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Abstract. We study the dynamics of inhomogeneous neuronal networks para-
metrized by a real number σ and structured by the time elapsed since the last

discharge. The dynamics are governed by the parabolic PDE which describes
the probability density of neurons with elapsed time s after its last discharge.

We prove existence and uniqueness of a solution to the model. Moreover, we

show that under some conditions on the connectivity and the firing rate, the
networks exhibit total desynchronization.

1. Introduction. The presence of variability in neural activity (in vivo and in
vitro) is well known [7]. For example, in the case of individual cortical neurons it
is observed (in vivo) that their spike trains are highly irregular [32, 33]. Besides
the randomness observed in spontaneous neuronal activity, in vitro experiments
also confirmed irregular behavior of neural activity [9]. Recent developments in
theoretical neuroscience focus on understanding the essence of these variability.
The random influence on the neuronal firing activity is termed as ‘neuronal noise’
[15] and the sources of noise are broadly classified as extrinsic and intrinsic [9, 15].
The extrinsic noise is due to the network effects and signal transmission over cells
whereas the intrinsic noise is generated at cell level.

In the extrinsic noise case, one adds the noise term explicitly while modeling
the evolution of state of the nervous cells to get stochastic differential equations.
One of the classical models in this context is the noisy leaky integrate-and-fire
model which is structured by the membrane potential [1, 2, 3, 4, 5, 10, 13]. To
account for intrinsic variability and randomness in the firing of neurons, the main
assumption in mathematical models is that a firing event can take place at any time
according to a certain probability rate [8]. The implementation of intrinsic noise
influences the firing time and the process can be completely characterized by the
amount of time elapsed since the last spike (action potential). Motivated by this,
many neuronal models in the literature neglect the mechanisms responsible for spike
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generation and instead describe the dynamics of neurons structured by the discharge
times [20, 21, 22, 23]. Numerical experiments [29, 30] suggest that the population
models provide insight to the mechanisms which regulate various forms of activities
in neuronal population [22, 23]. In [24, 25, 26], neuronal population dynamics
models are based on occurrence times of events. In [6], analytical links between
the Fokker–Planck equation which arises in membrane potential-structured models
and the McKendrick–von Foerster equations which are age-structured systems were
established. A microscopic model corresponding to the models described in [21,
22, 23, 29, 30] for finite number of neurons is given in [31]. The work presented in
this paper is based on partial differential equations models of evolution developed
in [12, 21, 22, 23]. Homogeneous neural networks are those networks in which
neural activities are driven by the same dynamic, all the neurons are excitatory
and the interactions between the neurons are taken in account through a global
neural activity. In [23], the authors model homogeneous neural networks as the
time evolution of neurons structured in ‘time after the last discharge’ (or age) s.
More precisely, the dynamics of neurons are described by the probability density
n(s, t) of finding a neuron in state s, i.e., time elapsed since the last discharge,
at time t. Let X represent the environment due to the global neural activity in a
network of connectivity J and p(s,X) represent the firing rate of neurons in the state
s and environment X. Then the density n satisfies a partial differential equation of
evolution type (in particular McKendrick–Von Foerster type [27])

nt(s, t) + ns(s, t) + p(s,X(t))n(s, t) = 0, s > 0, t > 0,

n(0, t) =

∫ ∞
0

p(s,X(t))n(s, t)ds, t > 0,

X(t) = J

∫ ∞
0

p(s,X(t))n(s, t)ds, t > 0,

n(s, 0) = n0(s), s > 0.

(1)

The boundary condition, at state s = 0, makes the neurons reenter the cycle after
firing. We notice that the authors assume that the firing rate p is increasing with
respect to s, increasing with respect to the global activity variable X and asymp-
totically converges to 1 as s and X go to infinity. In fact, these assumptions model
the biological property of neurons to discharge in response to a stimulation and to
recover their excitability in time. Mathematical difficulties such as proving exis-
tence, uniqueness of solution and studying the longtime behavior of the solution to
(1), are due to the nonlinear coupling between X and n. Under some properties
of the function p and the connectivity, authors prove the existence and uniqueness
through a Banach-Picard fixed point theorem. They use an entropy method [18] to
study the convergence, as time goes to infinity, of the network to a steady state.

Later, the authors of [12] consider an infinite inhomogeneous networks parametri-
zed by a real number σ with different refractory periods. All these sub-networks
are coupled by their mean activity. In this model, the population of neurons are
described by the probability density n(s, t;σ) of finding a neuron in state s, where
s is the time elapsed since the last discharge, at time t in the sub-network σ. Let
p(s,X;σ) denote the firing rate of neurons in the state s, in environment X. The
main assumption in their model is that the synaptic weights are the same for all
the networks. This implies that the density n is governed by the partial differential
equation of evolution (which is similar to that of (1))
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

nt(s, t;σ) + ns(s, t;σ) + p(s,X(t);σ)n(s, t;σ) = 0, s > 0, t > 0, σ ∈ R,

n(0, t;σ) =

∫ ∞
0

p(s,X(t);σ)n(s, t;σ)ds, t > 0, σ ∈ R,

X(t) = J

∫
R

∫ ∞
0

p(s,X(t);σ)n(s, t;σ)dsdσ, t > 0,

n(s, 0, σ) = n0(s;σ), s > 0, σ ∈ R.

(2)

The mathematical difficulties in this case are the same as that of (1) and the authors
of [12] use the same tools to investigate the long time behavior of the solution to
(2).

In this paper we consider an infinite inhomogeneous neuronal networks parametri-
zed by a real number σ ∈ R. Moreover, we assume that each network has specific
intrinsic dynamics and refractory period and all the networks are coupled by means
of their mean activity. Further, we assume that the synaptic weights are given
by the same constant J which models the connectivity. As in the earlier papers,
p (the instantaneous firing rate) and X describe the post discharge recovery of
the neural membrane and the global neural activity, respectively. We denote by
n(s, t;σ) the probability density of neurons at time t in the state s (where s, as
in the earlier works, is the time elapsed since the last discharge). We take into
account the variability/randomness in the phenomena that causes firing of neurons
by incorporating a diffusive effect through the second order derivative (with respect
to s) of the probability density of neurons n(s, t;σ) in system (2). Thus, we would
like to study the following model for σ ∈ R,

nt(s, t;σ) + ns(s, t;σ) + p(s,X(t);σ)n(s, t;σ) = εnss(s, t;σ), s, t > 0,

n(0, t;σ)− εns(0, t;σ) =

∫ ∞
0

p(s,X(t);σ)n(s, t;σ)ds, t > 0,

X(t) = J

∫
R

∫ ∞
0

p(s,X(t);σ)n(s, t;σ)dsdσ, t > 0,

n(s, 0, σ) = n0(s;σ), s > 0.

(3)

When the diffusion constant ε = 0 then the model given in (3) reduces to the time
elapsed inhomogeneous neuron network model considered in [12]. It is worth notic-
ing that the quantity X, which is coupled with the partial differential equation
satisfies the nonlinear integral equation. In fact, we make some technical assump-
tions on p to establish the existence of solution to this problem. In fact, the role
that X plays in the model is similar to that of the weighted population (see [11],
[28]).

Now, on integrating (3) with respect to s, we get

∂

∂t

∫ ∞
0

n(s, t;σ)ds = 0,

i.e.,

∀t > 0,

∫ ∞
0

n(s, t;σ)ds =

∫ ∞
0

n0(s;σ)ds =: g(σ). (4)

Here g(σ) denotes the probability density of neural networks parameterized by σ.
Therefore it is natural to assume that n0 satisfies∫

R

∫ ∞
0

n0dsdσ =

∫
R
g(σ)dσ = 1.
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As before, difficulties to prove existence, uniqueness and convergence as time goes
to infinity come from the nonlinear coupling between the environment (macroscopic
variable) and the neuron density n (microscopic variable). In Section 2, we give
assumptions on the firing rate of neurons p to have existence and uniqueness of
solution to (3) through Theorem 2.1 and its long time behavior to a steady state
through Theorems 2.2 and 2.3. Theorem 2.1 focuses on the existence and uniqueness
of solution to (3) and its proof is based on the Schauder fixed point theorem and the
L1 stability that we establish. It is very important to notice that the assumptions
to prove existence and uniqueness result in this article are weaker than that of
those used in [22] where the Banach fixed point theorem is employed. Theorem
2.2 provides the existence of a steady state and the convergence of solutions to the
steady state is given by Theorem 2.3. The proof of the convergence is based on
entropy results and compactness. Moreover, we add Theorem 3.1, which, under
stronger assumptions, gives the exponential convergence to the steady state. For
the sake of readability, the proofs of Theorems 2.1 and 2.3 are given in Section 3
and the most technical part of the proofs of these theorems is given in Annex 5.
Conclusions are provided in Section 4.

2. Assumptions and main results. Throughout the article, we assume that p
is a nonnegative continuous function with 0 ≤ p ≤ 1. Furthermore, we assume that

(p(s, 0;σ)− 1) ∈ L2(R+), a.e. σ ∈ R, (5)

and that for every (s, σ) ∈ R+ × R the map

x 7→ p(s, x;σ) ∈ C0(R+), and is increasing. (6)

We notice that assumptions (5)–(6) mean that the firing rate of neurons, i.e., the
probability of firing p, in the ‘state s’ (age after firing) and in an environment X,
increases with the environment and when the age after firing goes to infinity, almost
surely, a new discharge happens. We generalize assumptions given in [12, 21, 22, 23],
which model the neurons discharge behavior. In fact, (5)–(6) are enough to prove
the existence of a solution to (3). Moreover, we assume that

κ := J sup
x≥0

∫
R

∫ ∞
0

| ∂
∂x
p(s, x, σ)|dsdσ < 1. (7)

This assumption means that the variation of the discharge probability, with respect
to the environment, is small enough. Assumption (7) is indeed enough to prove
uniqueness of solution to (3).

We now define the steady state equations corresponding to (3) as

Ns(s;σ) + p(s,X∗;σ)N(s;σ) = εNss(s;σ), s > 0, σ ∈ R,

N(0;σ)− εNs(0; s) =

∫ ∞
0

p(s,X∗;σ)N(s;σ)ds, σ ∈ R,

X∗ = J

∫
R

∫ ∞
0

p(s,X∗;σ)N(s;σ)dsdσ,∫ ∞
0

N(s;σ)ds = g(σ), σ ∈ R.

(8)

The steady state which is defined as a solution to (8) plays a crucial role in the
study of the longtime behavior of the solution to (3).

We begin with the statement of existence and uniqueness result in Theorem 2.1.
Then we focus on the existence of the steady state (8) in Theorem 2.2. Finally



NEURON NETWORK MODEL 5

in Theorem 2.3, we discuss the convergence of the solution to equation (3) to the
steady state as t tends to infinity.

Theorem 2.1. Assume that 0 ≤ p ≤ 1, (5) and (6) are satisfied. Furthermore, we
assume that the initial condition n0 satisfies

(1 + s2)n0(s;σ) ∈ L2(R+) ∩ L1(R+), σ ∈ R, and

∫
R

∫ ∞
0

n0dsdσ = 1. (9)

Then there exists a solution n ∈ L2
(
[0, T ], H1(R+)

)
∩ L∞

(
[0, T ], L1(R+)

)
to (3)

with ∫
R

∫ ∞
0

n(s, t;σ)dsdσ = 1, t > 0.

Moreover, if (7) holds then a solution to (3) is unique.

Proof. (Outline) We prove the existence of a solution n to the problem, for σ ∈ R

nt(s, t;σ) + ns(s, t;σ) + p(s,X(t);σ)n(s, t;σ) = εnss(s, t;σ), s, t > 0,

n(0, t;σ)− εns(0, t; s) =

∫ ∞
0

(p(s,X(t);σ)− 1)n(s, t;σ)ds

+

∫ ∞
0

n0(s;σ)ds, t > 0, σ ∈ R,

X(t) = J

∫
R

∫ ∞
0

p(s,X(t);σ)n(s, t;σ)dsdσ, t > 0,

n(s, 0, σ) = n0(s;σ), s > 0.

(10)

Later we show that (10) is equivalent to (3) by establishing (19). The advantage of
this form is that, we can work with the Hilbert space L2(R+×R). As p−1 ∈ L2(R+),
we seek the solution n to (10) in a time dependent L2- space so that the boundary
term in (10) is well defined. The proof is quite classical and uses a fixed point
argument (in particular the Schauder fixed point theorem). Let T > 0, X :=
L2([0, T ]× R+ × R) ∩ Y , where

Y =
{
f : [0, T ]× R+ × R→ R : f(t, .; .) ∈ L1(R+ × R) for a.e. t ∈ [0, T ]

}
.

We define the operator

T : X → X , n̄ 7→ T (n̄) := n

where n is a solution to
nt(s, t;σ) + ns(s, t;σ) + p̄n(s, t;σ) = εnss(s, t;σ), s > 0, t > 0, σ ∈ R,

n(0, t;σ)− εns(0, t; s) =

∫ ∞
0

(p̄− 1)n(s, t;σ)ds+

∫ ∞
0

n0(s;σ)ds, t > 0, σ ∈ R,

n(s, 0, σ) = n0(s;σ), s > 0, σ ∈ R,
(11)

and p̄ is a solution to

p̄(s, t, σ) = p

(
s, J

∫
R

∫ ∞
0

(p̄(s, t, σ)− 1)n̄dsdσ + J

∫
R

∫ ∞
0

n0dsdσ, σ

)
. (12)

We show that T has a fixed point which is indeed a solution to (10). In order to
prove uniqueness we establish (24). Details of the proof are given in Section 3.1.

We now state the existence result for the steady state.
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Theorem 2.2. Assume that 0 ≤ p ≤ 1, (5), (6) and (7) then there exists a unique
solution N to (8) in L2(R+ × R).

Proof. We notice that

Γ : N ∈ L2(R+ × R) 7→M ∈ L2(R+ × R),

where M is the solution to

Ms(s;σ) + p̄M(s;σ) = εMss(s;σ), s > 0, σ ∈ R,

M(0;σ)− εMs(0;σ) =

∫ ∞
0

p̄M(s;σ)ds, σ ∈ R,

p̄ = p(s, J
∫
R
∫∞
0
p̄Ndsdσ;σ),

∫ ∞
0

M(s;σ)ds = g(σ), σ ∈ R.

(13)

The map Γ is a strongly positive and compact operator (assumption (7) implies
uniqueness of p̄). Therefore, using the Krein-Rutman theorem, we have the existence
of N , a positive eigenfunction of Γ. Integrate the equation Γ(N)− λN = 0 (where
λ is the eigenvalue of Γ associated to N), we find that λ

∫
N = 0, which means

that λ = 0 (and N is a solution to (8)). Since
∫
N(s, σ)ds = g(σ), N is uniquely

defined.

Finally, we state the result pertaining to the asymptotic behavior of the solution
to (3). In fact, we establish desynchronization.

Theorem 2.3. Assume that 0 ≤ p ≤ 1, (5), (6), (7) and

sup
σ

∫ ∞
0

|1− p(s, 0, σ)|ds ≤ 1− κ
1 + κ

, (14)

then ∫
R

∫ ∞
0

|n(s, t;σ)−N(s;σ)|dsdσ → 0, as t→∞.

The proof is given in Section 3.2.
Moreover, under some technical assumptions on p, L and J , we prove that n

converges exponentially to the steady state N (see Theorem 3.1).

3. Proof of main Theorems. This section is subdivided in two subsections. In
the first subsection we prove Theorem 2.1 whereas in the second one we prove the
long time behavior result, i.e., Theorem 2.3.

3.1. Existence and uniqueness results. The objective of this subsection is to
establish the existence and uniqueness of solutions to (3). In particular, we provide
the details of the proof of Theorem 2.1. Interesting parts of the proof are the
existence of p̄ satisfying (12) for a given p and the L1- stability estimate.

Proof. of Theorem 2.1: The proof is divided into four main steps.

Step 1: In this step we show that T is a well defined map.
To this end, we first prove the existence of a unique solution p̄ to (12). For a

given n̄ ∈ X , we define a sequence (p̄k) as

p̄0 = 0, p̄k+1(s, t, σ) = p

(
s, J

∫
R

∫ ∞
0

p̄k(s, t, σ)n̄(t, s, σ)dsdσ, σ

)
, k ≥ 0.

Since p is nonnegative, p1 ≥ 0 = p0. As p is increasing with respect to x, by
induction one can show that
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p̄k+1(s, t, σ) ≥ p̄k(s, t, σ), s > 0, t > 0, σ ∈ R,
and 0 ≤ p̄k ≤ 1. Therefore the sequence (pk) converges to some function, say p̄.
Moreover by the Lebesgue dominated convergence theorem we have∫

R

∫ ∞
0

p̄k(s, t, σ)n̄(t, s, σ)dsdσ →
∫
R

∫ ∞
0

p̄(s, t, σ)n̄(t, s, σ)dsdσ,

and finally by the continuity of p we obtain that p̄ is a solution to (12). Using the
standard arguments it is straightforward to show the existence and uniqueness of a
solution n ∈ X , to (11) (see [11], for instance). Hence the map T is well defined.

Step 2: In this step we prove that T is a compact operator.
To prove the compactness of T , we use the Lions-Aubin lemma ([14]). Indeed,

if n is a solution to (11) then we have the following bounds (see Annex 5.1 for a
proof): for t ∈ [0, T ], σ ∈ R,∫ ∞

0

n2(s, t;σ)ds ≤
(∫ ∞

0

n20(s;σ)ds+ 2T
)

exp

(
2

∫∫
[0,T ]×R+

(p̄− 1)2dsdt

)
, (15)

ε

∫∫
[0,T ]×R+

n2s(s, t;σ)dsdt ≤ T +

∫ ∞
0

n20(s;σ)ds

+

∫∫
[0,T ]×R+

(p̄− 1)2dsdt

(∫ ∞
0

n20(s;σ)ds+ 2T

)
exp

(
2

∫∫
[0,T ]×R+

(p̄− 1)2dvdτ

)
, (16)

∫ ∞
0

s2n(s, t;σ)ds ≤
∫ ∞
0

s2n0(s;σ)ds+ T max
s

(−s2p̄(s, 0;σ) + 2s+ 2ε), (17)

2

∫ ∞
0

sn(s, t;σ)ds ≤
∫ ∞
0

(s2 + 1)n0(s;σ)ds+ T max
s

(−s2p̄(s, 0;σ) + 2s+ 2ε), (18)∫ ∞
0

nds =

∫ ∞
0

n0ds,

∫
R

∫ ∞
0

ndsdσ =

∫
R

∫ ∞
0

n0dsdσ = 1, (19)

and

∀φ ∈ H1,

∫
[0,T ]

(

∫ ∞
0

φ(s, σ)nt(s, t;σ)ds)2dt ≤ CT (ε, p̄, n0)‖φ‖H1 , (20)

where CT is a constant which depends only on T, ε, p̄ and n0.
Therefore from the estimates (15)–(20) it follows that T is a compact operator.

Moreover, since the constant map which takes one is a super solution to (10), we
have the following inequality

n(s, t;σ) ≤ 1, s > 0, t > 0, σ ∈ R. (21)

Step 3: In this step we prove the existence of a solution to (10).
Since the operator T is compact on X , thanks to the Schauder fixed point the-

orem, there exists a fixed point of T which is a solution to (10) satisfying all the
estimates given in (15)–(21). This proves the existence of a solution to (10).

Step 4: We now turn our attention towards the uniqueness of a solution to (3).
The key ingredient in the proof of uniqueness result is the L1- stability estimate

that we prove here. Let (m, q̄) and (n, p̄) be solutions to (11) with m(0, s;σ) =
m0(s;σ), n(0, s;σ) = n0(s;σ),
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0

n0(s;σ)ds =

∫ ∞
0

m0(s;σ)ds, a.e. σ ∈ R,∫
R

∫ ∞
0

n0dsdσ =

∫
R

∫ ∞
0

m0dsdσ = 1,

p̄(s, t;σ) = p

(
s, J

∫
R

∫ ∞
0

p̄(s, t;σ)n(s, t;σ)dsdσ;σ

)
,

and

q̄(s, t;σ) = p

(
s, J

∫
R

∫ ∞
0

q̄(s, t;σ)m(s, t;σ)dsdσ;σ

)
.

By the mean value theorem we obtain

|q̄ − p̄| = J | ∂
∂x
p(s, u, σ)|

∣∣∣∣∫
R

∫ ∞
0

(q̄ − p̄)ndsdσ +

∫
R

∫ ∞
0

q̄(m− n)dsdσ

∣∣∣∣ ,
for some
u ∈ [J min(

∫
R
∫∞
0
q̄mdsdσ,

∫
R
∫∞
0
p̄ndsdσ), J max(

∫
R
∫∞
0
q̄mdsdσ,

∫
R
∫∞
0
p̄ndsdσ)].

In view of (21) we obtain∫
R

∫ ∞
0

|q̄ − p̄|ndsdσ ≤
∣∣∣∣∫

R

∫ ∞
0

(q̄ − p̄)ndsdσ +

∫
R

∫ ∞
0

q̄(m− n)dsdσ

∣∣∣∣×∫
R

∫ ∞
0

J | ∂
∂x
p(s, u, σ)|dsdσ.

From assumption (7), and

∫
R

∫ ∞
0

ndsdσ =

∫
R

∫ ∞
0

mdsdσ = 1, we find∫
R

∫ ∞
0

|q̄ − p̄|ndsdσ ≤ κ

1− κ

∫
R

∫ ∞
0

|1− q̄||m− n|dsdσ. (22)

Moreover, from (22) we readily get∫
R

∣∣∣∣∫ ∞
0

(q̄m− p̄n)ds

∣∣∣∣ dσ ≤ ∫
R

∣∣∣∣∫ ∞
0

(q̄ − p̄)nds
∣∣∣∣ dσ +

∫
R

∣∣∣∣∫ ∞
0

q̄(m− n)ds

∣∣∣∣ dσ
≤ κ

1− κ

∫
R

∫ ∞
0

|1− q̄||m− n|dsdσ +

∫
R

∫ ∞
0

|1− q̄||m− n|dsdσ

≤ 1

1− κ

∫
R

∫ ∞
0

|1− q̄||m− n|dsdσ. (23)

On the other hand, in view of Lemma 5.1 (the choice of the convex function is
H(v) = |v − 1|), we readily get

∂

∂t

∫ ∞
0

|n−m|ds ≤
∫ ∞
0

(
|n−m|[−q̄] + sgn(n−m)(q̄ − p̄)n

)
ds

−sgn(n−m)(s = 0)

[
(
n

m
)(s = 0)

∫ ∞
0

q̄mds−
∫ ∞
0

p̄nds

]
+|n/m− 1|(s = 0)

∫ ∞
0

q̄mds

≤
∫ ∞
0

(
|n−m|[−q̄] + sgn(n−m)(q̄ − p̄)n

)
ds

+sgn(n−m)(s = 0)

[∫ ∞
0

p̄nds−
∫ ∞
0

q̄mds

]
.
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Therefore using (22) and (23), we have

d

dt

∫
R

∫ ∞
0

|n−m|dsdσ ≤ 1 + κ

1− κ

∫
R

∫ ∞
0

|m− n|dsdσ.

Thus we get the following L1-stability estimate, thanks to the Gronwall lemma∫
R

∫ ∞
0

|n−m|dsdσ ≤ eγt
∫
R

∫ ∞
0

|n0 −m0|dsdσ, (24)

where γ = 1+κ
1−κ . If m0 = n0 then from stability estimate (24), we immediately get

m(s, t;σ) = n(s, t, σ), t > 0 s > 0, σ ∈ R a.e. This proves uniqueness of a solution
to (10).

3.2. Long time behavior. In this subsection, we present results pertaining to the
asymptotic behavior of the solution to (3). GRE inequality (see Annex) together
with the La Salle principle give us the convergence of the solution to (3) to the
corresponding steady state.

Proof. of Theorem 2.3. We define u = n−N . Then u solves for s > 0, t > 0, σ ∈ R

ut + us + p(s,X(t);σ)u+ [p(s,X(t);σ)− p(s,X∗;σ)]N = εuss,

u(0, t;σ)−εus(0, t;σ) =

∫ ∞
0

p(s,X(t);σ)uds

+[p(s,X(t);σ)− p(s,X∗;σ)]Nds,

u(s, 0, σ) = n0(s;σ)−N(s;σ),

X(t) = J
∫
R
∫∞
0
p(s,X(t);σ)n(s, t;σ)dsdσ,

X∗ = J
∫
R
∫∞
0
p(s,X∗;σ)N(s;σ)dsdσ.

(25)

We multiply equation (25) by sgn(u)Ψ(s) (Ψ ≥ 0) and integrate with respect to
s, σ, to find

d

dt

∫
R

∫ ∞
0

|u|Ψdsdσ −Ψ(0)

∫
R
|u|(0, t;σ)dσ +

∫
R

∫ ∞
0

p|u|Ψdsdσ

+

∫
R

∫ ∞
0

[p−p∗]Nsgn(u)Ψdsdσ = ε

∫
R

∫ ∞
0

usssgn(u)Ψdsdσ+

∫
R

∫ ∞
0

|u|Ψsdsdσ,

where p∗ = p(s,X∗;σ). We now use the Kato inequality, integration by parts, and
the boundary condition to obtain that

∂t

∫
R

∫ ∞
0

|u|Ψdsdσ ≤ εΨs(0)

∫
R
|u|(0, t;σ)dσ +

∫
R

∫ ∞
0

|u|(Ψs + εΨss − pΨ)dsdσ

+ Ψ(0)

∫
R

∣∣∣∣∫ ∞
0

(pn− p∗N)ds

∣∣∣∣ sgn(u)(0, t;σ)dσ −
∫
R

∫ ∞
0

[p− p∗]Nsgn(u)Ψdsdσ,

is satisfied. Let

Ψ : s 7→ 1− 1 + κ

1− κ

∫ s

0

(
1− e

w−s
ε

)
|1− p(w, 0, σ)|dw,

then, by assumption (14), Ψ ≥ 0. Moreover, we have

Ψ(0) = 1, Ψs(0) = 0 and Ψs + εΨss = −1 + κ

1− κ
|1− p(s, 0, σ)|.
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In view of inequalities (22) and (23) (and the decay of x 7→ 1− p(., x, .)) it follows
that∫

R

∫ ∞
0

(Ψs + εΨss)|u|dsdσ = −
∫
R

∫ ∞
0

1 + κ

1− κ
|1− p(s, 0, σ)||u|dsdσ

≤ −
∫
R

∫ ∞
0

|p− p∗|Ndsdσ −
∫
R

∣∣∣∣∫ ∞
0

pnds−
∫ ∞
0

p∗Nds

∣∣∣∣ dσ.
Since Ψs ≤ 0, s > 0, we get Ψ ≤ 1 and∫

R

∫ ∞
0

(Ψs + εΨss)|u|dsdσ ≤ −Ψ(0)

∫
R

∣∣∣∣∫ ∞
0

pnds−
∫ ∞
0

p∗Nds

∣∣∣∣ dσ
−
∫
R

∫ ∞
0

|p− p∗|NΨdsdσ.

Therefore we find that

∂t

∫
R

∫ ∞
0

|u|Ψdsdσ ≤ −
∫
R

∣∣∣∣∫ ∞
0

pnds−
∫ ∞
0

p∗Nds

∣∣∣∣ (−1 + sgn(u(0, t;σ)))dσ

−
∫
R

∫ ∞
0

[|p− p∗| − (p− p∗)sgn(u)]NΨdsdσ +

∫
R

∫ ∞
0

|u|(−pΨ)dsdσ

≤ −
∫
R

∫ ∞
0

|u|(pΨ)dsdσ. (26)

Therefore the quantity

∫
R

∫ ∞
0

|u|Ψdsdσ decreases as long as

∫
R

∫ ∞
0

|u|(pΨ)dsdσ

does not vanish. To prove the convergence, we use the La Salle principle. The proof
is similar to the one given in [19]. Let (tk)k be a sequence of positive numbers such
that tk → ∞, nk(s, t;σ) := n(s, t + tk;σ) and pk(s, t;σ) := p(s, t + tk;σ). Using
inequality (26) and by integration we find the uniform L1 bound∫ ∞

0

∫
R
|nk −N |pkΨdsdσ ≤ (

∫ ∞
0

∫
R
|nk −N |Ψdsdσ)(t = 0) ≤ 2.

Since
∫∞
0

∫
R |nk −N |pkΨdsdσ =

∫∞
tk

∫
R |n(s, t;σ)−N |pΨdsdσ, we have that∫ ∞

0

∫
R
|nk −N |pkΨdsdσ →tk→∞ 0.

We now recall that (nk)k belongs to a compact subset of L2 (see the proof of
Theorem 2.1). Moreover, since 1 − pk is uniformly bounded in L2 and using the
Banach Alaoglu theorem, we have (1 − pk)k belongs to a weak compact set of L2

and there exists a subsequences (which are still denoted by pk, nk) such that∫∞
0

∫
R |nk −N |(pk − 1)Ψdsdσ →tk→∞

∫∞
0

∫
R |n

∗ −N |(p∗ − 1)Ψdsdσ,
and ∫∞

0

∫
R |nk −N |Ψdsdσ →tk→∞

∫∞
0

∫
R |n

∗ −N |Ψdsdσ.
Hence∫∞
0

∫
R |nk −N |pkΨdsdσ =

∫∞
0

∫
R |nk −N |(pk − 1)Ψdsdσ +

∫∞
0

∫
R |nk −N |Ψdsdσ

converges to
∫∞
0

∫
R |n

∗ −N |p∗Ψdsdσ with p∗ = p(s,X∗;σ) with

X∗ = J

∫∫
p(s,X∗;σ)n∗(s;σ)dsdσ.
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Thus we have that n∗ = N as long as p∗ does not vanish, i.e., p∗ = p(s,X∗;σ) with
X∗ = J

∫∫
p(s,X∗;σ)N(s;σ)dsdσ. By uniqueness of the stationary solution (see

Theorem 2.2), we find that n∗ = N everywhere. Therefore, we have the convergence
of |nk −N | to 0 as t → ∞. To conclude, it suffices to notice that

∫
R
∫∞
0
|u|Ψdsdσ

is decreasing by (26), which implies the convergence of |u| to 0 as t→∞.

In the next result, we provide a condition which ensures us the convergence of
the solution to (3) to the steady state with an exponential rate.

Theorem 3.1. Assume that there exist positive numbers L, mσ and Mσ such that

|p(s,X1;σ)− p(s,X2;σ)| ≤ L|X1 −X2|, σ ∈ R, X1, X2 ≥ 0, (27)

0 < m ≤ mσ ≤ p(s,X;σ) ≤Mσ ≤ 1, s > 0, X > 0, σ ∈ R. (28)

Furthermore, assume that there exists β > 0 such that

β < mσ −
2LJMσ

1− JL
, σ ∈ R, (29)

then ∫
R

∫ ∞
0

|n(s, t;σ)−N(s;σ)|dsdσ ≤ e−βt
∫
R

∫ ∞
0

|n0(s;σ)−N(s;σ)|dsdσ.

Proof. We begin with setting u = n−N . Then u is a solution to
ut + us + p(s,X(t);σ)u+ [p(s,X(t);σ)− p(s,X∗;σ)]N = εuss,

u(0, t;σ)− εus(0, t;σ) =

∫ ∞
0

p(s,X(t);σ)uds+ [p(s,X(t);σ)− p(s,X∗;σ)]Nds,

u(s, 0, σ) = n0(s;σ)−N(s;σ),

where s > 0, t > 0 and σ ∈ R. On multiplying the above equation with sgn(u) and
integrating with respect to s, σ, we get

d

dt

∫
R

∫ ∞
0

|u|dsdσ ≤ 2

∫
R

∫ ∞
0

|p(s,X(t);σ)− p(s,X∗;σ)|Ndsdσ

+

∫
R

∣∣∣∫ ∞
0

p(s,X(t);σ)uds
∣∣∣dσ−∫

R

∫ ∞
0

p(s,X(t);σ)|u|dsdσ.

Since
∫∞
0
uds = 0, t > 0, σ ∈ R, we obtain

d

dt

∫
R

∫ ∞
0

|u|dsdσ ≤ 2

∫
R

∫ ∞
0

|p(s,X(t);σ)− p(s,X∗;σ)|Ndsdσ

+

∫
R

∣∣∣ ∫ ∞
0

[
p(s,X(t);σ)−mσ

]
uds
∣∣∣dσ

−
∫
R

∫ ∞
0

p(s,X(t);σ)|u|dsdσ

≤ 2

∫
R

∫ ∞
0

|p(s,X(t);σ)− p(s,X∗;σ)|Ndsdσ

−
∫
R

∫ ∞
0

mσ|u|dsdσ

≤ 2L

∫
R

∫ ∞
0

|X(t)−X∗|Ndsdσ −
∫
R

∫ ∞
0

mσ|u|dsdσ

= 2L|X(t)−X∗| −
∫
R

∫ ∞
0

mσ|u|dsdσ. (30)
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We now estimate |X(t)−X∗|. For, we consider

|X(t)−X∗| ≤ J

∫
R

∫ ∞
0

p(s,X(t);σ)|u|dsdσ

+J

∫
R

∫ ∞
0

|p(s,X(t);σ)− p(s,X∗;σ)|Ndsdσ

≤ J

∫
R

∫ ∞
0

Mσ|u|dsdσ + JL|X(t)−X∗|.

Therefore we obtain

|X(t)−X∗| ≤ J

1− JL

∫
R

∫ ∞
0

Mσ|u|dsdσ. (31)

Combining (31) and (30) we get

d

dt

∫
R

∫ ∞
0

|u|dsdσ ≤
∫
R

∫ ∞
0

(2LJMσ

1− JL
−mσ

)
|u|dsdσ. (32)

Thanks to assumption (29), we find

d

dt

∫
R

∫ ∞
0

|u|dsdσ ≤ −
∫
R

∫ ∞
0

β|u|dsdσ.

Now the Gronwall lemma gives us the promised result.

4. Conclusions. In this paper we have proposed a neural network model which
describes the dynamics of inhomogeneous neuronal networks with diffusive effect
due to variability/randomness. Our model is an extension of the nonlinear renewal
model proposed in [23, 12] where the density of neurons follows a nonlinear renewal
partial differential equation in which the randomness is modeled by a diffusive effect.

We have proved that, under certain technical conditions on the firing rate and
connectivity, the problem is well posed. In fact we have established an L1-stability
estimate to our model. Proves are slightly different from those proposed in [23,
12] as we have used compactness arguments to prove the existence instead of a
‘contractant’ argument. In fact, we could establish the existence of a solution to
(3) under weaker assumptions on the firing rate p. Moreover, using the La Salle
principle, we have proved, the convergence of the density of neurons solution to our
neural network model converges to the steady of the model when the synaptic weight
(connectivity) is sufficiently small. In order to study the asymptotic behavior of the
solution of our model, we have used the General Relative Entropy inequality which
is natural in structured population models. Finally, we show that the convergence
of the neuron density to the steady state is exponential whenever the connectivity
is very small.

In a future work, it would be interesting to extend the existence and stability
results to periodic solutions to our model (3). We anticipate that the compactness
argument to prove the existence and uniqueness, and the entropy result to prove
convergence in this article are well suited to the periodic problems also. Another
open and interesting question is the optimality of assumptions to prove the conver-
gence (and the existence of a steady state).

5. Annex. In this section we prove a priori estimates stated in Section 3 and
present General relative entropy (GRE) estimate.
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5.1. Proof of estimates (a priori bounds). In order to prove (15), we first
multiply (11) by n and integrate with respect to s to have∫ ∞

0

(n2)t(s, t;σ)ds+ ε

∫ ∞
0

2(ns)
2(s, t;σ)ds = −n(0, t;σ)2 − 2

∫ ∞
0

p̄n2(s, t;σ)ds

+ 2n(0, t;σ)

[∫ ∞
0

(p̄− 1)n(s, t;σ)ds+

∫ ∞
0

n0(s;σ)ds

]
.

We notice that −z2 + 2Az ≤ A2, A, z ∈ R, hence it follows that∫ ∞
0

(n2)t(s, t;σ)ds+ ε

∫ ∞
0

2(ns)
2(s, t;σ)ds ≤

(∫ ∞
0

(p̄− 1)n(s, t;σ)ds+ 1
)2
. (33)

Using the Cauchy inequality, we find that∫ ∞
0

(n2)t(s, t;σ)ds ≤ 2 + 2

(∫ ∞
0

(p̄− 1)2ds

)∫ ∞
0

n2(s, t;σ)ds.

Owing to the Gronwall lemma, we have the first bound (15). On integrating (33)
with respect to time t ∈ [0, T ] and using estimate (15), we find that (16) holds. We
now turn our attention towards (19). Let ψ ∈ H1(R+), which will be chosen later.
On multiplying (11) by ψ, integrating with respect to s, and using the integration
by parts we obtain∫ ∞

0

ψ(s)nt(s, t;σ)ds+

∫ ∞
0

ψ(s)p̄n(s, t;σ)ds = −ε
∫ ∞
0

ψ′(s)ns(s, t;σ)ds

+

∫ ∞
0

ψ′(s)n(s, t;σ)ds+ ψ(0)[

∫ ∞
0

(p̄− 1)n(s, t;σ)ds+

∫ ∞
0

n0(s;σ)ds].

After rearranging the terms, we get∫ ∞
0

ψ(s)nt(s, t;σ)ds = −ε
∫ ∞
0

ψ′(s)ns(s, t;σ)ds+

∫ ∞
0

ψ′(s)n(s, t;σ)ds

+

∫ ∞
0

(ψ(0)− ψ(s))(p̄− 1)n(s, t;σ)ds−
∫ ∞
0

ψ(s)n(s, t;σ)ds

+ ψ(0)

∫ ∞
0

n0(s;σ)ds. (34)

We now fix R > 0 and choose ψ such that

0 ≤ ψ ≤ 1, ψ(x) = 1, if 0 ≤ x < R, and ψ(x) = 0, if x > R+ 1.

By setting

W (t;σ) =

∫ ∞
0

ψ(s)n(s, t;σ)ds− ψ(0)

∫ ∞
0

n0(s;σ)ds,

equation (34) becomes

Wt(t, σ) +W (t, σ) =

∫ ∞
0

ψ′(s)(n(s, t;σ)− εns(s, t;σ))ds

+

∫ ∞
0

(ψ(0)− ψ(s))(p̄− 1)n(s, t;σ)ds.
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A straightforward computation gives

W (t;σ) = e−tW (0, σ) +

∫ t

0

(∫ ∞
0

ψ′(s)
(
n(s, τ ;σ)− εns(s, τ ;σ)

)
ds

+

∫ ∞
0

(ψ(0)− ψ(s))(p̄− 1)n(s, τ ;σ)ds

)
eτ−tdτ.

Thus we have

|W (t;σ)| ≤ e−t
∫ ∞
R

|ψ(0)− ψ(s)|n0(s;σ)ds

+

∫ t

0

eτ−t

{(∫ R+1

R

(ψ′)2ds
) 1

2

((∫ R+1

R

n2(s, τ ;σ)ds
) 1

2

+ ε
( ∫ R+1

R

(ns)
2(s, τ ;σ)ds

) 1
2

)
+

(∫ ∞
R

(p̄− 1)2ds

) 1
2
(∫ ∞

R

n2(s, τ ;σ)ds

) 1
2

}
dτ.

Again, we use Hölder’s inequality to find

|W (t;σ)| ≤ e−t
∫ ∞
R

n0(s;σ)ds+

∫ t

0

GR(τ)eτ−tdτ

+ε
( ∫ R+1

R

(ψ′)2ds
) 1

2
√
t(

∫ t

0

∫ R+1

R

(ns)
2(s, τ ;σ)dsdτ

) 1
2 (35)

with

GR(τ) =

((∫ R+1

R

(ψ′)2ds
) 1

2 + (

∫ ∞
R

(p̄− 1)2ds)
1
2

)(∫ R+1

R

n2(s, τ ;σ)ds
) 1

2 .

In view of (15) we obtain
GR(τ)→R→∞ 0, a.e.

Therefore by the Lebesgue dominated convergence theorem, we have∫ t
0
GR(u)eu−tdu→ 0, as R→∞.

Now using estimate (16) and letting R→∞ in (35), we get (19).
In order to prove (17), we multiply the first equation in (3) with s2 and integrate

to find ∫ ∞
0

s2nt(s, t;σ)ds+

∫ ∞
0

s2ns(s, t;σ)ds+

∫ ∞
0

s2p̄n(s, t;σ)ds

= ε

∫ ∞
0

s2nss(s, t;σ)ds.

Again, by integration by parts we get

d
dt

∫ ∞
0

s2n(s, t;σ)ds ≤ max
s

(−s2p̄(s, 0, σ) + 2s+ 2ε) <∞.

We integrate the previous equation with respect to t to prove that (17) holds.
Using the estimate 2s ≤ 1 + s2, (17) and (19) it is straightforward to obtain

inequality (18). In other words we have

2

∫ ∞
0

sn(s, t;σ)ds ≤
∫ ∞
0

(1 + s2)n(s, t;σ)ds

≤
∫ ∞
0

(s2 + 1)n0(s;σ)ds+ T max
s

(−s2p̄(s, 0;σ) + 2s+ 2ε) <∞, t < T.
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For the remaining estimate, i.e., for (20), we multiply the first equation of (3) with
φ and integrate with respect to s to get∫ ∞

0

φ(s, σ)nt(s, t;σ)ds =

∫ ∞
0

p̄n(s, t;σ)[φ(0, σ)− φ(s, σ)]ds

+

∫ ∞
0

φs(s, σ)n(s, t;σ)ds− ε
∫ ∞
0

φs(s, σ)ns(s, t;σ)ds.

Since we have

|φ(0, σ)− φ(s, σ)| ≤
√
s

√∫ s

0

φs(v, σ)2dv, σ ∈ R,

it follows that

(

∫ ∞
0

φ(s, σ)nt(s, t;σ)ds)2 ≤ 2[

∫ ∞
0

(s2 + 1)n0(s;σ)ds

+ T max
s

(−s2p̄(s, 0;σ) + 2s+ 2ε) + 1]∫ ∞
0

φs(s, σ)2ds+ 2ε2(

∫ ∞
0

φs(s, σ)2ds)(

∫ ∞
0

ns(s, t;σ)2ds).

Then integrating with respect to time and using inequalities (15)–(19) then we find
(20).

5.2. GRE inequality. In this subsection we prove GRE inequality which plays
crucial role in the study of the long time behavior of the solution to (3). GRE
inequalities for structured population models can be found in [11, 16, 17, 18, 27, 28].

Lemma 5.1. Let H ∈ C2(R,R), (m, q̄) and (n, p̄) be solutions to (11) with the
initial data n(0, s;σ) = n0(s;σ) and m(0, s;σ) = m0(s;σ) respectively. Let

p̄(s, t, σ) = p

(
s, J

∫
R

∫ ∞
0

(p̄(s, t, σ)− 1)ndsdσ + J

∫
R

∫ ∞
0

n0dsdσ, σ

)
,

q̄(s, t, σ) = p

(
s, J

∫
R

∫ ∞
0

(q̄(s, t, σ)− 1)mdsdσ + J

∫
R

∫ ∞
0

m0dsdσ, σ

)
.

and ∫
R
∫∞
0
n0dsdσ =

∫
R
∫∞
0
m0dsdσ = 1.

Then

∂

∂t

∫ ∞
0

H(
n

m
)mds =

∫ ∞
0

H(
n

m
)[−q̄m] +H ′(

n

m
)(q̄ − p̄)nds

−H ′( n
m

)(s = 0)

[
(
n

m
)(s = 0)

∫ ∞
0

q̄mds−
∫ ∞
0

p̄nds

]
+H(

n

m
)(s = 0)

∫ ∞
0

q̄mds

−ε
∫ ∞
0

H ′′(
n

m
)m(

∂

∂s

n

m
)2ds. (36)

Proof. We begin with an identity

∂

∂t
(H(

n

m
)m) = H ′(

n

m
)(
∂

∂t
n− (

n

m
)
∂

∂t
m) +H(

n

m
)
∂

∂t
m.
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Using the first equation in (11) which n and m solve, we find that

H ′(
n

m
)(
∂

∂t
n− (

n

m
)
∂

∂t
m) = H ′(

n

m
)(− ∂

∂s
n− p̄n+ ε

∂2

∂s2
n)

+H ′(
n

m
)(
∂

∂s
m+ q̄m− ε ∂

2

∂s2
m)

n

m

= H(
n

m
)
∂

∂s
m− ∂

∂s
[H(

n

m
)m] +H ′(

n

m
)(−p̄n+ ε

∂2

∂s2
n)

+H ′(
n

m
)(q̄m− ε ∂

2

∂s2
m)

n

m
.

Therefore we get

∂

∂t
(H(

n

m
)m) = H(

n

m
)[−q̄m+ ε

∂2

∂s2
m]− ∂

∂s
[H(

n

m
)m] +H ′(

n

m
)(−p̄n+ ε

∂2

∂s2
n)

+H ′(
n

m
)(q̄m− ε ∂

2

∂s2
m)

n

m
.

A straightforward computation yields

H ′(
n

m
)(ε

∂2

∂s2
n) = ε

∂

∂s
[H ′(

n

m
)(
∂

∂s
n)]− ε ∂

∂s
n
∂

∂s
[H ′(

n

m
)],

−H ′( n
m

)(ε
∂2

∂s2
m)

n

m
= −ε ∂

∂s
[H ′(

n

m
)(
∂

∂s
m)

n

m
] + ε

∂

∂s
m
∂

∂s
[H ′(

n

m
)
n

m
],

and

εH(
n

m
)
∂2

∂s2
m = ε

∂

∂s
[H(

n

m
)
∂

∂s
m]− ε ∂

∂s
mH ′(

n

m
)
∂

∂s

n

m
.

By adding the previous three equations we obtain

εH ′(
n

m
)(
∂2

∂s2
n)− ε n

m
H ′(

n

m
)(
∂2

∂s2
m) + εH(

n

m
)
∂2

∂s2
m =

ε
∂

∂s
[H ′(

n

m
)(
∂

∂s

n

m
)m] + ε

∂

∂s
[H(

n

m
)
∂

∂s
m]− εH ′′( n

m
)(
∂

∂s

n

m
)2m.

Thus we get

∂

∂t
(H(

n

m
)m) = H(

n

m
)[−q̄m] +H ′(

n

m
)(q̄ − p̄)n+ ε

∂

∂s
[H ′(

n

m
)(
∂

∂s

n

m
)m]

+ε
∂

∂s
[H(

n

m
)
∂

∂s
m]− ∂

∂s
[H(

n

m
)m]− εH ′′( n

m
)(
∂

∂s

n

m
)2m.

On integrating the above equation with respect to s, we obtain

∂

∂t

∫ ∞
0

(H(
n

m
)m)ds =

∫ ∞
0

(
H(

n

m
)[−q̄m] +H ′(

n

m
)(q̄ − p̄)n

)
ds

−ε[mH ′( n
m

)(
∂

∂s

n

m
)](s = 0)− ε[H(

n

m
)
∂

∂s
m](s = 0)

+[H(
n

m
)m](s = 0)− ε

∫ ∞
0

H ′′(
n

m
)(
∂

∂s

n

m
)2mds.
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Finally, use the boundary condition for m to arrive at

∂

∂t

∫ ∞
0

(H(
n

m
)m)ds =

∫ ∞
0

(
H(

n

m
)[−q̄m] +H ′(

n

m
)(q̄ − p̄)n

)
ds

−ε[H ′( n
m

)(
∂

∂s

n

m
)m](s = 0) +H(

n

m
)(s = 0)

∫ ∞
0

q̄mds

−ε
∫ ∞
0

H ′′(
n

m
)(
∂

∂s

n

m
)2mds.

Again, using the boundary condition, we find that (36) is satisfied.
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