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Asymptotic behavior for a class of the renewal
nonlinear equation with diffusion
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In this paper, we consider nonlinear age-structured equation with diffusion under nonlocal boundary condition and
non-negative initial data. More precisely, we prove that under some assumptions on the nonlinear term in a model of
McKendrick–Von Foerster with diffusion in age, solutions exist and converge (long-time convergence) towards a station-
ary solution. In the first part, we use classical analysis tools to prove the existence, uniqueness, and the positivity of the
solution. In the second part, using comparison principle, we prove the convergence of this solution towards the stationary
solution. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

In the study of population of cells, animals, or humans, one of the most used model is the McKendrick–Von Foerster model said also
renewal model, where the density of population n.t, x/ at time t and age x, is described by the master equation8̂<

:̂
nt.t, x/C nx.t, x/C d.x/n.t, x/D 0, t � 0, x � 0

n.t, 0/D

Z 1
0

B.x/n.t, x/dx, and n.0, x/D n0.x/,
(1.1)

where B � 0 is the birth rate, d � 0 is the death rate. It is well known that long-time asymptotic is described by the first eigenvalue
� and positive engenvector N of the stationary problem of (1.1). More precisely, for a long time, n � CstNe�t , see for instance [1–3]
and [4] (using general relative entropy method) and [5, 6] (using semigroup method). This of course does not take in account the use
of resources. Indeed, the population growth is not limited in time when the Malthusian growth rate (eigenvalue �) is strictly positive.
Nevertheless, resources are limited, and so, we expect that there is a limitation of the size of the population (an ‘equilibrium’ between
the quantity of resources and their use). On the other hand, we notice that the population goes to extinction when the Malthusian
growth rate is strictly negative. Nevertheless, in this case, there is no limitation of the resource, and the extinction cannot be explained
by the lack of resources. In order to take in account the consumption of nutrient, we can, for instance, change the linear birth term in
(1.1) by a nonlinear birth term (see for instance [7–10]):8̂<

:̂
nt.t, x/C nx.t, x/C d.x/n.t, x/D 0, t � 0, x � 0

n.t, 0/D f

�Z 1
0

B.x/n.t, x/dx

�
, and n.0, x/D n0.x/.

In [11, 12], the authors proposed defining ‘biological age’ according to the DNA content and diffusion accounts for its variability.
Therefore, considering that the variable x is a biological age and can vary according to certain proteins causing degradation or recovery
caused by external factors, the density of the population satisfies the master equation8̂<

:̂
nt.t, x/� nxx.t, x/C .g.x/n.t, x//x C d.x/n.t, x/D 0 t � 0, x � 0

g.0/n.t, 0/� nx.t, 0/D f

�Z 1
0

B.x/n.t, x/dx

�
, and n.0, x/D n0.x/ 2 L1

C.R
C/,

(1.2)

aMath-Info, Ecole Centrale de Lyon, Ecully, 69130, France
bDepartment of Mathematics, Tlemcen University, Tlemcen 13000, Algeria
*Correspondence to: Tarik Mohamed Touaoula, Department of Mathematics, Tlemcen University, Tlemcen 13000, Algeria.
†E-mail: touaoula_tarik@yahoo.fr

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012



P. MICHEL AND T. M. TOUAOULA

where B � 0 is the birth rate, d � 0 is the death rate, and the diffusion term modelizes the variability evolution of the ‘biological age’ x.
We notice that problem (1.2) arises in many other applications, see for instance [13–16] and the references therein. Recently, we have
treated the linear case of this renewal model with diffusion [17], we proved the existence, uniqueness, and positivity of the solution, and
we showed that for a long time, n � CstNe�t (with the decay estimate of the solution). Nevertheless, it does not take into account the
consumption of resources. In the system (1.2), we overcome this and consider the consumption of the resources, such as nutrients,
by introducing nonlinearity in the birth term. In general, this term may limit the possible extra growth of the population. In the
system (1.2), we notice that the nonlinear form of the recruitment term only takes in account newborns. This means that, in a population
modelized by system (1.2), ‘giving birth’ and ‘newborns’ need more resources and may limit growth of the population.

2. Assumptions and main results

In this section, we give the main assumptions of this work and state the main results of the paper.
We suppose that B and d are non-negative continuous functions and satisfy

0< Bm � B.x/� BM and 0< dm � d.x/� dM. (2.1)

The nonlinear growth function f is smooth (for instance C1.�0,1Œ/), is nondecreasing, and verifies the condition

f .x/� ˛xC � , (2.2)

with � positive and ˛ 2 Œ0, A/with a constant A to be chosen later.

9s0 > 0 : 8s0 2�0, s0Œ f .s0/=s0 > dM=Bm, (2.3)

and

9s1 > 0 : 8s0 2�s1,1Œ f .s0/=s0 < dm=BM. (2.4)

The growth rate g is a C1 positive function satisfying

0< gm � g.x/� gM, (2.5)

Z 1
0

e�G.x/dx <1, (2.6)

where G.x/ :D
R x

0 g.s/ds, and there exists a positive constant " such that

d.x/C g0.x/� " (2.7)

Remark 2.1
We notice that the condition (2.3) (resp. (2.4)) avoids the extinction (resp. the unlimited growth) of the population, which cannot be
explained by the lack of resources. Indeed, under the existence of solutions to (1.2) (proved in Section 3), we have

d

dt

Z 1
0

n.t, x/dx � f

�
Bm

Z 1
0

n.t, x/dx

�
� dM

Z 1
0

n.t, x/dx,

and the condition (2.3) implies that
R1

0 n.t, x/dx � min.
R1

0 n0.x/dx, s0/ for all time t � 0. This means that the trivial solution is not
stable. For instance, the condition (2.3) is satisfied for functions that behave like f .t/ �t!0 Ct˛ with ˛ < 1 and C > 0 or ˛ D 1 and
C > dM=Bm.

We will prove the following result, which concerns the existence and uniqueness as well as the positive solution of problem (1.2).

Theorem 2.2
Under assumptions (2.1)–(2.6) and for all positive initial data n0 2 L1.RC, e�G.x/dx/, problem (1.2) has a unique positive solution
n 2 C.RC, L1.RC, e�G.x/dx//.

The following theorem concerns the asymptotic behavior of the solution n to problem (1.2). To be more precise, let N be solution of
the following stationary problem 8̂̂̂

ˆ̂<
ˆ̂̂̂̂
:

� N00.x/C .gN/0.x/C d.x/N.x/D 0, x � 0,

g.0/N.0/� N0.0/D f

�Z 1
0

B.x/N.x/dx

�
,Z 1

0
N.x/dx <1, and N � 0.

(2.8)

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012
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Then, we have

Theorem 2.3
Assume that (2.1)–(2.7) hold. Then, for all positive initial data n0 2 L1.RC, e�G.x/dx/, with n0.x/� CN.x/, the solution n to problem (1.2)
satisfies

N.x/� lim inf
t!1

n.t, x/� lim sup
t!1

n.t, x/� NN.x/,

where NN (resp. N) is the maximal (resp. minimal) nontrivial solution to the stationary problem (2.8). In addition, if the stationary problem
(2.8) has a unique nontrivial solution N, then we have the convergence of n.t, x/ to N.x/.

The paper is organized as follows. In the next section, we establish the existence, uniqueness, and positivity of the solution to
problem (1.2). Section 4 is devoted to prove the convergence of solutions towards the solution of the stationary problem N. In
Section 5, we prove a blow-up result and an extinction result under some assumptions on the growth function f . Finally, the paper
is supplemented by the numerical simulation, and discussion on the model and the theoretical results.

3. Existence results

The aim of this section is to prove Theorem 2.3. In order to do it, we begin by stating the comparison principle lemma, which is very
useful for the rest of the paper.

We consider the following problem8̂<
:̂

nt.t, x/� nxx.t, x/C .g.x/n.t, x//x C d.x/n.t, x/D 0, t � 0, x � 0,

g.0/n.t, 0/� nx.t, 0/D ˛

Z 1
0

B.x/n.t, x/dxC � , and n.0, x/D n0.x/ 2 L1.RC/,
(3.1)

then we have,

Lemma 3.1
Let v and u be a non-negative supersolution and subsolution of problem (3.1), respectively. If v.0, x/� u.0, x/, then v.t, x/� u.t, x/.

Proof
Let � 2 L2..0, T/; W1,2.RC// be solution to the following problem(

�� .� , x/C �xx.� , x/C g.x/�x.� , x/� d.x/�.� , x/D 0, 0< � < t, x � 0,

�x.� , 0/D 0, and �.t, x/D  .t, x/,
(3.2)

where  .t, x/D 1fu�v>0g. It is not difficult to see that problem (3.2) has a positive solution. By setting wD u� v, we have

8̂<
:̂

wt.t, x/�wxx.t, x/C .g.x/w.t, x//x C d.x/w.t, x/� 0, t � 0, x � 0

g.0/w.t, 0/�wx.t, 0/�

Z 1
0

B.x/wC.t, x/dx, and w.0, x/� 0.
(3.3)

If we multiply the first inequality in (3.3) by � and integrate over .0, t/�RC, we get

Z 1
0

w.t, x/�.t, x/dx �

Z t

0

Z 1
0

�.� , 0/B.x/w.� , x/dxd� . (3.4)

Hence, from (3.4), we obtain

Z 1
0

wC.t, x/dx �M

Z t

0

Z 1
0

wC.� , x/dxd� .

Applying Gronwall’s inequality, the conclusion of this lemma follows. �

The existence, uniqueness, and positiveness of the solution to problem (3.1) are stated in the following lemma; the proof is almost
similar to the lemma in [17]; however, we present it for the reader’s convenience.

Lemma 3.2
Let n0 2 L1.RC/

T
L2.RC/, then problem (3.1) has a unique positive solution in L1..0, T/�RC/

T
L2..0, T/; W1,2.RC//.

To prove this existence result, we will argue by approximation; namely, we consider the case of bounded domain Œ0, R�, and then, we
pass to the limit in R. To be more precise, we first show the next lemma.

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012
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Lemma 3.3
The following problem 8̂̂

<̂
ˆ̂̂:

vt.t, x/� vxx.t, x/C .g.x/v.t, x//x C .d.x/C�/v.t, x/D 0, t � 0, x 2 .0, R/,

g.0/v.t, 0/� vx.t, 0/D ˛

Z R

0
B.y/v.t, y/dyC �e��t , and v.t, R/D 0,

v.0, x/D n0.x/.

(3.5)

has a unique positive solution vR, moreover if R1 � R2, then vR1 � vR2 .

Proof
Existence, uniqueness of the positive solution to problem (3.5), can be showed by using the Picard Banach fixed-point theorem in the
Banach space XR D C.Œ0, T�, L1.0, R// with jj�jjXR D sup

t2Œ0,T�

R R
0 j�.t, x/jdx and � > 0 to be chosen later. More precisely, given m 2 XR, we

define v :D S.m/ as the solution to the problem8̂̂̂
<
ˆ̂̂:

vt.t, x/� vxx.t, x/C .g.x/v.t, x//x C .d.x/C�/v.t, x/D 0, in .0, T/� .0, R/,

g.0/v.t, 0/� vx.t, 0/D ˛

Z R

0
B.x/m.t, x/dxC �e��t , v.t, R/D 0,

v.0, x/D n0.x/, x 2 .0, R/.

(3.6)

It is clear that v 2 L2.0, T ; W1,2.0, R/// \ XR. For m1, m2 2 XR, we consider v1 :D S.m1/, v2 :D S.m2/. Then, with v D v1 � v2 and
mDm1 �m2, solve 8̂̂̂

<
ˆ̂̂:

vt.t, x/� vxx.t, x/C .g.x/v.t, x//x C .d.x/C�/v.t, x/D 0, in .0, T/� .0, R/,

g.0/v.t, 0/� vx.t, 0/D ˛

Z R

0
B.x/m.t, x/dx, v.t, R/D 0,

v.0, x/D 0.

(3.7)

Multiplying Equation (3.7) by sgn.v/ and integrating in x,

d

dt

Z R

0
jv.t, x/jdxC

Z R

0
.d.x/C�/jv.t, x/jdx � ˛

Z R

0
B.y/jm.t, y/jdy, (3.8)

after integration over .0, T1/, T1 � T ,Z R

0
jv.T1, x/jdxC

Z T1

0

Z R

0
.d.x/C�/jv.t, x/jdx � ˛BMTjjmjjXR

and then jjvjjXR � ˛BMTjjmjjXR . Hence, choosing T such ˛TBM < 1, we obtain that the operator S is a strict contraction in the Banach
space XR, which proves the existence of a unique fixed point vR.

As usual, we can iterate the operator on ŒT , 2T�, Œ2T , 3T�, : : : because the condition on T does not depend on the iteration. With this
iteration process, we have built a solution in C.RC, L1.0, R//. The positivity of the solution is a simple consequence of the aforemen-
tioned comparison lemma. The strong maximum principle allows us to get the strict positivity of vR. Let R1 � R2 and consider the
corresponding solutions vR1 and vR2 . It is clear that vR2 is a supersolution to the vR1 problem. Hence, using the comparison principle, we
obtain that vR1 � vR2 . Therefore, the result follows. �

We return now to prove the first existence lemma.

Proof of Lemma 3.2.
Let vR be the solution to problem (3.5) obtained earlier. We define vR for .t, x/ 2 .0, T/ � .R,1/ by setting vR.t, x/ D 0. Then,
vR 2 X � L1..0, T/�RC/\ L2.0, T ; W1,2.RC//. We know that

d

dt

Z R

0
vR.t, x/dxC

Z R

0
.d.x/C�/vR.t, x/dx � ˛BM

Z R

0
vR.t, y/dyC �e��t .

Choosing � > ˛BM, it follows that

d

dt

Z R

0
vR.t, x/dxC

Z R

0
.d.x/C�� BM/vR.t, x/dx � �e��t .

Hence, from Gronwall lemma, we obtain Z R

0
vR.t, x/dx � C,

with C > 0. Thus, we conclude that vR is uniformly bounded in L1..0, T/�RC/.

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012
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Therefore, using the monotonicity of the sequence fvRg, we get the existence of v 2 L1..0, T/�RC/ such that vR " v as R!1.
By taking vR as a test function in (3.5), after integration, it results to

1

2

d

dt

Z R

0
v2

R.t, x/dxC

Z R

0

�
d.x/C

1

2
g0.x/C�

�
jvR.t, x/j2dxC

Z R

0
j.vR/x.t, x/j2dx � C,

by integration in time,Z R

0
jvR.t, x/j2dxC

Z t

0

Z R

0

�
d.x/C

1

2
g0.x/C�

�
jvR.t, x/j2dxdtC

Z t

0

Z R

0
j.vR/x.t, x/j2dx �

1

2
jjn0jj

2
L2 C Ct,

where C is a positive constant. Thus, for � so large, we have jjvRjjL2.0,T ;W1,2.RC// � C and then vR * v weakly in L2.0, T ; W1,2.RC//.
Therefore, classical regularity result of parabolic equation allows us to pass to the limit in the boundary condition to conclude that

v solves problem (3.1). To get the uniqueness result for problem (3.1), we suppose that v1, v2 2 X are two solutions of (3.1), then
wD v1 � v2, solves (1.1) with w.0, x/D 0. Hence, multiply the equation of w by sgn.w/; after integrating over .0,1/, we obtainZ 1

0
jwjt.t, x/dxC

Z 1
0
.d.x/C�/jw.t, x/jdx � ˛BM

Z 1
0
jw.t, x/jdx,

thus, Z 1
0
jwjt.t, x/dxC C1

Z 1
0
jw.t, x/jdx � 0,

and again, by the Gronwall lemma, we conclude that wD 0. The result follows. �

We can now state the first theorem, which concern the existence, uniqueness, and positivity of the solution to problem (1.2) in a
regularized space.

Theorem 3.4
Under assumptions (2.1)–(2.6) and for all positive initial data n0 2 L1.RC/ \ L2.RC/, there is a unique positive solution n to problem
(1.2) that belongs to C.Œ0,1/; L2.RC//\ L1..0, T/�RC/\ L2.0, T ; W1,2.RC// for all T > 0.

Proof
We consider the following approximated problem.8̂̂

<̂
ˆ̂̂:

nk
t .t, x/� nk

xx.t, x/C .g.x/nk.t, x//x C d.x/nk.t, x/D 0, t � 0, x � 0

g.0/nk.t, 0/� nk
x.t, 0/D f

�Z 1
0

B.x/nk�1.t, x/dx

�
, and nk.0, x/D n0.x/

n0.t, x/D v.t, x/,

(3.9)

where v is solution to problem (3.1). We can prove that 0� nk � v (because 0 is a subsolution to (1.2)).
Now, multiplying the solution of (3.9) by nk and integrating over .0,1/, we have

1

2

d

dt

Z 1
0
jnkj2dxC

Z 1
0

d.x/jnk.t, x/j2dxC

Z 1
0
j.nk/x.t, x/j2dx �

1

2
f 2
�Z 1

0
B.x/nk�1.t, x/dx

�
,

� ˛2
�Z 1

0
B.x/v.t, x/dx

�2

C �2C
1

2

Z 1
0
jg0.x/jv2.t, x/dx.

From this, we deduce

nk * n in L2..0, T/; W1,2.RC//,

and consequently, n is solution to problem (1.2). The uniqueness is proved by the aforementioned comparison principle. The theorem
is established. �

We are now able to prove the main result of this section.

Proof of Theorem 2.3
Consider n0 2 L1.RC, e�G.x/dx/. By density, we can find a nondecreasing sequence nk

0 2 L1.RC/
T

L2.RC/ such that nk
0 ! n0 in

L1.RC, e�G.x/dx/. We denote by n.k/.t, x/ the corresponding solution to problem (1.2). Let wD .n.k/ � n.p//e��t ; it follows that8̂̂
ˆ̂<
ˆ̂̂̂:

e�G.x/wt.t, x/� .e�G.x/wx.t, x//x C d.x/e�G.x/w.t, x/D 0 t � 0, x � 0

g.0/w.t, 0/�wx.t, 0/D

�
f

�Z 1
0

B.x/n.k/.t, x/dx

�
� f

�Z 1
0

B.x/n.p/.t, x/dx

��
e��t ,

w.0, x/D n.k/0 .x/� n.p/0 .x/,

(3.10)

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012
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setting the truncated function

T1.w/D

8<
:

w if jwj � 1
w

jwj
if jwj> 1.

and‚.s/D
R s

0 T1.�/d� . Multiplying the equation of problem (3.10) by T1.w/ and integrating

d

dt

Z 1
0

e�G.x/‚.w.t, x//dxC

Z 1
0

e�G.x/wx.t, x/.T1.w.t, x///xdx

C

Z 1
0

e�G.x/.d.x/C g0.x/C�/w.t, x/T1.w.t, x//dx D�wx.t, 0/T1.w.t, 0//,

in view of this, we have

d

dt

Z 1
0

e�G.x/‚.w.t, x//dx � .f 0.	.t//

Z 1
0

B.x/w.t, x/dx �w.t, 0//T1.w.t, 0//,

where 	.t/ is a value between
R1

0 B.x/n.k/.t, x/dx and
R1

0 B.x/n.p/.t, x/dx, which is uniformly bounded. Now, we have by integrating
over .0, t/, Z 1

0
e�G.x/‚.w.t, x//dx � C

Z t

0

Z 1
0
jw.s, x/jdxdsC

Z 1
0

e�G.x/‚.w.0, x//dx,

� C

Z t

0

Z 1
0
jw.s, x/jdxds

C

Z
fx2RC ,jw.0,x/j>1g

e�G.x/jw.0, x/jdxC
1

2

Z
fx2RC ,jw.0,x/j�1g

e�G.x/jw.0, x/j2dx.

On the other hand, integrate Equation (1.2), and again, by Gronwall lemma, we obtainZ 1
0

Z 1
0

n.k/.t, x/dx � C.

Therefore, using the monotonicity of the sequence n.k/, we get existence of n 2 L1.RC � RC/ such that n.k/ �! n as k �! 1 in
L1.RC �RC/. Henceforth, w is a Cauchy sequence in L1.RC �RC/. Moreover,Z 1

0
e�G.x/‚.w.t, x//dx D

Z
fx2RC ,jwj>1g

e�G.x/jwjdxC
1

2

Z
fx2RC ,jwj�1g

e�G.x/jwj2dx,

and, by Holder inequality, we find

Z
fx2RC ,jwj�1g

e�G.x/jwjdx �

�Z
fx2RC ,jwj�1g

e�G.x/jwj2dx

� 1
2
�Z 1

0
e�G.x/dx

� 1
2

.

Combining these aforementioned results and the hypothesis on the initial data, we prove that n.k/ is a Cauchy sequence
C.RC, L1.RC, e�G.x/dx//. Therefore, it converges to a function n 2 C.RC, L1.RC, e�G.x/dx//. The theorem is proved. �

4. Convergence to a stationary solution

In this section, we prove that under some hypotheses on the growth of f and the initial data, we have the convergence towards a
nontrivial stationary solution.

Noticing that the trivial solution is not stable (Section 1) for all positive (nontrivial) initial datum n0 2 L1.RC, e�G.x/dx/, n.t, x/ solution
to (1.2) is also solution to the problem8̂<

:̂
nt.t, x/� nxx.t, x/C .g.x/n.t, x//x C d.x/n.t, x/D 0 t � 0, x � 0

g.0/n.t, 0/� nx.t, 0/D Qf

�Z 1
0

B.x/n.t, x/dx

�
, and n.0, x/D n0.x/ 2 L1

C.R
C/,

(4.1)

where Qf .x/D f .max.x, min.s0,
R1

0 n0.y/dy// is strictly positive and Qf .0/ 6D 0.
We consider the following problem, which play a fundamental role in the convergence towards a nontrivial stationary solution,8̂<

:̂
� u00.x/� g.x/u0.x/C d.x/u.x/D B.x/, x � 0,

u0.0/D 0,

u 2W1,1.RC/.

(4.2)

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012
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The next lemma states the existence result and boundedness of the solution to problem (4.2).

Lemma 4.1
Under the hypotheses (2.1) and (2.5), problem (4.2) has a unique positive solution u. In addition, we have

0< u.x/�
BM

dm
, 8 x � 0. (4.3)

Proof
In order to prove the existence of solution, we argue by approximation; namely, we consider the case of bounded domain Œ0, R�, and
then, we pass to the limit in R. So let us define the following approximated problem8̂<

:̂
� u00R.x/� g.x/u0R.x/C d.x/uR.x/D B.x/, x 2 .0, R/,

u0R.0/D 0,

uR.R/D 0.

(4.4)

For the existence and uniqueness of the solution to the current problem we use, for instance Lax–Milgram theorem. The positivity of
this solution is proved by multiplying the corresponding equation by the negative part of uR.

A classical maximum principle allows us to prove that the solution uR is strictly positive in Œ0, R/. Now, remarking that uR D
BM
dm

is a
supersolution of problem (4.4). Consequently, by classical comparison principle we prove the following inequalities

0< uR.x/�
BM

dm
.

In addition, notice that (again by principle comparison) the sequence uR is nondecreasing with respect to R; therefore, uR (seen as 0
outside .0, R/) converges to a strictly positive function u, solution of problem (4.2) in W1,2.RC/. Now, we suppose that v is another
solution of problem (4.2) then v is a supersolution of problem (4.4) in .0, R/ (v.R/ > 0); thus, uR � v and by passing to the limit, we can
prove that u is the minimal solution of problem (4.2).

Moreover, rewriting Equation (4.2) as

�
�

u0eG.x/
�0
C d.x/eG.x/u.x/D B.x/eG.x/, (4.5)

we obtain

u0.x/D e�G.x/
Z x

0

d.s/

g.s/
g.s/eG.s/u.s/ds� e�G.x/

Z x

0

B.s/

g.s/
g.s/eG.s/ds,

in view of this, we deduce

ju0.x/j �

�
dM

gm
C

BM

gm

�
.1� e�G.x//.

The existence of the minimal solution in W1,1.RC/ is proved. Concerning the uniqueness, we set w D v � u � 0; thus, w satisfies the
following problem: 8̂̂̂

<
ˆ̂̂:
�
�

w0eG.x/
�0
C d.x/eG.x/w.x/D 0, x � 0,

w0.0/D 0,

w 2W1,1.RC/.

(4.6)

Multiplying the equation of problem (4.6) by a test function �.x/ D e�ıG.x/, with ı > 1, is a constant to be chosen later, and
integrating by part, we obtain

�w.0/�0.0/C

Z 1
0

�
d.x/C ıg0.x/� ı.ı � 1/g2.x/

�
�.x/eG.x/w.x/dx D 0.

Now choosing ı such that

d.x/C ıg0.x/� ı.ı � 1/g2.x/� ı1 > 0,

and because �0.0/ < 0, we have w.x/D 0. Hence, the lemma is proved. �

In order to analyze the asymptotic behavior of the solution to problem (1.2), we first need to show the existence, uniqueness, and
positivity of the stationary solution to problem (2.8). Indeed, we have the following lemma.
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Lemma 4.2
Problem (2.8) has a positive solution N with N 2W2,2.RC/ if and only if there exists a positive constant 
 such that

f .
/D
1

u.0/

 , (4.7)

where u is solution to problem (4.2). Moreover, 
 D
R1

0 B.x/N.x/dx.

Proof
Multiplying the equation of problem (2.8) by u, solution to problem (4.2) and integrating over .0,1/, we haveZ 1

0
B.x/N.x/dx D f

�Z 1
0

B.x/N.x/dx

�
u.0/. (4.8)

Now, let N be solution of the following problem8̂̂̂
<
ˆ̂̂:
� N00.x/C .gN/0.x/C d.x/N.x/D 0, x � 0,

g.0/N.0/� N0.0/D f .
/,Z 1
0

N.x/dx <1, and N � 0.

(4.9)

Multiplying Equation (4.9) by u and integrating, we findZ 1
0

B.x/N.x/dx D f .
/u.0/. (4.10)

From hypothesis (4.7), we have 
 D
R1

0 B.x/N.x/dx. �

We consider now the following auxiliary problem, setting Qu.x/ :D V.x/C CN.x/,8̂<
:̂

Ut.t, x/� Uxx.t, x/C .g.x/U.t, x//x C d.x/U.t, x/D 0, t � 0, x � 0,

g.0/U.t, 0/� Ux.t, 0/D Qf

�Z 1
0

B.x/U.t, x/dx

�
, and U.0, x/D Qu,

(4.11)

with C � 1 to be chosen later. N is the solution of stationary problem (2.8), and V satisfies8̂<
:̂
� V 00.x/C .gV/0.x/C d.x/V.x/D 0, x � 0

g.0/V.0/� V 0.0/D ˛

Z 1
0

B.x/V.x/dxC � and

Z 1
0

V.x/dx <1.
(4.12)

First of all, we begin by studying the aforementioned stationary problem (4.12). Indeed, we have the following lemma, which has the
same proof as that of Lemma 4.2. However, we give a somehow different proof.

Lemma 4.3
Problem (4.12) has a unique positive solution if and only if ˛ < 1

u.0/ , and � > 0.

Proof
By multiplying the equation of problem (4.12) by u, solution of problem (4.2) and integrating, we obtain

.1� ˛u.0//

Z 1
0

B.x/V.x/dx D �u.0/. (4.13)

On the other hand, we define the operator A from L1.RC, B.x/dx/ to L1.RC, B.x/dx/ such that for each function m, we set A.m/ D V ,
with V satisfies 8̂<

:̂
� V 00.x/C .gV/0.x/C d.x/V.x/D 0, x � 0,

g.0/V.0/� V 0.0/D
1

u.0/

Z 1
0

B.x/m.x/dxC � .
(4.14)

Thus, by applying the Banach Picard fixed-point theorem, we can prove the existence and uniqueness of the solution to problem
(4.12). �

Next, we will prove that the solution n of problem (1.2) is bounded.
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Lemma 4.4
Assume that (2.3), (2.4) and n0.x/ � CN.x/. Let NU.t, x/ and U.t, x/ be the solutions of problem (4.11), with initial conditions Qu and 0,
respectively. Suppose that ˛ < 1

u.0/ and � > 0. Then, we have the following inequalities.

0� U.t, x/� n.t, x/� NU.t, x/� Qu.x/,8t � 0

Furthermore, NU.t, x/ resp(U.t, x/) is nonincreasing in t (is nondecreasing in t).

Proof
First of all, remarking that assumptions (2.3) and (2.4) give the existence of 
 > 0 solution to f .
/D 1

u.0/
 , put w.t, x/D NU.t, x/� Qu.x/;

it follows that 8̂̂
<̂
ˆ̂̂:

wt.t, x/�wxx.t, x/C .g.x/w.t, x//x C d.x/w.t, x/D 0, t � 0, x � 0

g.0/w.t, 0/�wx.t, 0/� ˛

Z 1
0

B.x/w.t, x/dx

w.0, x/D 0.

(4.15)

As a simple consequence of comparison principle, we deduce that w � 0. Similarly, by setting w.t, x/D n.t, x/� NU.t, x/, we have

8̂̂
<̂
ˆ̂̂:

wt.t, x/�wxx.t, x/C .g.x/w.t, x//x C d.x/w.t, x/D 0, t � 0, x � 0

g.0/w.t, 0/�wx.t, 0/D Qf

�Z 1
0

B.x/n.t, x/dx

�
� Qf

�Z 1
0

B.x/ NU.t, x/dx

�
D Qf 0.	.t//

Z 1
0

B.x/w.t, x/dx,

w.0, x/� 0,

(4.16)

where 	.t/ is a value between
R1

0 B.x/n.t, x/dx and
R1

0 B.x/ NU.t, x/dx. By remarking that 	.t/ is uniformly bounded ( NU � Qu) and, so, by
using the fact that f is nondecreasing, the result is

8̂̂̂
<
ˆ̂̂:

wt.t, x/�wxx.t, x/C .g.x/w.t, x//x C d.x/w.t, x/D 0, t � 0, x � 0

g.0/w.t, 0/�wx.t, 0/� c

Z 1
0

B.x/wC.t, x/dx,

w.0, x/� 0,

(4.17)

where the positive constant c satisfying f 0.	.t//� c. Again, by comparison principle, we obtain w � 0. Concerning the monotonicity of
NU, we put w D NU.tC t1, x/ � NU.t, x/ for all t1 positive; it follows that w satisfies problem (4.16) with w.0, x/ D U.t1, x/ � Qu.x/ � 0, and
again by comparison principle, we conclude the monotonicity of NU.t, x/. �

Now, we are able to prove Theorem 2.3.

Proof of Theorem 2.3
First, we know that NU.t, x/ converges to a limit, so setting NU.t, x/! NUs.x/ as t!1. Consider the boundary-value problem

8̂<
:̂
� v00.x/C .gv/0.x/C d.x/v.x/D 0, x � 0

g.0/v.0/� v0.0/D Qf

�Z 1
0

B.y/ NUs.y/dy

�
.

(4.18)

Now, setting w.t, x/D NU.t, x/� v.x/, and W.x/D Qu.x/� v.x/, we claim that W � 0. Indeed, W satisfies

(
�W00.x/C .gW/0.x/C d.x/W.x/� 0, x � 0,

g.0/W.0/�W0.0/� 0,
(4.19)

then by a simple comparison principle, we conclude the claim. Now, following the same arguments as aforementioned and the fact
that f is nondecreasing, we can prove that w.t, x/� 0.

Multiplying the solution of problem (4.16) by w and integrating over .t, tC 1/� .0,1/, we have

Z tC1

t

Z 1
0

@

@s
w.s, x/w.s, x/dxC

Z tC1

t

Z 1
0

�
d.x/C

1

2
g0.x/

�
jw.s, x/j2dxdsC

Z tC1

t

Z 1
0
jwx.s, x/j2dxds

�
1

2

Z tC1

t

�
Qf

�Z 1
0

B.x/ NU.s, x/dx

�
� Qf

�Z 1
0

B.x/ NUs.x/dx

��2

ds.
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From this and using the fact that w.t, ./ is nonincreasing in t, we deduce

1

2

Z 1
0

�
jw.tC 1, x/j2 � jw.t, x/j2

�
dxC

Z 1
0

�
d.x/C

1

2
g0.x/

�
jw.tC 1, x/j2dx

�
1

2

�
Qf

�Z 1
0

B.x/ NU.t, x/dx

�
� Qf

�Z 1
0

B.x/ NUs.x/dx

��2

.

In addition, NU.t, x/! NUs.x/ as t!1 in L1.RC/, and the continuity of Qf leads to

Qf

�Z 1
0

B.x/ NU.t, x/dx

�
! Qf

�Z 1
0

B.x/ NUs.x/dx

�

as t!1.
By passing to the limit as t �!1 and combining these aforementioned results, we obtain w.t, ./! 0 in L2.RC/; thus, v D NUs, and

consequently, NUs D N. In order to prove that NUs is the maximal solution of the stationary problem (2.8), we set w D NU.t, x/� N.x/, with
N is any solution of problem (2.8). Applying Lemma 3.1, we can prove that NU.t, x/ � N.x/. Now, by passing to the limit, we obtain the
desired result. Employing an argument similar to that aforementioned, we can prove that U.t, x/! N.x/ as t!1. Hence, we conclude
the proof of the theorem. �

The following corollary concerns the case where problem (2.8) has multiple nontrivial stationary solutions.

Corollary 4.5
Suppose that problem (2.8) admits n nontrivial steady states noted Ni.x/ for 1 � i � n. Assume that the initial condition n0 is a super-
solution, resp. (subsolution) of problem (2.8), and satisfies either Ni.x/ ˆ n0.x/ ˆ NiC1.x/ for 1 � i � n� 1 or Nn.x/ � n0.x/ � CNn.x/,
resp (n0.x/� N1.x/). Then, the solution of problem (1.2) converges to Ni.x/ resp(NiC1.x/).

Proof
Because n0 is supersolution of problem (2.8), then by comparison principle, we have 0 < n.t, x/ � n0.x/ and n.t, x/ is nonincreasing
with respect to t. Consequently, it admits a limit. By following the proof of Theorem 2.3, we get the result. �

5. Blow up/extinction

In this section, we are concerned with a blow up (resp. extinction) of the solution to problem (1.2) under some assumptions on the
growth of f .

Theorem 5.1
If there exist M1 and M2 such that

˛xC � � f .x/�M1xCM2, (5.1)

with ˛ � 1
u.0/ and � > 0 or ˛ > 1

u.0/ and � D 0, the solution n to problem (1.2) satisfies

lim
t!1

Z 1
0

n.t, x/dx DC1. (5.2)

Proof
Multiplying the Equation (1.2) by u and integrating, we haveZ 1

0
nt.t, x/u.x/dx D

Z 1
0
.nxx � .gn/x � d.x/n/u.x/dx

D u.0/.n.t, 0/� nx.t, 0//C

Z 1
0

n.t, x/.u00.x/C g.x/u0.x/� d.x/u.x//dx,

D u.0/f

�Z 1
0

B.x/n.t, x/dx

�
�

Z 1
0

B.x/n.t, x/dx,

� u.0/

��
˛ �

1

u.0/

�Z 1
0

B.x/n.t, x/dx

�
C �/.

Hence, using Lemma 4.1, we obtain the result. �

We have directly the following extinction result.

Theorem 5.2
If there exist M1 such that

f .x/�M1x, (5.3)
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with M1 <
1

u.0/ , the solution n to problem (1.2) satisfies

lim
t!1

Z 1
0

n.t, x/dx D 0. (5.4)

6. Numerical simulation

We present in figure 1–3 some examples to illustrate the result of the previous section, namely the steady state solution and the
convergencetowards this one. For almost all these examples, we suppose that the recruitment term f .x/D

p
x and the transport term

g.x/ D 1, which satisfy the assumptions of Theorem 2.3. The initial conditions are assumed to be equal to 1. We compute numerical
solution to the system (1.2) by using finite difference with Dirichlet condition at the right boundary.

The birth and death terms are given by B.x/D 5e�x C 10.1� e�x/ and d.x/D 2e�x C 4.1� e�x/.
The next figure illustrate Theorem 2.3, namely the convergence of the solution to problem (1.2) towards the nontrivial solution of

problem (2.8).

7. Conclusion

We have proved the existence and uniqueness, and study the dynamics of solutions to the nonlinear partial differential Equation (1.2).
We notice that assumptions (2.3)-(2.4) on the growth of the nonlinear birth rate function f depends on the supremum and infimum

of the birth rate B and death rate d. In the general case, the birth rate vanishes when the age is too small (immature) or too large (do not
give birth when the individual is too old). In the same way, the biological age of individuals is ‘limited’, and so, the death rate can go to
infinity when the age is too large. In Figure 4, we conjecture that we can obtain the same result, even if the birth term vanishes and the
death term goes to infinity, but not too fast (behaves as x in infinity for example). Therefore, it will be interesting to find assumptions
on f , which extend the convergence result when the birth rate and death rate are non-negative and not necessarily bounded.
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Figure 1. The numerical simulation of the steady state solution to problem (2.8).
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Figure 2. xD 0.2. The numerical simulation of the solution to problem (1.2). Here, we fix an age xD 0.2, we compute n.t, x/, and we observe the convergence in

long-time asymptotic.
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Figure 3. TmaxD 500. Convergence of the solution to problem (1.2) towards the nontrivial stationary solution of problem (2.8).
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Figure 4. TmaxD 500, B.x/D xe�x , and d.x/D x. Convergence of the solution to problem (1.2) towards the nontrivial stationary solution of problem (2.8).
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