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a b s t r a c t

In this paper we develop a class of models to study a population and resource dynamical system
in which the decision to give birth is based on a rational far-sighted cost–benefit analysis on what
the future of the resource level will be. This leads to consider a system in which a time forward
population/resource dynamical system is coupled with a time backward Bellman’s equation (which
models the choice of having a child). We construct, from a population model with food consumption,
an example, to study the change in time of the fertility rate when a catastrophic change in resource is
announced at a given moment, when a birth control policy is announced and we compare these two
announcements in case nothing happens. Moreover, we provide, mathematical tools to theoretically
and numerically study this complex coupling of time forward and time backward equations.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Basically, living organisms are born, consume resources (or-
anisms), give birth and finally become resources, in a compet-
tive environment. Therefore, the survival of a species depends
n the ability to produce well fitted newborns and, obviously,
n the level of available resources. The relationship between
onsumers and their resources is a core study in ecology and
n demography. There exist numerous theoretical models, which
eal with different cases of relationship between consumers and
heir resources (Freedman, 1980; Getz and Owen-Smith, 2011;
ay, 1973; van Opheusden et al., 2015; Vance, 1990; Volterra,
928; Terry, 2014), where consumer is a predator and resource is
prey. The foundation of the mathematical modeling approach is
ased on the Lotka–Volterra equations (Volterra, 1928) of coupled
redator–prey (or consumer–resource) dynamics. Moreover, in
ome works (for instance Anon, 2007 p277, Stanková et al., 2013;
tukalin and Schmidt, 2011), the authors have introduced the
ptimization of a gain functional, to optimize the number of prey
nd predators at, or during, a given time. This approach leads
o adding an adjoint equation to the Lotka–Volterra system of
quations (Bellman’s equation Bellman, 1957).
Since there is a close correlation between economic and hu-

an population growth (Nielsen, 2016), application to human
opulations arises in demography and economics. In this context,
he Lotka–Volterra equations therefore describe the demography
f human populations (Basener et al., 2008). The same type of
quations is suggested to model a human population and a re-
ource is given in Anderies (2000, 2003), Basener et al. (2008),
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Nagase and Uehara (2011), Roman et al. (2018) and Uehara et al.
(2016) (close to Lotka–Volterra model). There has been much
recent activity in the modeling of human civilizations using this
formalism. In Brander and Taylor (1998), Brander and Taylor
study the collapse of Easter Island. Robert Axtel, in Axtell et al.
(2002), uses these models to study the collapse of the Kayenta
Anasazi civilization. In Roman et al. (2018), authors propose a
model to study the dynamics of Human/Environment interactions
in the collapse of classic Maya. All of these models consider
that the population undergoes a lack of resources without birth
control (or with a fixed birth control that does not anticipate
the lack of resources). In Puleston and Tuljapurkar (2008), the
resources used are modeled by the food ratio which is a function
of the size of the population and could be considered as a steady
state of the resource equation.

In these models, individuals adapt their fertility rate to the
current level of resources which is implicitly modeled by the
choice of the birth/fertility rate and its variations with respect
to the level of resources. Nevertheless, they do not anticipate
their behavior with future variations in the amount of resources.
Along with the question of population growth and its impact
on the environment, arise the question of birth control and the
anticipation of the fertility rate in the ecological debate (Obaid,
2001). More precisely, population growth is seen as the main
detriment to the environment: some two billion people already
lack food security and water supplies, and agricultural land is
under increasing pressure. These figures alarm many people, who
take it for granted that population growth will imply famine,
economic backwardness, more pollution and a faster depletion
of natural resources in the world (Collins, 2002). Consequently,
ipating future changes in resources. Theoretical Population Biology (2021),
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Fig. 1. Population/Resource coupling in an anticipation dynamics. The popu-
lation changes due to death and birth. Resources change due to their own
dynamics and their consumption by the population. If the population anticipates
a problem of resource in the future, from a neo-Malthusian point of view, it does
not give birth and vice versa, if the resources are sufficiently important, it gives
birth.

the child can be considered as a cost for the environment (envi-
ronmental cost1) and the expected difficulties of life of the child
in the future (due to the environmental problems) could be a
reason for parents not to have children (personal cost). Both of
these costs decrease with the level of resources and the value
V (t) of having a child depends on the predictions (see Fig. 1) on
the future states of the resources which is given by the dynamic
programming via Bellman equations (Bellman, 1957; Stukalin and
Schmidt, 2011) (and, for instance, in Flaig et al., 2018, 2020 in
epidemiological models).

In this paper, we develop a class of toy models to take into
account the value of having a child due to resource level as-
sessment, using backward/forward ordinary differential systems
close to those developed in Flaig et al. (2018, 2020), Stanková
et al. (2013) and Stukalin and Schmidt (2011). These models are
developed in Section 2. In Section 3, we compare the behavior
of a population which adapts its birth rate to the current level
of resources and of the same population which anticipates the
variation of resources (here food ratio). Finally, we conclude our
work.2

2. Population change in time with anticipation and adaptive
behavior

In the classical Lotka–Volterra equations (Volterra, 1928), the
level of resources (represented by Re(t) at time t) and the level of
onsumers (represented by Pop(t) at time t) satisfy the following
rdinary Differential Equations, for t ≥ 0,⎧⎪⎨⎪⎩

d
dt Pop(t) = G(Re(t), Pop(t))Pop(t)
d
dt Re(t) = ρ(Re(t)) − H(Re(t), Pop(t))
Pop(0) = Pop0 ≥ 0, Re(0) = R0 ≥ 0

, (1)

where ρ is the functional gain in the absence of consumer, H
the function governing the consumption of resources and G the
growth function (birth minus death) in the population of con-
sumers as a function of resources (Getz and Owen-Smith, 2011;
Basener et al., 2008). The growth rate G could be decomposed into

1 Environmental degradation, dwindling fisheries, shrinking forests, decreas-
ng biodiversity.
2 We give in Appendix A, mathematical proves of existence, uniqueness and
umerical tools used to compute solutions.
2

a birth rate B and a death rate D (see Terry, 2014) and we focus
on (1) of the form{

d
dt Pop(t) =

(
B(Re(t)) − D(Re(t))

)
Pop(t)

d
dt Re(t) = ρ(Re(t)) − H(Re(t), Pop(t))

, (2)

ith the initial data Pop(0) = Pop0 ≥ 0, Re(0) = R0 ≥ 0.
n Puleston and Tuljapurkar (2008), the authors use a discrete
ime evolution equation for the population level equation and
resource level (food ratio) which is expressed directly as a

unction of the population level. This could be understood as if
he resources in (1) are in a stable steady state, i.e.,

d
dt

Re(t) = 0, ρ(Re(t)) = H(Re(t), Pop(t)),

ith ρ and H define, not only, as ρ(Re) = Re(D − Re) and
(Re, Pop) = D(1−

(1−e−CPop)
CPop )Re where C and D are two constants,

i.e., Re = D (1−e−CPop)
CPop (see Puleston and Tuljapurkar, 2008 for the

equation of the food ratio). This behavior can be approximated in
(1) by taking

d
dt

Re(t) =
1
ϵ
[ρ(Re(t)) − H(Re(t), Pop(t))],

ith ϵ ≪ 1 (corresponding to a time scale difference: slow
ariation for population and rapid variation for resources (agri-
ulture)) and corresponds to the following system of coupled
opulation/resource time evolution equations{

d
dt Pop(t) =

(
B(Re(t)) − D(Re(t))

)
Pop(t)

0 = ρ(Re(t)) − H(Re(t), Pop(t))
. (3)

In Section 2.1, we complete the population and resources
o-evolution model with equations describing decision-making
rocess of individuals to have children.

.1. Construction of anticipation models

At time t , the size of the population Pop(t) and the level of
esources Re(t) are driven by a time evolution equation such as
2) (resp. (3)).

Now we consider that the decision to give birth is assumed
o be based on a rational and far-sighted cost–benefit analysis
n what the future will be. If the parents anticipate that, in the
ear future, there will be war or famine (due to overpopulation)
hey are not having children at present (for their own safety and
or the environment). On the other hand, if the parents anticipate
hat the future will be safe, they can choose to have a child (see
ig. 1). Let γ be a probability/wish to have a child, then (2),
ecomes{

d
dt Pop(t) =

(
αγ (t) − D(Re(t))

)
Pop(t)

d
dt Re(t) = ρ(Re(t)) − H(Re(t), Pop(t))

, (4)

here α is the maximum birth rate. We notice that (3), respec-
ively, becomes{

d
dt Pop(t) =

(
αγ (t) − D(Re(t))

)
Pop(t)

0 = ρ(Re(t)) − H(Re(t), Pop(t))
. (5)

f we follow Stanková et al. (2013), Stukalin and Schmidt (2011),
n a certain sense, by choosing this probability of having a child,
he parents want to maximize a gain functional of the Bolza type
from current time 0 to time T where T is large enough)∫ T

[u(Re(s))Pop(s) − Cαγ (s)Pop(s)]e−βsds, (6)

0
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here u is a utility function depending on the resource level
e, C is a constant cost of having a child (related to the time

(or money) parents have to spend raising a child: one of the
reasons why some adults do not want children Gillespie, 2003)3
and β is a time discount factor (simplifying assumption modeling
the forgetting process). This approach was used in Anon (2007)
p277 to optimize the number of predators and prey at a given
time by choosing the best hunting rate function of predators. The
gain (or cost function) is similar to those proposed in Stanková
et al. (2013) and Stukalin and Schmidt (2011) for the fishing
optimization problem and in Flaig et al. (2018, 2020) for ratio-
nal far-sighted cost–benefit analysis of vaccination in the case
of epidemiology. Moreover in Stukalin and Schmidt (2011), the
authors show how to obtain the adjoint equation (Bellman’s
equation Bellman, 1957) to solve the optimal control problem
with a gain function close to (6). More precisely, optimized gain
function

Ṽ (t, Pop) = max
γ

∫ T

t
[u(Re(s)) − Cαγ (s)]Pop(s)e−β(s−t)ds,

where 0 ≤ γ (t) ≤ 1 for all t , satisfies the time backward
equation (Stukalin and Schmidt, 2011; Bellman, 1957)

−
∂

∂t
Ṽ (t, Pop) = −βṼ+

[
α max(

∂

∂Pop
Ṽ − C, 0)

+u(Re(t))
]
Pop(t) − D(Re(t))Pop(t)

∂

∂Pop
Ṽ ,

and

γ (t) = Heaviside(
∂Ṽ

∂Pop
− C) =

⎧⎨⎩ 1, if ∂Ṽ
∂Pop − C > 0

0, if ∂Ṽ
∂Pop − C < 0

.

herefore, by setting,

˜ (t, Pop) = V (t)Pop,

we have V which satisfies

−
d
dt

V = u(Re(t)) + αγ (t)(V − C) − (β + D(Re(t)))V . (7)

Hence, the value V (t) (at time t) that the individual expects to
have a child, depends on the variation of the level of resources
and the immediate cost of raising a child. Note that the value
of having a child depends on predictions about future resource
states. In order to ease numerical methods and yet certainly as
a realistic assumption, we use the concept of smoothed best re-
sponse (Fudenberg and Levine, 1998) that uses logistic functions,
i.e.

z ↦→
1

(1 + e−Tez)
,

which is a smooth approximation of the Heaviside step function
(with Te which parametrizes the slope of the function at the
origin). Moreover we choose the following form for the utility
function (exponential)

u : z ↦→ 1 − e−auz+cu ,

where au and cu are reals. The equations describing the decision
making process by individuals are given in Eq. (7) and can be un-
derstood using the decision trees (Zwanziger et al., 2001; Hinman
et al., 2004) which is a list of scenarios in which an individual
is confronted with their probabilities, and individual and societal
costs.

We modify the value equation by adding an altruism parame-
ter χ which models a biased assessment of the value for the child

3 Therefore u(Re(s)) − Cαγ (s) is the individual’s gain function.
3

Fig. 2. Probability tree for individuals for Eq. (7). During a step time dt at time
t , we evaluate V (t) as u(Re(t))dt (the utility of the resources during time dt)
plus a value, depending on events happening to individuals and the value at
time t + dt:
– when death happens (with probability Ddt) the value is zero
– when forgetting (with probability βdt) the value is zero
– if the parents do not have child (with probability 1 − γαdt) the value is
V (t + dt)
– if the parents want a child and have one (with probability γαdt) the value is
V (t + dt) + (V (t + dt) − C) (value to the child and value to parents minus the
cost of raising the child).
Therefore, to evaluate the value at time t , we compute the mean of the value,
which depends on the value at time t + dt:
V (t) = u(Re(t + dt))dt + αγ (t)(V (t + dt) − C)dt
+(1 − (D + β)dt)V (t + dt) + O(dt2),
therefore by dividing by dt and passing to the limit in dt to zero we find (7).

when the decision to have a child is made4 (see Fig. 2 for the
change in probability tree and Fig. 6 to see the variation in birth
rate due to this parameter: when resources are low (resp. high)
the birth rate can be higher or lower (resp. lower or higher) from
one population to another) and the value when finally, the value
function V (t), for individual, from ’having a child’ at time t follows
the time backward equation

−
d
dt

V (t) = u(Re(t)) + αγ (t)(χV (t) − C)

−(D(Re(t)) + β)V (t), V (T ) = VT , (8)

here χ is an altruism parameter (we add χV to the value V
hen having the child), C the cost of having a child, β the time
iscount factor, u a utility function for available resources Re and

(t) =
1

(1 + e−Te(χV (t)−C))
, (9)

with Te ∈ ]0, ∞[ the slope of the sigmoid and α ∈ ]0, ∞[ the
maximal number of birth rate. Therefore, we can compute the
individual and societal costs of a single case of ’having a child’
as the net present value over lifetime of the expected cost of all
scenarios (see Fig. 3).

The complete model of anticipation for (4) (resp. (5)) is then
given by the coupled system of equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d
dt Pop(t) =

(
αγ (t) − D(Re(t))

)
Pop(t)

d
dt Re(t) = ρ(Re(t)) − H(Pop(t), Re(t))

−
d
dt V (t) = u(Re(t)) + αγ (t)(χV (t) − C)

−(D(Re(t)) + β)V (t)

, (10)

resp. 0 = ρ(Re(t)) − H(Pop(t), Re(t)) for the resources equa-
ion in the adaptation model of (5)) with initial data Pop(0) =

op0, Re(0) = Re0 ≥ 0 and final data V (T ) = VT (mathematical
esults are in Appendix A).

To model the change in the case where individuals adopt
n adaptive behavior, i.e. do not anticipate the variation of the

4 We choose a linear evaluation: V = χV .
child
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Fig. 3. Probability tree for individuals Eq. (8). During a step time dt at time t ,
e evaluate V (t) as u(Re(t))dt (the utility of the resources during time dt) plus

a value, depending on events happening to individuals and the value at time
t + dt:
– when death happens (with probability Ddt) the value is zero
– when forgetting (with probability βdt) the value is zero
– if the parents do not have child (with probability 1 − γαdt) the value is
V (t + dt)
– if the parents want a child and have one (with probability γαdt) the value
is χV (t + dt) + (V (t + dt) − C) (biased value to the child and value to parents
minus the cost to raise the child).
Therefore, to evaluate the value at time t , we compute the mean of the value,
which depends on the value at time t + dt:
V (t) = u(Re(t + dt))dt + αγ (t)(χV (t + dt) − C)dt
(1 − (D + β)dt)V (t + dt) + O(dt2),

therefore by dividing by dt and passing to the limit in dt to zero we find (8).

evel of resources at an aggregate level, even if they evaluate the
esources for their own survival, we set the value equation at its
quilibrium ( d

dt V (t) = 0):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d
dt Popad(t) =

(
αγad(t) − D(Read(t))

)
Popad(t)

d
dt Read(t) = ρ(Read(t)) − H(Popad(t), Read(t))
0 = u(Read(t)) + αγad(t)(χVad(t) − C)

−(D(Read(t)) + β)Vad(t)

, (11)

with (0 = ρ(Read(t)) − H(Popad(t), Read(t)) for the resources
equation to the adaptive behavior of (5))

γad(t) =
1

(1 + e−Te(χVad(t)−C))
, (12)

nd initial data Pop(0) = Pop0, Re(0) = Re0 ≥ 0 (here dynamic is
only time forward).

2.2. Discussion and parameters estimation

In this Section, we discuss the model and its parameters. The
probability tree given in Fig. 3 shows that the first time event of
‘having’ a child depends on γ . We give its law in Section 2.2.1 and
we give some examples when γ is fixed. Then we show, in the
Sections 2.2.2–2.2.3, we explain how to understand and estimate
parameters. In Section 2.2.4, we discuss about the model and its
limits.

2.2.1. Choice and its related law
The personal choice to have a child, during [t, t + dt], is

modeled by γ (t)αdt which represents the probability of choosing
to have a child (during [t, t + dt]). Therefore, the first time
the event ’have a child’ occurs follows a Cox process (Brigo and
Mercurio, 2006 p763) X of intensity

∫ t
0 αγ (s)ds, and its density is

given by

fX (t) =

{
0, t ≤ 0

−
∫ t
0 αγ (s)ds

,

αγ (t)e t

4

which is, when γ is constant over time, nothing more than
an exponential law. In order to understand it in demographic
terms (Hayford and Agadjanian, 2019), we give two examples,
when γ is constant over time and when γ is a Heaviside step
function.

1. Case γ = 0 means to stop or never have children and case
γ (t) = γ0 > 0, for all t , means that time between two
events ’having a child’ is, on average, 1/(γ0α) and so decay
of γ0 involves spacing two events ’having a child’.

2. When γ is a Heaviside step function

γ (t) =

{
0, t ≤ τ

γ0, t > τ
,

then the first time the event ’have a child’ happens follows
an exponential law of parameter γ0 translated, i.e. post-
poned, of time τ .

.2.2. Time discount factor and its estimation
First, we study the dynamics of V in the case of constant

esources (which is valid in a short time analysis), i.e.

¯, D = D̄ ≥ 0,

nd so V satisfies
d
dt

V (t) = ū + αγ (t)(χV (t) − C) − (D̄ + β)V (t).

Under assumption β ≫ αχ and D̄, we have that V and so, the
probability of having a child, γ converges to an equilibrium in a
long time Veq and γeq with

eq ∼
1

1 + e−Te(
χ ū
β

−C)
,

and so χ, β, C and Te are linked with the probability of having a
child in a long time γeq

(
χ ū
β

− C) ∼

log( γeq
1−γeq

)

Te
. (13)

The value after having a child could be measured by the proba-
bility of wanting a child immediately after having a child (figure
1 Hayford and Agadjanian, 2019): γ0. The dynamics of γ when
γ (t = 0) = γ0 is given by

γ (t) ∼

γ0(
γeq(1−γ0)
(1−γeq)γ0

)1−e−βt

1 − γ0 + γ0(
γeq(1−γ0)
(1−γeq)γ0

)1−e−βt
,

nd so, at time t1/2 such that

og(
γ

1 − γ
)(t1/2) = [log(

γ0

1 − γ0
) + log(

γeq

1 − γeq
)]/2,

we have e−βt1/2 = 1/2, i.e., β ∼
log(2)
t1/2

. The time discount
actor β can be related to the time necessary to reach half of the
quilibrium (of log( γ

1−γ
)) in growth, i.e., in a sense, ‘forgeting’ the

ost of having a child.
For instance, in Hayford and Agadjanian (2019), the authors

tudy the desire of women (in Sub-Saharan) childbearing and
y identifying, in figure 1 (Hayford and Agadjanian, 2019), the
robability that a woman want to delay childbearing, as 1 − γ

we can plot the time ↦→ log( γ

1−γ
)(time) (see Fig. 4) and we notice

that, β ∼
log(2)
t1/2

leads to β ∈ [10%, 20%].

.2.3. Adaptive equation and its link with classical time evolution
quations
Since individuals evaluate the resources for their own survival:

he time evolution Eq. (2) is, in fact, the adaptive Eq. (11)–(12).
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Fig. 4. In blue: log( γ

1−γ
) where 1−γ is given by the probability than a woman

ant to delay childbearing in Fig. 1. Hayford and Agadjanian (2019). In red,
he constant line [log( γ0

1−γ0
)+ log( γeq

1−γeq
)]/2 which cuts the blue line in different

points (around 3 years and around 7 years).

By identifying (11)–(12) and (2) we have αγad is equal to the
birth rate function Re ↦→ B(Re), i.e. for well-chosen parameters
(C, χ, Te, α and function u) we should have for all Re: γRe solution
to{

0 = u(Re) + αγRe(χVRe − C) − (D(Re) + β)VRe

γRe =
1

(1+e−Te(χVRe−C))

, (14)

atisfies αγRe = B(Re). Therefore, (2) and (11)–(12) have the same
solutions.

2.2.4. Discussion
Since we do not model the variation of age in (1), it is im-

possible to model the change of childbearing with respect to age
nor the ‘peak’ around year three in Fig. 4. To cope with these two
effects, it is necessary to introduce age of individuals and age of
the last birth. It might be possible to introduce age structure us-
ing Kermack–McKendrick (Kermack and McKendrick, 1991) that
models continuous aging of population or a discrete age model
(with a vector of population such as Puleston and Tuljapurkar,
2008) for the population time evolution equation and adapt the
value equation (time backward) with these age structure. Nev-
ertheless, this could increase complexity of the model and make
it less readable. The choice of a linear relationship between the
value given to the child and the value, through the ‘altruism’
parameter, is done to add more complex behavior without being
too complex: this could be improved in the future with a more
complex relationship.

3. Adaptive versus anticipation over an example

In this Section, we adapt a model given in Puleston and Tul-
japurkar (2008) of time evolution of the population with food
consumption (Section 3.1) where the size of the population is
represented by a vector structured by age with a discrete time
to a continuous time model with a single age group. Then, in
Section 3.2, we give the anticipation model and compare with
the dynamics of the adaptive model. This is an application of the
construction of adaptive and anticipation model from equation
type (3).5

5 We give an example of construction of adaptive and anticipation model
rom equation type (2) in appendix Appendix B.
 m

5

3.1. Basic model: an adaptive behavior

At time t the size of the population is given by Pop(t), the
onsumption is represented by the food ratio E(t) and is computed
y the food produced over the food consumed:

(t) = (YAm)
(1 − e−HkPop(t)φ̂/Am )

JPop(t)ρ̂
,

where Am is the maximum area in active cultivation, H the hours
worked per day, φ̂ part of the population that produces food, k a
constant that converts hour of labour to area, Y the caloric yield
per area cultivated and J the calorie requirement (per individual)
modulated by a consumption rate (variable with age of individu-
als) ρ̂ (see Puleston and Tuljapurkar, 2008 for more details). The
survival probability of the population depends on the food ratio

p : E ↦→ p(E),

hat we take as a piecewise linear function close to the curves
iven in figure 3 (Puleston and Tuljapurkar, 2008) (ages 5 or 65)
nd we see in Fig. 5, the death rate, i.e.

(E) = 1 − p(E).

he fertility rate, named m in Puleston and Tuljapurkar (2008), is
lso an increasing function of the food ratio

: E ↦→ B(E) ∈ [0, .135].

e notice that the birth rate (and the death rate) is depending
n food ratio, i.e., the birth rate is ‘adapted’ to the level of this
ariable. The food ratio depends on the maximum area cultivated
m and a sudden change in this value could be related to one
f the expected difficulties predicted by neo-malthusianists: the
epletion of natural resources in the world (Collins, 2002). Finally,
low food ratio is an indicator of a famine or an overpopulation.
herefore, we choose this variable as the key variable, for parents,
o decide whether or not to have a child in order to optimize
he well-being of the population (particularly their child) in the
uture.

The size of the population follows the main ordinary differen-
ial equation{ d

dt Pop(t) =
(
B(E(t)) − D(E(t))

)
Pop(t),

E(t) =
YHk
J

(1−e−HkPop(t)φ̂/Am )
HkPop(t)ρ̂/Am

.
(15)

Since individuals value resources for their own survival: the
ime evolution Eq. (15) is, in fact, the adaptive equation: the
ertility rate t ↦→ B(E(t)) is computed as t ↦→ .135γ (t) where
135 is the maximal fertility rate and γ is the probability/wish to
ave a child (adaptative behavior)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d
dt Pop(t) =

(
.135γ (t) − D(E(t))

)
Pop(t)

E(t) =
YHk
J

(1−e−HkPop(t)φ̂/Am )
HkPop(t)ρ̂/Am

0 = u(E(t)) + .135γ (t)(χV (t) − C)
−(D(E(t)) + β)V (t)

, (16)

ith

(t) =
1

(1 + e−Te(χV (t)−C))
, (17)

and so by identifying (16)–(17) and (15) we choose parameters
(see Table 1) to have, for all E ∈ [0, 1]: .135γE is close to m(E)
where γE satisfies⎧⎪⎨⎪⎩

0 = u(E) + .135γE(χVE − C)
−(D(E) + β)VE

γE =
1

(1+e−Te(χVE−C))

. (18)

or well chosen parameters (see Table 1) we have .135γ close to
given in figure 4. Puleston and Tuljapurkar (2008) (see Fig. 5).
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Fig. 5. Up: In blue the curve of death rate, i.e. one minus the survival probability,
iven in Puleston and Tuljapurkar (2008). Down: Plot of E ↦→ m(E) (plain line,
is the name of the fertility rate in Puleston and Tuljapurkar, 2008) and .135γE

dashed line) solution to (18) with parameters given in Table 1.

able 1
arameters definition.
Definition Variable Value

Max. food J 2,785 Kcal/day
Agricultural potential Y 13,100 Kcal/ha/day
Total arable land Am 1000 ha
Labor contribution H 5 h/indiv./day
Conversion from time k 0.0944
To annual area cultivated ha-days/h/yr
Average effective
Workers/person φ̂ 0.723
Average age structure
Weighted consumption ρ̂ 0.827

Parameters of (au; cu) (15.5347; 3.4672)
The utility function
Slope of the γ sigmoid Te 3.1826
Cost C 0.6102
Altruism factor χ 0.1659
Discount time factor β 15/100

3.1.1. Remark on parameters and sensitivity of fertility rate to per-
sonal cost and altruism

The evaluation of the cost parameter C , the altruism factor χ

nd the parameters of the utility function is not easy and depends
n countries, age, social category, religion (Pearce et al., 2015)...
e notice that childfree movement (Gillespie, 2003), claiming

hat having children is not costless in particular for women who
6

Fig. 6. Variation of 0.135γ ↦→ 0.135γ (E) solution to (18) with respect to C and
χ . Down, we set parameters in Table 1 (except C) and we plot γ ↦→ .135γ (E)
for C = 0.001 → 0.101. The birth rate is decreasing with respect to C . Up,
we set parameters in Table 1 (except χ ) and we plot γ ↦→ .135γ (E) for
χ = 0.0319 → 0.2867.

lose their freedom and career to raise their(s) child(ren) (Maier,
2008), surely have an impact on the parameters of cost and
altruism.

We use a genetic algorithm to find parameters such that .135γ
s sufficiently close to the fertility rate m given in Puleston and
uljapurkar (2008), i.e. a prehistoric population and therefore,
hese parameters must be re-evaluated for another fertility rate
ata (see Fig. 5).
In order to see the sensitivity of the fertility rate to these

arameters, we plot, in Fig. 6, the variation of .135γ solution to
18) with respect to the personal cost C (with other parameters
ixed in Table 1) and the altruism factor χ (with other parameters
ixed in Table 1). We notice that, as the personal cost increases,
135γ decreases and therefore the equilibrium Ê also increases.
he variation with respect to the altruism factor is more compli-
ated. Note that the shape of .135γ changes from nearly linear
o sigmoid and is increasing with respect to χ when E is large
nough (E > Ē, with V (Ē) = 0) and decreasing with respect to
when E is small enough (E < Ē). Since the death rate function
↦→ (1 − p(E)) intersects the curves in the first case (E large

nough), Ê decreases with respect to χ .

.1.2. First simulation
We have directly that (Pop(t), E(t)) reaches a stable equilib-

ium when t goes to infinity (due to the growth of p + m with
espect to E and decreasing of E with respect to Pop), and this
quilibrium (P̂op, Ê) satisfies

(Ê) = D(Ê), Ê =
YHk (1 − e−HkP̂opφ̂/Am )

,

J HkP̂opρ̂/Am
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Fig. 7. Numerical solution of (15) with parameter given in Table 1. Time change
of the population size time ↦→ Pop(time). Plain line: solution to Eqs. (15) and
ashed line: solution to (16)–(17).

hich is (0.5606; 9786) for the parameters given in Table 1 (same
s parameters give in table 1 Puleston and Tuljapurkar, 2008) (see
ig. 7 for a numerical simulation of (16)–(17). The equilibrium
ound in Puleston and Tuljapurkar (2008) is (0.680; 4752). The
ifference with (Puleston and Tuljapurkar, 2008) is due to the
pproximation of the death rate, fertility rate and loss of age
tructure: indeed, by taking only one age group, we choose a
ertility rate of one age group that overestimates the fertility
ate of the whole population, the same goes for the death rate
hich underestimates the death rate of the whole population.
o find an equilibrium close to that given in Puleston and Tul-
apurkar (2008), it might be possible to modify average effective
orkers/person parameter φ̂ and average age structure weighted
onsumption ρ̂ to take into account the simplification to an age
lass. However we have chosen to keep parameters as given
n Puleston and Tuljapurkar (2008), to be more consistent with
he original model and its functions definitions.

.2. The anticipation model and simulations

Now we add the anticipation, following (10), with the back-
ard equation of the value⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d
dt Pop(t) =

(
.135γ (t) − D(E(t))

)
Pop(t)

E(t) = (YAm) (1−e−HkPop(t)φ̂/Am )
JPop(t)ρ̂

−
d
dt V (t) = u(E(t)) + .135γ (t)(χV (t) − C)

−(D(E(t)) + β)V (t)

, (19)

and γ (t) =
1

1+e−Te(χV (t)−C) with parameters given in Table 1. We
ive three numerical simulations to analyze the difference in be-
avior between an adaptive and an anticipating individual. In the
irst case (’nothing change’), we compare both models when there
s no change in the future: no change in the agriculture parameter
uch as the area of arable land, the agricultural potential... and no
irth rate policy. In the second case (’agriculture catastrophe’), we
ee what is changed by announcing that at a given time the total
rable land has its area will be divided by two. In the third case
’birth control policy’), we see the effect of announcing of a birth
ontrol policy that would be modeled by fixing the birth rate at
certain value at a given time.
 t

7

3.2.1. Case 1. nothing change
Since the adaptive model corresponds to an equilibrium for

the value equation in the anticipation model, equilibria of the
adaptive model (16) are the same as the anticipation model
(19). The stability of steady states can be studied as in classical
(forward) way by keeping the backward/forward structure.

Theorem 1 (Stability). The only steady state of (16) (resp. (19)):
(P̂op, Ê) is locally stable for both model.

The proof is direct for the adaptive model (due to the growth
of γ +p with respect to E and the decay of E with respect to Pop).
For the adaptation model, we have to deal with the Jacobian at
(P̂op, V̂ )

Jac =

(
0 J12
J21 J22

)
,

with J12 = .135 ∂
∂V γ Pop > 0, J21 = (u′(E) + p′(E)V ) ∂E

∂Pop < 0 and
J22 = .135 ∂

∂V (γ (χV (t) − C)) − (1 − p(E) + β) < 0 (by numerical
omputation). Since det(Jac) > 0 and tr(Jac) < 0, eigenvalues are
egative and the steady state is locally asymptotically stable.
Therefore, we do not expect much difference between the two

odels when the resource condition (here, for instance, Am: area
f arable land) does not change (see Fig. 8) during of temporal
volution.

.2.2. Case 2. agriculture catastrophe
Nevertheless, differences between anticipation and adaptative

ehavior appear when adding information such as ecological
atastrophe (modeled here by a decay in very short time of the
otal area of arable land).

To illustrate a difference in behavior, we assume that the area
f arable land is divided by two at a given time:

m =

{
1000, for t ∈ [0, 500]
500, for t ≥ 500

,

here t = 500 is chosen to compare behavior of adaptive and
daptation when population has reached its equilibrium before
rea change happens. The information of area decay is known by
he population.

We see, in Fig. 9, that the food ratio only changes for a
elatively short time (time 500 to time 510) due to the short
volution over time of the area of arable land and the high death
ate during this period to reach a new steady state in population
nd food ratio.
Note that in the adaptive model (the classical model), individ-

als do not change their birth rate before the loss of area of arable
and t = 500.

In the adaptation model, we see, in Fig. 9, that after time 490
therefore before any change of the arable land area), the birth
ate decreases due to the anticipation of the decay of the food
atio E. True or not, the information of the decay of the area of
rable land has an impact on the behavior on the fertility rate and
herefore on the dynamics of the population before the moment
t could (or not) occur (neo-Malthusian behavior).

.2.3. Case 3. birth control policy
Here we illustrate an another difference in behavior in the case

f a birth control announcement that would be applied after a
iven time.
We assume that at time t = 470 is announced that the birth

ate will be limited to 0.0420 (which corresponds to half of the
ase 1. at equilibrium) thirty years after the announcement, i.e. at
ime t = 500.

We observe, in Fig. 10, that between time t = 470 and t = 500
he birth rate increases due to the fact that individuals anticipate
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n increase in the food ratio under the effect of limitation of the
irth rate after time t = 500.
Consequently, the effect of announcing a birth control policy

o a population that anticipates change of resources may have a
ounter effect just before the application of the policy.

. Conclusion

In this work we have given a construction scheme to model
he anticipation behavior in a dynamic population and resource
odel. This construction leads to a coupling of a forward-in-time
ystem of equations which models the interaction between pop-
lation and resources and a backward-in-time equation which
odels the valuation of the value of childbearing. On an example
sing a simple dynamic on the time evolution of population, we
how the construction of the anticipation model and we apply
t on different scenarios. In a catastrophic scenario of a loss of
rable area (announcement), we see that an adaptive population,
.e., that evaluates the value but does not anticipate its varia-
ions, does not adapt their fertility rate to the loss. Whereas in
he anticipation model, the evolution of the fertility rate shows
n anticipation of the loss. Since, the coupling is not classic in
nalysis we have given general tools to prove the existence,
he uniqueness and the numerical analysis in appendix. To go
urther, it should be interesting to adapt the construction to
n age structured model such as the model given in Puleston
nd Tuljapurkar (2008) (or a Kermack–McKendrick Kermack and
cKendrick, 1991 partial differential equation model) and to
djust parameters to more recent population fertility rate. More-
ver, we consider that C and χ are constant in time, an inflation of

these parameters could have a non-zero impact on the evolution
of the birth rate over time.
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Appendix A

There are several and interesting mathematical problems aris-
ing in (10). Due to the coupling of time forward (for Pop and
e) and time backward (for V ), the existence and uniqueness
f a solution to (10) is not a trivial application of the Cauchy–
ipshitz theorem. Moreover, numerical approximation scheme of
his problem is not easy. Trying to inverse time in the third
quation (in V ) and using a shooting method to find V (0) such

that V (T ) = VT fails due to the fact that the equation in V is
unstable for positive time, i.e. a small variation of V (0) implies
a large variation of V (T ). A direct Banach–Picard fixed point
algorithm fails also. In this Section, we first give results on the
existence and the uniqueness of solution. Moreover, we explain
the reason of the convergence of a relaxed Banach–Picard scheme
to the solution (the method has been used in previous works Flaig
et al., 2018, 2020 but not explained).

A.1. Mathematical results

In this Section, we give two main results. The first theorem
concerns the existence and uniqueness of a solution to (10) and
the second gives an approximation scheme which converges to
the solution. In both theorems we use the function f defined as
follows

f : (γ , Re) ∈ C([0, T ], [0, 1]2) ↦→

f (γ , Re) ∈ C([0, T ], [0, 1]2), (20)

ith

: (γ , R̃e) ↦→ (
1

(1 + e−Te(χV−C))
, Re) (21)

where (V , Re) is solution to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d
dt Pop(t) =

(
αγ (t) − D(R̃e(t))

)
Pop(t), t ≥ 0,

d
dt Re(t) = ρ(Re(t)) − H(Pop(t), Re(t)),

−
d
dt V (t) = u(Re(t)) + α

(χV (t)−C)
(1+e−Te(χV (t)−C))

(22)
−(D(Re(t)) + β)V (t),
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Fig. 9. Anticipation VS Adaptation case 2. In blue (plain line) we see time evolution of the population that adapts its behavior and in red (dashed line) time evolution
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opulation changes from an equilibrium to an another with a large death rate and a decay of fertility. In the four down plots we magnify the change around time
= 500 in order to observe more precisely the difference of behavior.
w

ρ

a

D

ith initial data Pop(0) = Pop0 ∈ ]0, ∞[, Re(0) = Re0 ∈

0, 1], V (T ) = VT .

heorem 2. Assuming that

, ρ ∈ C1(R) and H ∈ C1(R2), (23)
9

ith

(1) = ρ(0) = H(Pop, 0) = 0, and D(0) > α > D(1), (24)

nd

′ < 0 and
∂

H < 0. (25)

∂Pop
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agnify the change around time t = 500 to observe the fertility and the behavior of anticipating population.
Then, there exists a unique solution to (10).6

We approach this solution can be by the following algorithm:
let u0 = 0, and define by induction

un+1 = (1 − ϵ)un + ϵf (un), (26)

6 C1 assumptions could be replaced by Lipschitz, D′ < 0 by D decreasing and
∂ H < 0 by H decreasing with respect to Pop.
∂Pop

10
with ϵ ∈ ]0, 1[ small enough. More precisely, we have the
following convergence result.

Theorem 3. Under assumptions (23)–(25) then u = (γ , Re)
the solution to (10) is a locally asymptotically stable state to the
equation
d
U(s, t) = f (U(s, .))(t) − U(s, t), ∀t ∈ [0, T ], s ≥ 0. (27)
ds
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emark 1. Indeed, an Euler approximation of (27) is given by

n+1(t) = Un(t) + ϵ[f (U(n, .))(t) − U(n, t)]
= ϵf (U(n, .))(t) + (1 − ϵ)U(n, t),

where ϵ is the time step, i.e., the relaxed algorithm (26). Another
scheme, given by a semi-implicit Euler approximation of (27)
could be

Un+1(t) = (Un(t) + ϵf (U(n, .))(t))/(1 + ϵ),

where ϵ is the time step.

A.2. Proof of existence and uniqueness

We first give the existence result which comes directly from
the compactness of the operator f and the Schauder fixed point
theorem (see Istratescu, 1981). Then we prove uniqueness using
the decay of f and Ordinary Differential Equations tools (up-
per/lower solutions).

Existence. This is a direct application of Schauder fixed point
theorem (see Istratescu, 1981). Indeed, for all (γ , R̃e) which
belongs to C([0, T ], [0, 1]2), (V , Re, Pop) is the solution to the
Ordinary Differential system of Eqs. (22) which existence and
uniqueness is a consequence to the Cauchy Lipschitz theorem
(see Coddington and Levinson, 1955). Moreover (V , Re, Pop) are
regular functions, i.e. (Pop, Re) ∈ C1([0, T ], [0, 1]) and V is a
1([0, T ], [0, 1]2). Now, using that

x ↦→
1

1 + e−Te(χx−C) ∈ C1(R,R),

hen f (γ , Re) is bounded in C1([0, T ], [0, 1]2). Therefore f is com-
act on the convex set C([0, T ], [0, 1]2) and so, using Schauder
heorem (see Istratescu, 1981), there exists a fixed point to f .

niqueness. Let (γ1, Re1) and (γ2, Re2) be two solutions to the
ixed point (γ , Re) = f (γ , Re), i.e., solutions to (10) then

d
dt Popi(t) =

(
αγi(t) − D(Rei(t))

)
Popi(t),

d
dt Rei(t) = ρ(Rei(t)) − H(Popi(t), Rei(t)),
d
dt Vi(t) = −u(Rei(t)) − α

(χVi(t)−C)
(1+e−Te(χVi(t)−C))

+(D(Rei(t)) + β)Vi(t),

with the initial data Popi(0) = Pop0 ∈ ]0, ∞[, Rei(0) = Re0 ∈

]0, 1], Vi(0) = V 0
i and V 0

i = (C − log(1/γi(0) − 1)/Te)/χ . If
0
1 = V 0

2 , by Cauchy Lipschitz theorem γ1 = γ2. We suppose that
1(0) > γ2(0) (and so V1(0) > V2(0)), then we have d

dt Pop1(0) >
d
dt Pop2(0) and so

Pop1(t) > Pop2(t),

in a neighborhood of t = 0. Then, using assumption (25), we have

Re1(t) < Re2(t),

and so we have

D(Re1(t)) − u(Re1(t)) > D(Re2(t)) − u(Re2(t)),

which implies that V1(t) > V2(t) and so γ1(t) > γ2(t) in a
neighborhood of 0. Therefore Ω = {s ∈ [0, T ] s.t. γ1(t) >

γ2(t) ∀t ∈ [0, s[} is a nonempty set. On Ω̄/{0}, we have by
comparison principle Pop1 > Pop2 and Re1 < Re2 and so Ω =

Ω̄ = [0, T ]: which is impossible since V1(T ) = V2(T ) = VT and so
γ (T ) = γ (T ). □
1 2 V

11
A.3. Proof of convergence result

The most difficult is to prove the convergence of the algorithm
(26). Indeed, since f is not a contractant operator, the Banach
fixed point theorem (see Istratescu, 1981) cannot be used di-
rectly. Nevertheless, we can prove that f is decreasing (antitone,
see Sommariva and Vianello, 2000), its differential df is a strongly
negative (see Dautray and Lions, 1990) and compact operator
and so we can construct a dynamical system which converges
to the solution. The algorithm (26) can be seen as a numerical
approximation of this dynamical system.

By differentiation of V = f (U) − U with respect to s we have
directly that V = f (U) − U , where f is defined by (21)–(22) and
U solution to (27) satisfies
d
ds

V (s, t) = dfU(s,.)V (s, .)(t) − V (s, t), ∀t ∈ [0, T ], s ≥ 0. (28)

We show that dfU(s,.) is a strongly negative (see Dautray and Li-
ns, 1990) and compact operator (uniformly along a trajectory U).

Lemma 4. Let f defined by (21)–(22) then dfU(s,.) an integral
perator with the following properties:

1. dfU(s,.) : h ↦→ dfU(s,.)(h) is a linear, regular (continuous) and
strongly negative operator, i.e., −dfU(s,.) is strongly positive
(see Dautray and Lions, 1990),

2. dfU : h ∈ C0([0, T ] × R+) ↦→ dfU(s,.)(h) ∈ C0([0, T ] × R+) is
a compact operator,

3. infU∈{U(s,.), s≥0} dfU , supU∈{U(s,.), s≥0} dfU are linear, regular
(continuous) and strongly negative operator.

And finally we prove that, for all dynamical system of this
orm (with a strongly negative (see Dautray and Lions, 1990) and
ompact operator), we have the convergence of the solution to 0
xponentially.

emma 5. Let ϵ(s, t) solution to
d
ds

ϵ(s, t) = −(Kt + I)ϵ(s, t),

here Kt is a compact strongly positive operator on the function set
0([0, T ], [0, 1]2) then we have

1. the spectral radius of Kt , named ρ(t), is a single eigenvalue,
there exists N(., t) ≥ 0 eigenfunction associated to this
eigenvalue

2. there are no other eigenvalue of modulus ρ(t)

ore precisely there exists (ρ,N, φ), with ρ > 1, solution to{
−

d
dsΦ(s, t) = L∗

t Φ(s, t) + ρ(t)Φ(s, t),
d
dsN(s, t) = LtN(s, t) + ρ(t)N(s, t),

(29)

with Lt = −(Kt + I) and L∗
t its dual operator. Moreover, we have

the convergence of ϵ to 0 and∫
|ϵ(s, t)|Φ(s, t)dt = O(e−s). (30)

Therefore we have proved that U solution to (27) satisfies

(U) − U →s→∞ 0,

n C0([0, ∞[, L1([0, T ])).

roof of Lemma 4. Let γ , Re and ϵ1, ϵ2 then compute
(Pop, Re, V ), with the input functions (γ , Re) and
(Popϵ, Reϵ, Vϵ) with the input functions (γ + ϵ1, Re + ϵ2). We

ave, at first order,

opϵ(t) = Pop(t) + ϵPop(t), Reϵ(t) = Re(t) + ϵRe(t),
ϵ(t) = V (t) + ϵV (t),
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ith
d
dt

ϵPop(t) = (αγ (t) − D(Re(t)))ϵPop(t)

+αϵ1(t)Pop(t) − D′(Re(t))ϵ2(t),

ith ϵPop(0) = 0, i.e., by integration

Pop(t) =

∫ t

0
e
∫ t
s (αγ (w)−D(Re(w)))dw

[αϵ1(s)Pop(s) − D′(Re(s))ϵ2(s)]ds.

oreover, we have
d
dt

ϵRe(t) = [ρ ′(Re) −
∂

∂Re
H(Re, Pop)]ϵRe(t)

−
∂

∂Pop
H(Re, Pop)ϵPop(t),

with ϵRe(0) = 0, i.e., by integration we have

ϵRe(t) =

∫ t

0
e
∫ t
s [ρ′(Re)− ∂

∂ReH(Re,Pop)](w)dw

[−
∂

∂Pop
H(Re, Pop)]ϵPop(s)ds,

and finally

ϵRe(t ′) =

∫ t ′

0
1s≤t ′

∫ t ′

q
e
∫ t′
s [ρ′(Re)− ∂

∂ReH(Re,Pop)](w)dw

[−
∂

∂Pop
H(Re, Pop)](e

∫ s
q (αγ (w)−D(Re(w)))dwds

[αϵ1(q)Pop(q) − D′(Re(q))ϵ2(q)]dq).

Now, for ϵV , we have

−
d
dt

ϵV (t) = [u′(Re(t)) − D′(Re(t))V (t)]ϵRe(t)

−(µ + β + αP ′(V ))ϵV (t),

with ϵV (T ) = 0 and P(V ) :=
(χV (t)−C)

(1+e−Te(χV (t)−C))
. Therefore, by

ntegration, we obtain

V (t) =

∫ T

t
[u′(Re(s)) − D′(Re(s))V (s)]ϵRe(s)

e−
∫ s
t (D(Re(w))+β+αP ′(V (w)))dwds.

Finally, we find

ϵV (t ′) =

∫ T

t ′
[u′(Re(t)) − D′(Re)V (t)]

e−
∫ t
t′ (D(Re(w))+β+αP ′(V ))dw∫ t

0
e
∫ t
s [ρ′(Re)− ∂

∂ReH(Re,Pop)](w)dw

[−
∂

∂Pop
H(Re, Pop)](s)∫ s

0
e
∫ s
q (αγ (w)−D(Re(w)))dw[αϵ1(q)Pop(q)

−D′(Re(q))ϵ2(q)]dqdsdt,

which could be written, using Fubini, in the following form

ϵV (t ′) =

∫ T

0

∫ T

t ′

∫ t

q
[u′(Re(t)) − D′(Re)V (t)]

[−
∂

∂Pop
H(Re, Pop)](s)

e−
∫ t
t′ (D(Re(w))+β+αP ′(V ))dwe

∫ t
s [ρ′(Re)− ∂

∂ReH(Re,Pop)](w)dw

e
∫ s
q (αγ (w)−D(Re(w)))dwdsdt[αϵ (q)Pop(q)
1

12
−D′(Re(q))ϵ2(q)]dq.

herefore, we have

ϵγ (t ′)
ϵRe(t ′)

)
=

∫ T

0
Q (s, t ′)

(
ϵ1(s)
ϵ2(s)

)
ds,

ith

(s, t ′) =

(
Q11(s, t ′) Q12(s, t ′)
Q21(s, t ′) Q22(s, t ′)

)
.

11(q, t ′) = C ′

f (V (t ′))αPop(q)∫ T

t ′

∫ t

q
[u′(Re(t)) − D′(Re)V (t)]

[−
∂

∂Pop
H(Re, Pop)](s)

e
−

∫ t

t ′
(D(Re(w)) + β + αP ′(V ))dw

e

∫ t

s
[ρ ′(Re) −

∂

∂Re
H(Re, Pop)](w)dw

e

∫ s

q
(αγ (w) − D(Re(w)))dw

dsdt,

12(q, t ′) = C ′

f (V (t ′))∫ T

t ′

∫ t

q
[u′(Re(t)) − D′(Re)V (t)]

[−
∂

∂Pop
H(Re, Pop)](s)

e
−

∫ t

t ′
(D(Re(w)) + β + αP ′(V ))dw

e

∫ t

s
[ρ ′(Re) −

∂

∂Re
H(Re, Pop)](w)dw

e

∫ s

q
(αγ (w) − D(Re(w)))dw

dsdt(−D′(Re(q))),

21(q, t ′) = αPop(q)1q≤t ′∫ t ′

q
e

∫ t ′

s
[ρ ′(Re) −

∂

∂Re
H(Re, Pop)](w)dw

[−
∂

∂Pop
H(Re, Pop)]

e

∫ s

q
(αγ (w) − D(Re(w)))dw

ds,

nd

22(q, t ′) = [−D′(Re(q))]1q≤t ′

∫ t ′

q

e

∫ t ′

s
[ρ ′(Re) −

∂

∂Re
H(Re, Pop)](w)dw

[−
∂

∂Pop
H(Re, Pop)]

e

∫ s

q
(αγ (w) − D(Re(w)))dw

ds,

here Cf (V ) :=
1

(1+e−Te(χV (t)−C))
. We notice that Qi,j < 0 for all

i, j and using assumptions (23) and (25) we have that inf ′
q,t ,i,j
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Q
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a∫

a

A
p

t
a
m

i,j(q, t ′) < 0. Therefore, −dfU is a strongly positive operator (and
he same holds for sup and inf of −dfU ). Since dfU is an integral
perator with Q continuous with respect to q and C1 with respect
o t ′ we have compactness of this operator on C0([0, T ]×R+). □

roof of Lemma 5. Using Krein Rutmann theorem (Dautray and
ions, 1990), we have existence of (ρt ,Nt , φt ) solution to (29). By
computation, we find
d
ds

∫
ϵ(s, t)e

∫ s
0 ρ(s′)ds′Φ(s, t)dt

=

∫
Lϵ(s, .)(t)e

∫ s
0 ρ(s′)ds′Φ(s, t)dt

+

∫
ϵ(s, t)e

∫ s
0 ρ(s′)ds′

[
d
ds

Φ(s, t) + ρ(s)Φ(s, t)]dt,

and so we have the conservation law
d
ds

∫
ϵ(s, t)e

∫ s
0 ρ(s′)ds′Φ(s, t)dt =

∫
ϵ(s, t)e

∫ s
0 ρ(s′)ds′

[L∗Φ(s, t) +
d
ds

Φ(s, t) + ρ(s)Φ(s, t)]dt = 0.

Let ϵ+(s, t) := max(ϵ(s, t), 0) and ϵ−(s, t) := max(−ϵ(s, t), 0)
then we have
d
ds

∫
ϵ+(s, t)e

∫ s
0 ρ(s′)ds′Φ(s, t)dt =

∫
ϵ(s, t)

e
∫ s
0 ρ(s′)ds′

[L∗(sgn+(ϵ(s, .))Φ(s, .))

+(
d
ds

Φ(s, t) + ρ(s)Φ(s, t))sgn+(ϵ(s, t))]dt.

Using (29), we find
d
ds

∫
ϵ+(s, t)e

∫ s
0 ρ(s′)ds′Φ(s, t)dt =

∫
ϵ(s, t)

e
∫ s
0 ρ(s′)ds′ [L∗(sgn+(ϵ(s, .))Φ(s, .))

−L∗(Φ(s, .)sgn+(ϵ(s, t)))(t)]dt.

The same computation holds for ϵ− and we find
d
ds

∫
ϵ−(s, t)e

∫ s
0 ρ(s′)ds′Φ(s, t)dt =

∫
ϵ(s, t)e

∫ s
0 ρ(s′)ds′

[L∗(sgn−(ϵ(s, .))Φ(s, .)) − L∗(Φ(s, .)sgn−(ϵ(s, t)))(t)]dt.

Now using that Lt = −(K + I) and L∗
t = −(K∗

+ I), we have
d
ds

∫
ϵ+(s, t)e

∫ s
0 ρ(s′)ds′Φ(s, t)dt =

∫
ϵ(s, t)e

∫ s
0 ρ(s′)ds′

[K∗(sgn+(ϵ(s, .))Φ(s, .)) − K∗(Φ(s, .)sgn+(ϵ(s, t)))(t)]dt,

and
d
ds

∫
ϵ−(s, t)e

∫ s
0 ρ(s′)ds′Φ(s, t)dt = −

∫
ϵ(s, t)e

∫ s
0 ρ(s′)ds′

[K∗(sgn−(ϵ(s, .))Φ(s, .)) − K∗(Φ(s, .)sgn−(ϵ(s, t)))(t)]dt.

Therefore, using that |ϵ(s, t)| = ϵ+ + ϵ− we obtain
d
ds

∫
|ϵ(s, t)|e

∫ s
0 ρ(s′)ds′Φ(s, t)dt = −

∫
ϵ(s, t)

e
∫ s
0 ρ(s′)ds′K∗(Φ(s, .))dt

+

∫
|ϵ(s, t)|e

∫ s
0 ρ(s′)ds′K∗(Φ(s, .))dt.

Using that
d
ds

Φ + (ρ − 1)Φ = K∗Φ,

we have
d

∫
|ϵ(s, t)|e

∫ s
0 ρ(s′)ds′Φ(s, t)dt = −(ρ − 1)

∫
ϵ(s, t)
ds
13
e
∫ s
0 ρ(s′)ds′Φdt + (ρ − 1) |ϵ(s, t)|e

∫ s
0 ρ(s′)ds′Φdt∫

[ϵ(s, t) − |ϵ(s, t)|]e
∫ s
0 ρ(s′)ds′ d

ds
Φdt,

and so we find
d
ds

∫
|ϵ(s, t)|e

∫ s
0 ρ(s′)ds′Φ(s, t)dt = −(ρ − 1)

∫
ϵ(s, t)

e
∫ s
0 ρ(s′)ds′Φdt + (ρ − 1)

∫
|ϵ(s, t)|e

∫ s
0 ρ(s′)ds′Φdt

+2
∫

ϵ−(s, t)e
∫ s
0 ρ(s′)ds′ d

ds
Φdt.

Noticing that

−
d
ds

Φ = (ρ − 1)[Id −
K∗

ρ − 1
]Φ,

where [Id −
K∗

ρ−1 ] ≥ 0 and [Id −
K∗

ρ−1 ] > 0 whenever Φ ̸= CtsΨ
with

[Id −
K∗

ρ − 1
]Ψ = 0,

(using Krein Rutmann), we have

−
d
ds

Φ ≥ 0,

ince Φ ≥ 0. Finally, we have

d
ds

∫
|ϵ(s, t)|e

∫ s
0 ρ(s′)ds′Φ(s, t)dt ≤

−(ρ − 1)
∫

ϵ(0, t)Φ(0, t)dt

+(ρ − 1)
∫

|ϵ(s, t)|e
∫ s
0 ρ(s′)ds′Φdt,

nd, using Gronwall inequality, we obtain

|ϵ(s, t)|Φ(s, t)dt ≤ −(ρ − 1)
∫

ϵ(0, t)Φ(0, t)dte−s

+e−s
∫ s

0
e−

∫ s′
0 (ρ(s′′)−1)ds′′ds′,

nd (30) is satisfied. □

ppendix B. An example of predator–prey model with antici-
ation

We follow here the work of J. Terry in Terry (2014), in which,
he growth rate of predators is decomposed into a birth rate B and
death rate D. At time t , predators P(t) and preys N(t) follow the
aster system of equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

d
dtN(t) = rN(1 − N/K )  

logistic growth

− P(t)F (N(t))  
hunt

d
dt P(t) = P(t)

[
B(F (N(t)))  

birth rate

−D(F (N(t)))  
death rate

] , (31)

with F (Holling type II) defined as (a, b positive constants)

F (N) =
aN

1 + bN
.

Paper gives as example,

B(F (N)) =

⎧⎪⎨⎪⎩
0, 0 ≤ F (N) ≤ φ1

β, F (N) ≥ φ2

2 π F (N)−φ1

, (32)

β cos ( 2 (1 +

φ2−φ1
)), else
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Fig. 11. Down. Birth and Death rate with respect to N/K . Up. For parameters [Te, C, chi, au, cu] = [3.4862, 3.3665, 0.6019, 6.9439, 0.8421] well chosen and
iscountfactor = 15/100 we have the birth rate B and N ↦→ βγN solution to
= u(N) + βγN (χVN − C) − (D(F (N)) + discountfactor )VN ,

ith γN =
1

1+e−Te(χVN−C) are equal (B = βγN ).
nd

(F (N)) =

⎧⎪⎨⎪⎩
dM , 0 ≤ F (N) ≤ θ1

dm, F (N) ≥ θ2,

dm + (dM − dM ) cos2( π
2 (

F (N)−θ1
θ2−θ1

)), else
, (33)

ith θ1, θ2, φ1, φ2, β (maximal birth rate), dM (maximal death

rate) and d (minimal death rate) positive constants. Following
m

14
the construction of Section 2.1, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dtN(t) = rN(1 − N/K )  

logistic growth

− P(t)F (N(t))  
hunt

d
dt P(t) = P(t)

[
βγ (t)  
birth

−D(F (N(t)))  
death rate

]
−

d
dt V (t) = u(N(t)) + βγ (t)(χV (t) − C)

, (34)
−(D(F (N(t))) + discountfactor )V (t)
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Fig. 12. Comparing adaptive and anticipation when the growth rate for prey changes brutally (at time t = 4500) for r = .0125 to r = 0.0063 (demographic
catastrophe): at left preys, at right predators, in blue adaptive and in red adaptation.
and

γ (t) =
1

1 + e−Te(χV (t)−C) ,

for the anticipation model and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dtN(t) = rN(1 − N/K )  

logistic growth

− P(t)F (N(t))  
hunt

d
dt P(t) = P(t)

[
βγ (t)  
birth

−D(F (N(t)))  
death rate

]
0 = u(N(t)) + βγ (t)(χV (t) − C)

−(D(F (N(t))) + discountfactor )V (t)

, (35)

and

γ (t) =
1

1 + e−Te(χV (t)−C) ,

for the adaptive model. The author studies the existence, unique-
ness and stability of steady states depending of values of θ1, θ2,

φ1, φ2, β , dM , dm, r , K , a et b. For φ1 = θ1 = .05, φ2 = θ2 = .1250,
β = .15, dM = .0375, dm = .0125, r = .0125, K = 9, a = .0250
et b = .1, there exists a locally asymptotically stable non-trivial
steady state. The birth and the death rates are given in Fig. 11,
we notice that for parameters [Te, C, chi, au, cu] well chosen,
the birth rate B can be approximated by βγ as in (14).

To compare both dynamics (adaptive versus adaptation), we
simulate a sudden decrease in the growth rate of the prey: r
which is divided by two after time t = 4500. In Fig. 12, we see
that adaptation involves less oscillations (in amplitude and more
rapidly converging) than for the adaptive behavior.
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