the y direction.

x
I
∂
∂

y
I
∂
∂



-3 1 4

-4 -2 4

-3 -2 3

-3 -1 0

-2 0 1

-1 -2 -1

Feature point detection – Harris

How to calculate these strengths?

Very similar to the 
Moravec operator… 
which wasn’t good 
enough for us!

We need a way to calculate the 
strength of change in the directions 
of maximum & minimum change.

The sum of squares 
of these values will 
give us an idea of the 
strength of change in 
the x direction.

The sum of squares 
of these values will 
give us an idea of the 
strength of change in 
the y direction.



Feature point detection – Harris

How to calculate these strengths?

With:

Check the following special cases:

it’s the same as Moravec’s!

𝑠𝑠𝑑𝑑𝑖𝑖𝑊𝑊 ∆𝑥𝑥,∆𝑦𝑦 = �
𝑊𝑊

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

∆𝑥𝑥 +
𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

∆𝑦𝑦
2

∆𝑥𝑥 2 + ∆𝑦𝑦 2=1

∆𝑥𝑥 = 1,∆𝑦𝑦 = 0 , ∆𝑥𝑥 = 0,∆𝑦𝑦 = 1 , ∆𝑥𝑥 = 1
2

,∆𝑦𝑦 = 1
2

, ∆𝑥𝑥 = 1
2

,∆𝑦𝑦 = − 1
2



Feature point detection – Harris

● How to calculate these strengths?

● Now we can analyse this matrix:

𝑠𝑠𝑑𝑑𝑖𝑖𝑊𝑊 ∆𝑥𝑥,∆𝑦𝑦 = ∆𝑥𝑥 ∆𝑦𝑦

�
𝑊𝑊

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

2

�
𝑊𝑊

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

�
𝑊𝑊

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦 �

𝑊𝑊

𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

2

∆𝑥𝑥

∆𝑦𝑦

𝑀𝑀𝑊𝑊 =

�
𝑊𝑊

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

2

�
𝑊𝑊

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

�
𝑊𝑊

𝜕𝜕𝐼𝐼
𝜕𝜕𝑥𝑥

𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦 �

𝑊𝑊

𝜕𝜕𝐼𝐼
𝜕𝜕𝑦𝑦

2



Feature point detection – Harris

● How to calculate these strengths?

● It turns out that if we assume that
then the maxima and minima of this function are the 

eigenvalues of matrix        ,

[ ] 




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Feature point detection – Harris

How to calculate these
strengths?

Now let’s try to 
calculate MW from 
our data:

8.13
2.101

2

1

=
=

λ
λ

WM=







2124
2484

2λ
1λ

Strength of fastest chang

Strength of slowest change



-3 1 4

-4 -2 4

-3 -2 3

-3 -1 0

-2 0 1

-1 -2 -1

Feature point detection – Harris

How to calculate these strengths?

We sum up the gradients for all nearby 
pixels, weighted by distance.

Usually we use a 
circular gaussian
window when 
summing to create 
our matrix MW.


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How to calculate these directions?

Actually, because it is only the relationship
between the eigenvalues that is of interest, and not
the values themselves, the eigenvalues of M are
usually not computed directly. Instead the interest
score is computed:

Where k is some constant ~ 0.04

2)trace()det(),( WW MkMyxScore ⋅−=

Feature point detection – Harris



Feature point detection – Harris

The Harris detector generalises the Moravec
detector:
Moravec did not generalise to non-cardinal directions but

the Harris operator does
Generalisations of the Harris detector exist too, for larger

stability with scaling (generally using pyramidal images)



Feature point detection – Harris

The Harris detector has problems with scale
changes

Where is the interest point really?
Up close

From a far
X

X

X

X



Feature point detection – scalespace

Before getting into scale-space detection, see your use of
Difference of Gaussian (DoG) filters in salience maps - also
often used is the very similar Laplace of Gaussian (LoG)

It turned out that these were useful filters for finding the
salience of each point in an image
Zero crossings in images filtered with DoG/LoG can also be
used for finding edges
LoG/DoG are also useful for finding interest points



Feature point detection – scalespace

Here is an image

Here is the DoG of that image



Feature point detection – scalespace

Local maxima and minima in the
DoG image correspond to
interesting points in our original
image…

This is a new definition of interest
point: DoG extrema.

…i.e. points that have a larger or
lower DoG response than all their
neighbours.



Feature point detection – scalespace

DoG extrema are about as
good as Harris points:
They are resistant to rotation

(since the filter is rotationally
invariant)

They are relatively resistant to
noise (because they are the
response of a smooth filter)

BUT:
Like Harris points they are not

robust to changes in scale



Feature point detection – scalespace

Problems with scaling motivate another concept –
that of scale space
The concept of scale space motivates another
tentative definition for feature points – DoG scale
space extrema



Feature point detection – scalespace

Let us examine this notion of scale space

→→σ



Feature point detection – scalespace

Let us examine this notion of scale space

Image Function Gaussian Function
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Gaussian Scale Space

* the star here is convolution

),(),,(),,( yxIyxGyxL ∗= σσ



Feature point detection – scalespace

Let us examine this notion of scale space

Gaussian Scale Space

→→σ

),(),,(),,( yxIyxGyxL ∗= σσ

* the star here is convolution



Feature point detection – scalespace

Let us examine this notion of scale space extrema

* the star here is convolution

The scale space extrema of interest to us 
are maxima and minima

in the DoG scale space function.

Difference of Gaussian Scale Space Function

),()),,(),,((),,( yxIyxGkyxGyxD ∗−= σσσ

Equivalent Form – Difference of Gaussian Scale Space Function
(sometimes faster to compute)

),,(),,(),,( σσσ yxLkyxLyxD −=



Feature point detection – scalespace

Here is the scale space function for the DoG
function... →→σ

Difference of Gaussian Scale Space Function

),()),,(),,((),,( yxIyxGkyxGyxD ∗−= σσσ



Feature point detection – scalespace

Local extrema can be found by checking all pixels
in the neighbourhood of each candidate pixel

→→σ



Feature point detection – scalespace

Local extrema can be found by checking all pixels
in the neighbourhood of each candidate pixel

Lets check for interest points hereHigher value

Lower value
Therefore our 
candidate point is not 
a local extrema



Feature point detection – scalespace

Local extrema can be found by checking all pixels
in the neighbourhood of each candidate pixel

Lets check for interest points hereBut no nearby 
higher value

Lower value
Therefore our 
candidate point is a 
local extrema



Feature point detection – scalespace

Local extrema can be found by checking all pixels
in the neighbourhood of each candidate pixel

Local Extrema from Difference of Gaussian Scale Space Function
),()),,(),,((),,( yxIyxGkyxGyxD ∗−= σσσ

→→σ



Feature point extraction

Once a feature-point has been detected, but before
we attempt to match it we may decide to process it
(this is dubbed feature point extraction) to enable
more efficient and more general matching. For
example:
 Extract a colour histogram from the image in the

neighbourhood of the feature-point
 Extract a histogram of local gradients from the image in the

neighbourhood of the feature-point
 Rotationally pre-align the image in the neighbourhood of the

feature-point according to some criteria
And so forth “Local Patch”



SIFT Method

Scale Invariant Feature Transform (SIFT)

Staged filtering approach
 Identifies stable points (image “keys”)

Computation time less than 2 secs



SIFT Method (2)

Local features:
 Invariant to image translation, scaling, rotation
 Partially invariant to illumination changes and 3D

projection (up to 20° of rotation)
 Minimally affected by noise
 Similar properties with neurons in Inferior Temporal

cortex used for object recognition in primate vision



Step 1: feature extraction

Scale-invariant image regions + SIFT
 Robust description of the extracted image regions

gradient

3D histogram

→ →

image patch

y

x

– 8 orientations of the gradient 
– 4x4 spatial grid



First stage

Input: original image (512 x 512 pixel)

Goal: key localization and image description

Output: SIFT keys
 Feature vector describing the local image region sampled

relative to its scale-space coordinate frame



First stage (2)

Description:
 Represents blurred image gradient locations in multiple

orientations planes and at multiple scales
 Approach based on a model of cells in the celebral cortex

of mammalian vision
 Less than 1 sec of computation time

Build a pyramid of images
 Images are difference-of-Gaussian (DOG) functions
 Resampling between each level



Key localization

Algorithm:
 Expand original image by a factor of 2 using bilinear

interpolation
 For each pyramid level:

Smooth input image through a convolution with the 1D
Gaussian function (horizontal direction):

75
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Key localization (2)

Smooth Image A through a further convolution
with the 1D Gaussian function (vertical direction)
obtaining Image B
The DOG image of this level is B-A
Resample Image B using bilinear interpolation with
pixel spacing 1.5 in each direction and use the
result as Input Image of the new pyramid level
 Each new sample is a constant linear combination of 4

adjacent pixels



Key localization (2)

77



Key localization (2)

78



Key localization (3)

Find maxima and minima of the DOG images:

2nd level

1st level



Key localization (3)

80

Maxima and minima of the difference-of-Gaussian images are detected by
comparing a pixel (marked with X) to its 26 neighbors in 3x3 regions at the
current and adjacent scales (marked with circles).



Key orientation

Extract image gradients and orientation at each
pyramid level. For each pixel Aij compute

Mij thresholded at a value of 0.1 times the
maximum possible gradient value
 Provides robustness to illumination

81
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Key orientation (2)

Create an orientation histogram using a circular
Gaussian-weighted window with σ=3 times the
current smoothing scale
 The weights are multiplied by Mij
 The histogram is smoothed prior to peak selection
 The orientation is determined by the peak in the

histogram



Experimental results

Original image

Keys on image after rotation (15°), 
scaling (90%), horizontal streching

(110%), change of brightness (-10%) 
and contrast (90%), and               

addition of pixel noise

78%



Image transformation Location and 
scale match

Orientation 
match

Decrease constrast by 1.2 89.0 % 86.6 %
Decrease intensity by 0.2 88.5 % 85.9 %
Rotate by 20° 85.4 % 81.0 %
Scale by 0.7 85.1 % 80.3 %
Stretch by 1.2 83.5 % 76.1 %
Stretch by 1.5 77.7 % 65.0 %
Add 10% pixel noise 90.3 % 88.4 %
All previous 78.6 % 71.8 %

20 different images, around 15,000 keys

Experimental results



Image description

Approach suggested by the response properties of
complex neurons in the visual cortex
 A feature position is allowed to vary over a small region,

while orientation and spatial frequency are maintained
Image descripted through 8 orientation planes
 Keys inserted according to their orientations



Second stage

Goal: identify candidate object matches
 The best candidate match is the nearest neighbour (i.e.,

minimum Euclidean distance between decriptor vectors)
 The exact solution for high dimensional vectors is known

to have high complexity



Perspective projection  



Partial occlusion  

Computation time: 1.5 secs on Sun Sparc 10
(0.9 secs first stage)



Connections to human vision

Performance of human vision is obviously far
superior than current computer vision...

The brain uses a highly computational-intensive
parallel process instead of a staged filtering
approach



Connections to human vision

However... the results are much the same
Recent research in neuroscience showed that the
neurons of Inferior Temporal cortex
 Recognize shape features
 The complexity of the features is roughly the same as for

SIFT
 They also recognize color and texture properties in

addition to shape
Further research:
 3D structure of objects
 Additional feature types for color and texture
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