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The aim of this work is to study a stochastic individual-based model, structured with
respect to age (progression within the cell cycle) and space (radial distance from the
oocyte). We prove the existence of solutions and the convergence in large population
and size scale limit to a solution of a partial differential equation.
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1. Introduction

The development of ovarian follicles is a unique instance of a morphogenesis process
resulting from the interactions between somatic cells (granulosa cells) and germ
cell (oocyte). In mammals, the initiation of follicular development from the pool
of resting follicles is characterized by an increase in the oocyte size concomitant
with the surrounding granulosa cells proliferating (see 19). In 5, the authors have
introduced a multi-scale stochastic model, of the primordial follicle development,
which take in accounts the molecular dialogue existing between the oocyte and
granulosa cells. The population of granulosa (small cells) of diameter € proliferate
around the oocyte (large cell) of radius ro (see fig. 1). There is a dialog (depending
on the distance) between the large cell and the small cells (see fig. 1) which links
growth and proliferation. Therefore, the model takes in account the location of small
cells in space and their age in the cell cycle. The age of a cell is simply a positive
real number and Age = R,..

In this model, the locations of small cells are given by their spherical coordinates
(r,0,¢) where r > ro(t) (the radius of the oocyte at time t). Therefore, there is a
difficulty which appears since the space depends on time (and is probabilistic since
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Fig. 1. Development of preantral follicles. Each follicle is comprised of a germ cell (the oocyte)
and granulosa cells. The oocyte produces GDF9/BMP15 which makes granulosa cells proliferate
around the oocyte and granulosa cells (small ones) produce KITLG that makes the oocyte grows.
Therefore, the development of each follicle (in its basal follicular development), is coordinated by
tight interactions existing between the oocytes and their surrounding granulosa cells.
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Fig. 2. Space layer decomposition. The physical space surround the ball (oocyte) in its center.
We subdivide this space in layers (£$); and mesh these layers uniformly (L£¢ j )i,k of volumes

7
(Volgj k)wk The figure at the center represents a two dimension subdivision and the right one

is a tree dimension subdivision.

(ro(t)): is a stochastic process). We choose an equivalent formulation of the small
cells evolution model in space where the location of small cells do not depend of the
radius of the oocyte, i.e., location in the simplified model (in spherical coordinate)
(r,0, @) corresponds to (r — 1+ ro(t),0,¢) in space. Indeed, with this formulation
space remains independent of time and deterministic and we keep the informations
of location and distance from small cells to the surface of the large cell. More
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precisely, it corresponds to have the location of the small cells in
Space = R*/B(0,1), where B(0,1) = {(r,0,¢) € Space : r < 1}.

Now, the information of the distance to the surface of the oocyte of a small cell
is given by the radius distance, therefore we discretize space in layer of thickness
equal to the diameter of a small cell. Let € > 0 the diameter of a granulosa cell,
then i*" layer is given by (see fig. 1)

L;={(r,0,0) € Space : r € [1+ (i— 1)e, 1+ ie[}.

In order to compute an overcrowding function, we discretize polar and azimuth
angles with a precision depending of the small cell diameter, therefore we let N =
E,+(1/€) € N* and we subdivide these layers (see fig. 2) in (j € [1, N] and k € [1, N])

L =1(r,0,0) € Space : r € [1+ (i — 1), 1+ iel,

y T o7

N N

E—-1 k
¢ S [—71' + QTTF, -7 + ZNW[}

0elnr

A cell is in the subdivision Ef}j’k means that its location is (4, j, k) where 4 is the
layer number, j the polar angle number and k the azimuth angle number. The last
point arising by using the simplified formulation is the variation of the volume of
each £§, j.k- Indeed, when the radius of the oocyte changes, the real volume (i.e. the
real volume that cells can use) of the each layer changes

4

4
Vol§ = g[(ro +i€)3 —(ro+(i—1)e)®] = ?[63(312 —3i+1)+3e%ro(2i — 1) +3erd)],

and for each (i, j, k) the real volume of L, ; is
4
Vol ). = Vol§ /N? ~ e2§[e3(3i2 — 30+ 1) + 3¢%ro(2i — 1) + 3erd)].

For each time, a cell is defined by its age and its position (or similarly by a dirac
mass on Age X Space). For a given M (normalization parameter) and e (cell size
parameter), the whole population is then characterized by a punctual measure on
this set, i.e., in Mp(Space x Age). Let

M, e
NO

1
Z)"(da, dp) = i Z 5(a2/"€,w£4‘5) € Mp(Space x Age), (1.1)
k=1

where (afy’e, xfy’e)k C Age x Space®, the initial population sequence, such that

sup(NJ" /M) < oo,

M e

awhich asymptoticly satisfy assumptions (2.5)-(2.6)
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and rgf’e(()) =19 > 0 (a.e.). Let Q(ds,Compt(dn),dO,IIS_(p,dp’)) be a Poisson
point measure on R, x e = Ry x N x R, x R? with intensity

q(ds, Compt(dn),d®,II;_(p,dp’)) = ds ® Compt(dn) ® d© @ II;_(p, dp’),
dp' = r?sin(0)drdfde,
(where ds and d© are Lebesgue measures on R, Compt(dn) is the counting measure
on N* and II¢_ (p, dp’) the displacement distribution law (see (1.5))) and indepen-
dent of Zéw’e (see 4, 25, 17, 15, 3). Let us denote X,iw’e(t) and AkM’E(t) the position
and age of the k" individual at time ¢ (ranked in the lexicographic order on R xR,
see 4, 25, 17, 15, 3 for details). Then the oocyte radius follows the equation

t
ro () =1y (0) + Y K((i = 1)e /O(rgf@( =))W 4, Z2 ) ds, (1.2)
N

where a < 0 and £ € Cp (R4, R;) and W 1, a regular approximation of the char-
acteristic function xc¢  (see (7.5) in the annex : section 7.1). The population at

time ¢, denoted by ZZVI ¢ is the set of all individuals alive at time ¢ and follows the
master equation

NMe

M, e
Z (da dp Z 5AI\/16 (0)+t, XMG(O))

+ M/O /€1n<N36" [(25<t—s,xilvﬁ(s—>> = Oty x2e(s—y)) Lo B
+ (5(,4%’6(37)“75@') - §(A,1\1/['6(sf)+tfs,X£/1‘e(sf))) 0<O—B):* <P (X4 (s-))
Q(ds, (dn),d®,II5_(p,dp")), (1.3)

where the birth rate is

ByLS = B(AY"“(s—), X)"“(s—)), with B(a,p) = 1—e /APl )\ e CORy, Ry),

n,s—

(1.4)
the displacement rate is
Volg 1
=C°) Vi ilp ko Zol) =), with R(z) = ————,
; ” Ha Vol sk 1+e 5"

(1.5)

and the displacement distribution law is given by

e(lp —pDGS-(P)dp’ Pg_(p')

e _(p,dp’) = 5 , with GS_(p') =1 - -2 , 1.6
) = Tyela = p)Ge_(a)dg W ¢ 49

where C¢ = C/e? > 0.

More precisely, at given time ¢ :
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M e
(1) Ziv 1 AI\/I (0)+t,X M (0)) corresponds to the aging of the cell population from

I\/I €
its initial state : Zk 1 O(aMe 0y XM (0))-
k "k

(2) If a birth occured at time s, 0 < s < t, and since the age is reset to 0 at birth,
we add two new cells of age (t—s) at time ¢ : 20(4_s xMe(5_y) and we have to
remove from the population the mother cell, whose age had just overcome (t—s)
at the mitosis time : §(A71§l,6(s_)+t_s,x7ly,e(S_)).

(3) When a displacement occurs at time s, 0 < s < ¢, we have to add a cell at the
target location : 5( AMe(52) and to remove one from the original location

10

+t—s,p)
(AR (s=)+t—s, X3 (s—))"

The main objective of the paper is to prove the convergence of the stochastic pro-
cesses (Z(da,dp))e.ns as the population increases to infinity and the size of a
cell converges to zero. The existence of solutions to the system (1.2)-(2.1) is quite
classical (see 4, 25, 17, 15, 3)) and so be proved in annex 7. Difficulties arise in
the study of convergence. Indeed, stochastic processes, their convergence or/and
tightness (compactness) are powerful mathematical tools but are not well suited for
the punctual (or regular) convergence. Therefore for a fixed initial population size
(in an equivalent way, fixing M) we cannot pass to the limit as € converges to zero.
Thus, its not completely clear that (Z"¢(da, dp))e m converges for all sequences of
(ek, Mk) (0,00). We show that the hmlt (weak-* limit 15, 4 for similar studies)
of (ZM<(da, dp))e nr (for a fixed € and M — o0) is well defined (unique) and is a
strong solution to the following partial differential equation

Intermediate eq.

(gﬁ(i)pefp;(p’)le (t,a,p")dp" + Ps (p)p (¢, a,p) = 0,

)+ Z i—1)e / // 5.5k ()P (t, a, p)dadpds

0,5,k

pe(t,0,p) = 2/B(a,p)p€(t,a,p)dadp7 p(0,a,p") = p§(a,p), 76(0) = ro.

(1.7)
with M} (t,p) := [ p*(t,a,p)da,
f\IIZ L(D)ML(t,p)dpVole 1
PL(Y) = 2 Z ik Sk VoIt ), with R(z) = ———=,
i,5,k i gk L+e =
(1.8)
. Ue(lp’ — p|)Gs_ (p)dp
. = G
Jve(lg — ' ))Gs_(g)dg
J s (D) ML (t, p)dpV ol
ithGS_()=1-Y S S EA . (L
with G¢_ zj% ”k Volt ). (1.9)

Then, we prove that, the limit as e converge to zero, is a weak solution (using Sobolev
spaces and weak—sx* convergence 2) to the following nonlinear partial differential



L\/{aﬁuary 9, 2017 9:20 WSPC/INSTRUCTION FILE LimitStochToPDE—
3AS

6 Authors’ Names

equation (Transport 20, 22, Keller Segel type 12, 13)

0 0
~ 4 = i log(1 — = 1
| (5 + 5200+ div(CpRV (log(1 = R))) =0, +>0,a>0,7>1,
Final eq- p|a:0 =2 B(aap)p(tvaap)daa Pt=0 = Po;
p|r:1 = 07

(1.10)

Q..2
with C >0, R = R(f1R+ p(t,a,p)da 3r¥féfr(izt)+f§;3()t)2) and

rH(t) = (ro(t))a //A s w(r)p(t, a, p)r? sin(0)dadrddds, ro(0) = ro.

(1.11)

Therefore, the main difficulty is to mix both approach to prove the convergence.

In section 2, we give main theorems of convergence and proves are done in sections
3, 4 (for stochastic tools) and 5 (for PDE tools).

2. Main results

Before proving the convergence of the stochastic process ng ¢ we first show that
we have existence for all M > 0 and € > 0 of Z"*° (proposition 2.1). Then, we
adopt the following approach (see fig. 2) : we show, in theorem 2.1 I, that we can
extract a subsequence M) — oo such that (ZtM *) M, e converges to a solution p©
of an intermediate partial differential equation (1.7), then we prove, in theorem 2.1
I1, that we can extract a subsequence €, — oo such that p converges to p solution
to (1.10). Finally, in theorem 2.1 III, we show that there exists a subsequence
(g, My) — (0,00) such that ZM* converges to p (see fig. 2).

Assumptions

I- Geometric : Assume that for all p, the matrix

M\Il(p) = qu’ (!g}@l((T;f;‘);i_P)dq) satisfies

My (p) is definite positive

Vp Ve >0, 0 < inf.,min{\ € Sp(My(p))} (2.1)
< sup, , max{\ € Sp(My(p))} < oo
CMy(p) " (5P2e) Ch(p).

Remark : the construction given in section 7.1 satisfies (2.1) and by symmetry of
U we have directly that Ch(p) = C.Id for all p € Space. Therefore, we consider
that assumption (2.1) is satisfied in the whole paper. Moreover, we notice that

Volg(3r? + 6r + 3)
3r2 + 6rro(t) + 3ro(t)?

VOZG/\DzE',j,kdp/VOZ;,j,k =0
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II- Uniform bounds on ZéVI’e and p§(a,p) : assume there exists m > 1 and w > 0
s.t.

sup IE //l—i-a + ™) Z"¢ (da, dp))?

(M,e)€U,,

+ (//(1 +a*™ + rzm)Zéw’e(da,dp))) < oo, (2.2)
with
Uy :={Me > w}, (2.3)

sup [+ [ pblapdact ([ pita.)da+( [ 5L o(ap)ldaldp < oo, (2.4

III- Convergence of Zéw"e and p§(a,p) :
23" (da, dp) =10 pi(asp)dadp,  with ph(a,p) € CHRT xR?), (25

2 + e apce .
pi(a,p) —L G OAIXSw) 4 p), with  po(a,p) € CHRT X R?).  (2.6)

Proposition 2.1. (Ezistence) Under assumptions (1.1)-(1.6) and (2.2) there exists
a solution ZM* € D(Ry, Mp) and ro € CONCL (Ry) to (1.2)-(1.3) for all M, e >
0. Moreover, assuming that (2.2) is satisfied then we have that, for all T > 0,

sup]E sup //lJra + ™) ZM< (da, dp))?

M, e t€[0,Te]
+ (//(1 +a®m + r2m)ZtM’€(da,dp))> <oo. (2.7)

The proof is given in section 7.2.
We have that.

Theorem 2.1.

I) Assume that (2.5) and (2.2) are satisfied. Then, for all ¢ > 0,
(ZM<(da,dp)) s is tight on D(Ry, (Mp(Age x Space), weak)). Its limit values
lim s, 00 ZtM’“E(da,dp) = p°(t,a,p)dadp, are continuous measure-valued process
satisfying (1.7)-(1.9).

II) Assume that (2.6), (2.4) and (2.1) are satisfied then (p¢,rs,) solution to (1.7)
weakly converge to (p,ro) weak solution to (1.10)-(1.11).

III) Assume that (2.5), (2.6), (2.2) and (2.1) are satisfied. Then, for all C > 0,
there exists a subsequence (e, My) C Ug s.t. Myex — oo and

Jim (7" (da, dp), ) = (p(t,a, p)dadp,v), Vi € Gy,
— 00

weak solution to (1.10)-(1.11).
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Fig. 3. Convergence proof. The main theorem 2.1 can be visualized as follows. Under assumptions
given above, we prove the convergence as M — oo then as € — 0 and finally as (M, ¢) — (o0, 0)
(under condition on e.M)

3. Proof of the main theorem

The proof of the main theorem follows the scheme given in figure 3. The first
and third part are stochastic processes results while the second point is a partial
differential equation result.

3.1. Proof of theorem 2.1 Part I : Convergence of the stochastic
M,e
process Z, as M — oo

To prove tightness of the sequence ZtM "“(da,dp) (as probability measure on
D(Ry, (Mp(Age x Space),vague))), we use a Rolley criterium (see 24, 8, 9 for
more details) which establishes that it suffices to prove that for all f of a dense
subspace of (Co(Age x Space,R), ||.||«) (here C&(Age x Space,R)) the sequence
(fes ZtM’e) is tight in D(R4,R). In the section 4.2, we prove that

M, M, M,
<ftaZt €> =M, e(f) + \Z e(f)
——— N——
Martingale  Finite Variation

Therefore, using a criterium of Aldous-Rebolledo 1, 9, 23, it suffices to prove that :
-for all t € T (dense in Ry), (M}°(f)) and V}*(f) are tight on R
-forall T >0, u >0, n >0, there exists § > 0 and Néw’e € N s.t.

sup  P(IMILE(F) = (M) =0, Tag < Sw+6) <,
M>NQMe

sup P([VIL () = VES(AI =0, Tare < Sur+9) <,
M>N}e
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for any sequences of stopping times (Sas, Tas) of the natural filtration Fyy, so that
Sy < Ty < T. Both points are a direct consequence of the bounds (4.10)-(4.12)
(see 26 for more details). Using Prohorov theorem, we can extract a subsequence
ZMe¢(da, dp) which vague converges to Z¢(da, dp) and by construction, for all f €
C(Age x Space),

sup {0 22 — (20 < M i o
teR L k

the limit process is a.e. continuous. Finally, using a result of convergence 16°, to
prove the weak convergence, it suffices to add tightness of (1, Z*€) (which came
directly from bound (4.6)). Now using (4.10), we have that the martingale part of
the process satisfies

BUMI (1)) < BUMI (1)) = B < =, o,

with C > 0. By passing to the limit in (1.8)-(1.9), we have that

. . C . (5 ;5> Zs—(da,dp))Volg
PS =Moo PL(s—) = 5 Y W5 L (OR(—L - )s
€2 & Vol . .
1,5,k 1,75
. 1
with R(z) = —
l1+e =
and

_ Vel = pDGS- ()’
J¥e(lg - pNGs_(a)dg’
pe

with G;(p/) =1— Z \Ijg,j,k(~)R(< 1,5,k

.5,k

Zf(da, dp))Volg )
Vol ; 1 '

Therefore, we find that for all f € W1 (see lemma 4.2 and the section 4.2),

0

0= <ftv Ztlv[,6> - <f072é\/[76> _/0 <(% + %)f(u7a7p)’ Zqﬂ/le(daadp»du

- /0 <(2f(5a Ovp) - f(sa avp))B(aap)

+ [ 00) = £5.0.0) P (5) ) ). 227 .
pace

is satisfied. The limit is a weak solution to the partial differential equation (1.7),
which is unique (see the proof of I ).

P Authors prove that the convergence in law in D([0,T]; (MF, vague topology)) of (M) im-
plies the convergence in law in D([0, T|; (M, étroite topology)) of (Mn)rn under two more condi-
tions : regularity of the limit (C°([0, T]; (MF, étroite))) and the convergence in law of (Mpy,1) in
D([0,T];R). With Mp finite measure space.
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3.2. Proof of theorem 2.1 Part II : Convergence of p; as € — 0

Using a fixed point theorem (contraction in Banach space), we prove (in lemma 5.1)
the existence of solution to the master equation (1.7). To prove the convergence as
€ — 0, we first prove, in lemmas 5.2-5.5, that under assumption (2.4), for any 7' > 0,
ML(t,p) :== [ p(t,a,p)da (resp. p) belongs to a compact set of L2([0,T] x Space)
(resp. L2([0,T] x Age x Space))and VM](t, p) belongs to a weak—x* compact set of
L2([0,T] x Space). Assume (2.6) - (2.1), let f € C1(Age x Space), multiply (1.7)
by f and integrate with respect to a : we find that

gt/pf(a,p)pe(t,a,p)dadp— //B(a’p)f(aap)pe(t,cup)dadp

- / . (f (a,9') — f (“717))“2—(1% dp")Ps_(p)p“(t, a, p)dadp.

Rewritting the second member as follows, we have that

| (1) = ) ). Pr_ (o)t 0.p)dpda

_ [ Flan — o) LU = PG W) P (p) o
= [, €)= 100 T g e o=

g Ce [ Ue(|g — — p)G<_(q)dg Pe
:/Vf(a’p) J, 9<(la = p)(a — p)G5_(q)dg P:_(p)

T ®<(lq — p)G5_(q)dg o Pidadp +o(1)
t Ce e _ _ t — . .
- / Vf(a,p) Jy “j qug‘iﬁ p|1)9c)iq (¢ —p)dg Pségp) r VGCjS: (o)dadp + o(1)

_ /Vf(a,p)pECh(p)RtV(log(l ~ R) )dpda + o(1).

By passing to the limit V f(a, p)p®(t, a, p)Ch(p) in L? and V(log(l—R)) in weak—x*
L? (see lemmas 5.3-5.4 and 2), we have that p is a solution to (1.10).

3.3. Proof of theorem 2.1 Part III : Convergence of Z,fVI’e as
M — oo and € — 0

Let T' > 0. Changing the time scale ¢t — te. We first notice that for (M,¢) € Uy,
bounds given in the proof of theorem 2.1 Part I are independent of €, M. Indeed,
the time scale appeared in lemma 4.5 that gives

supE( sup //rmZtM’e(da,dp)) < oo, VYT >0.
M,e “Nte[0,Te]

Then, changing the time scale, we find that all bounds given in Proof of theorem
2.1 Part I and in technical part 4.2 are in O(T'/eM) therefore uniform in U; (and
so the tightness of ZtM *“ is assured in Uj). To obtain the convergence we need that
eM — oo. Now, we construct a (e, Mj) so that the limit is the one we are expecting
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(i.e., p). Since C} is a separable set, there exists () dense subset of C&. Let any
sequence (), converging to 0. Using theorem 2.1, there exists M?! s.t.

sup (ZM > (da, dp),1b1) — {pe, (t, a, p)dadp, ¢1)] < 1.

For the same reason, we can find M? s.t.

2 € .
sup (2" (da, dp), i) — (pe, (t, a, p)dadp, ;)| < 1/4, j = 1,2.

and so on, there exists M" s.t.
?2? |<Zt]w o (davdp)ij> - <p6n (tvavp)dadpad]jﬂ < 1/271’ Jj=1l.mn.

Therefore, using the theorem 2.1 part I, we have that
Jim sup (ZM" " (da, dp), ) — (p(t, a, p)dadp, )| = 0, Vi € C{.
4. Stochastic calculus and technical lemmas

In this part, we give the doob decomposition of the stochastic process ZM: (issued
from Ito calculus). Then, we give uniform bounds which are used to prove the
tightness of ZM-.

4.1. Ito calculus and first lemmas
For convenience, we introduced stopping time (T]]\\]4 )
o =inf{s >0, (1,ZM<ArYc(s)) > N}. (4.1)
We first give computational lemmas on the population evolution.

Lemma 4.1. For all f € C°(Space x Age), t > 0 and ro, ZM* solution to (1.2)-
(1.3) we have

NJW €

1 0
// 7t a,) 2 (da,dp) = = D £t AY(0) + 1, X2(0))
R4 x Space k=1

n,s—

+(f(t7 A7Jy7€(s_)+t_sap/)_f(tvAr]\f’e(s_)—’—t_svXg/[}e(s_)))l()S@fBg{:_<P:_(Xn(sf)):|
Q(ds, (dn),d®, I} (p,dp))  (4.2)

: t Me(o— M,e M,e
[ e e O L B PR e e L P

Proof. Direct computation (see 4 for more details). O

Lemma 4.2. Let F € C*(R,R) and f € B(Ry x Ry x Space,R) s.t. for all p €
Space, (s,a) € R — f(s,a,p) € C;’I(RJr x Space,R) with uniform (in space)
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bounds of the partial derivation of f then, for allt > 0,

[Fzen [ MSW( At ) a0, p) 22 dp)i =
Fi{ 29 = P, 2D = [ [ [ a0 Z0) + 5 005,0,X25(5-)
P AN (5), XM (50)) = F((for 2D e
P (o 2+ F s AR (5), 1) = 3 A (5, X4 (5)) = F({fs, Z0))

Lo e <pr_(x,(oy | Q(ds, (dn), 4O, T (p,dp'))]  (4.3)

with (209 = [ flsap) 22 (da.dp)
R4 x Space

Proof. Using (4.2) of lemma 4.1, in the particular case (2 + 2)f(u,a,p), and

integrating in time, we have that ZtM “ satisfies (for all f given in assumptions)

‘ o 9
+ =) f(u, a,p)ZM<(da, dp)du =
~/0~//]R+><Space(8u 8(1) ( ) ( )

1 'R 9 9 M e M,e
A1) 20 Gt e A 0 X0

1ot 8 9 .
w27 [ e [0 + g = s X205
0 0
- (a + %)f(ua A7I’\L/I7€(S_) +u— S, X£476(5_)))10§®<B,%;i

(o 2 AR (5) i s,0) — o A (5) 5, X204 (50)

IOSQ—BTJLV{;E, <Pt (Xn(s—)):| Q(d57 (dn)a d@, Hé\/i,e(p7 dp/))du (44)

Now, using Fubinni theorem quzo Jio= f;zo f?j:s and (& + 2)f)(u,. +u,.) =



2
3AS

anuary 9, 2017 9:20 WSPC/INSTRUCTION FILE LimitStochToPDE—

Instructions for Typing Manuscripts (Paper’s Title) 13

%(f(ua .+ u,.)), we have that

/»//RJrXSpace gu * ;)f(u a,p)Z,"*(da, dp)du =

NZM €

iz (£ ANE(0) 41, X24(0)) = F(0, AY¥(0), X, (0))

/ / wenpre [Pt = 5,204 (5=) = F5,0,X(5-))
- (AN +t—st€< ) = F s, AN (=), XA (=D g

+ (f(thr];LE(S_) +t- S,p/) - f(S’sz\L/Le(S_)’ J))_
(F(t, AT (s=) +t = 5, X30(s=)) = f (5, A" (s—), X34 (s-))))

10§@_B;V{:7 <P;7(Xn,(s—))} duQ(dS, (dn), de, Hi\/fs(pa dp/))-

Using formula (4.2), we find finally that

0 . )
/// (2 1 2 flu,a,p) 22 da dp)du = (fo, ) = (fo, Z0)
R4 x Space ou da
_ M /0 /Eln<NSN£‘€ (2f(3707X7Q/Ia€(3—)) — f(s7AnM7€(S_)’X;LW,E(S_)))10§®<B£/{‘51
+ (f(S7A7]\L/I’€(S_)7p’) - f(57 A%’e(s—),quyﬁ(s_)))l()gefBﬁf:_<P§_(X”(Sf)))

Q(ds, (dn).dO, T (p,dp')) .

Now, using the Itd formula with jump processes, we find that (4.3) is satisfied (see
4,25, 17, 15, 3 for more details). |

4.2. Doob decomposition of Z}"¢

Let m > 1 and assume that

SUpIE((l +a®™ 42 20 (da, dp)) + (1 + a™ + 7™, Z)¢ (da, dp))?) < oo, (4.5)
M e

then we have that for all T > 0 (see lemmas 4.3-4.7),

supE( sup (14a*"+r>", ZM<(da, dp))+ sup <1+am+rm,ZtM’E(da,dp)>2) < 0.
M,e t€[0,Te€] te[0,T€]

(4.6)
Moreover, for all f,

(fi: 2,0y = M () + VM),
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where

0

t
M) = U 2 = o Z1) = [ UG+ o). 220 o dp)d

- /0 <(2f<8707p) - f(saa’vp))B<a7p)+

/S (F(5.p.7') — £(5,0,p)) PE_(D)TIS_(p, dp'), ZM)ds,  (4.7)

pace

is an L? martingale cadlag nul at ¢t = 0 of quadratic previsible increasing process

M) = 57 [ (1(6.0.0) = F(s.0.)*Bla.p)

+ / (F(s,a.p) — F(s.0,p)2PETIE_(p.dpl), ZM)ds, (4.8)
Space

and

0

V() = (o Z0") + /0 (ot 23, 0,), Z24(da dp)

n / (2f(5.0,) — f(s,a,p))Bla,p)
+ /S (F(s:p.0) — (50, p) PE_(D)TIS_(p.dp'), ZM)ds, (4.9)

which satisfy in average (in dP(w)) an uniform I/VllocOO (R4+) bound. More precisely,
for all stopping time 7', S

B (sup |M()1) < (9113 + 113 1+ O)E( T suptr, 229), (4.20)

t<T s<T

E (1M (£) = (ME(F)]) <
(913 + 11 . (14 C) ) E(

T — 5] M
sup (1, ZM« ) 411
M sSmax(T7S)< > ( )

E (sup (V" (M)]) < E(|(fo Z5™)

t<T

+ (Bl + [l (1 4+ C)) (1 + E(IT|sup(1, Z27) ), (4.12)
s<T

E(I(v"(5) - V5" () <

(31~ + 17w+ eIt s z0). (1)

M s<max(T,S)
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Proof. To prove bound (4.6), we use technical lemmas 4.3-4.7 (proves are similar
to 26, 17). Now, for all f € C°(Space x Age), t > 0 and ro, ZtM’6 solution to
(1.2)-(1.3) we have (see lemma 4.2)

0

t 0
= 157Zt]\/[)E - 7ZM7€ - ) Uy 721]/,\/1,6 d Jd d
0= (i Z0") = (0. Z3") = [ (G + o) e.p). 200l d)

1 ¢ € € €
= L [t [ 0.2 () = (s, A (5. X2 (5 ))
10§®<B(A£‘L/I(s—),X,,]LW(s—)) + (f(S,A,ﬁ/[’E(S—),p/) - f(S, A7Z\147€(8_)7X7sz7€(8_)))
1B(A%(s—),X%<s—))se<B(A%(s—>7X%(s—))+P:7(X%(s—))}

Q(ds, (dn), dO,TI:_(p,dp))].  (4.14)

Using (4.2), we have that

M) = =57 | [Lucnzee 10600, 0) = o, A4, X2 ()

Loco<B(aM (s—), X (s-))
+ (f(sv A?fﬁe(s_)vp/) - f(stiy’E(S_)aXéwys(S_)))

LB(AM (5—),X M (5—)) <O< BIAM (s— ), XM (s—))+ P<_ (XM (s—)) | Q(ds, (dn),dO,TIS_(p, dp')),
(4.15)

with Q = Q — ds ® Compt(dn) ® d© ® I_Ii\/l_"e(p7 dp’) be the compensated Poisson
process of ) introduced in the introduction. Therefore Miw “(f) is alocal martingale
associated to the stopping times sequence (7']]\\,4’6) n introduced in (4.1). Using Ito
formula, we have that

t
M7 == [ 1 e

9 1
[((<fs,Zy’6>+ﬁf(S,O,XfLM’E(5*))*Hf(&A%’E(S*)’X%E(S*)))z* (fs, Z31)%)
loco<B(AM (s—),xM(s—))

1 1
+(((fs, Z¥’6>+Mf(s,A%E(s—),p’)—ﬂf(&A?f‘(s—),X?f’f(s—)))z—<fs, 7219
LB(AM (s—), XM (s—)) SO<B(AM (s=), XM (s=))+P_ (XM (s-))

Q(ds, (dn),dO, 15 _(p,dp’)). (4.16)
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Using lemma 4.2, we find that

0

K 0
e 20 = U0 239 =2 [ (e ZE) (G + G .p), 22 (o dp)

2 / (o 229 (2£(5,0,p) — £ (5. a,p))B(a )
0

+/S (f(s,0,0) = f(s,0,) P_ (D) (p, dp'), 2" )ds

- 17 | (@F(5.0.0) = f(s.0.9)Blap)

+ /S (F(s,a,0) — F(50,p)2PE ()T (p, dp'), ZM)ds = — MM ()2,

which means that
M,e 2 1 K 2
Mt ’ (f) = LocalMartingale + M <(2f(sa Ovp) - f(S, avp)) B(aap)
0

+ /S (F(s:0.0) — f(s,a,p)*PE_(0)TIS_(p,dpf), ZM<)ds,
pace
where

LocalMartingale = _<fta Zt]VI’E>2 + <f07 Zé\/[’6>2

0

t
2 [ 2N + ) 0on). 22 )

t
b2 [ (22 (27(5.0.) ~ f(5,0.0) Bla)
0
[ ad) = s PG (), 230,
pace
Using uniqueness of Doob decomposition we find that (4.8) is satisfied and

E((M;" () <

T
30+ ONFI3-E( sup (1,2 (da,dp)) + sup (1,2 (da, dp))?) < ox.
t€[0,7) t€(0,T]

Therefore M}"¢(f) is a L? martingale of angle brackets process (4.8). We have
directly (using Rolle’s theorem) that M}"(f) and VM “(f) satisfy (4.10)-(4.12).0

4.3. Uniform bounds on Z}"*

Lemma 4.3. Let ¢ > 1 and assume that supM,eE((ff lZéw’e(da, dp))q) < 0o, then
we have that
ct = supM76E<(suptE[07T} IS 12<(da, dp))q) < oo, VT >0.
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Proof. Using equation (4.3) for F': z — 2% and f = 1, we find that

0= (1,291 — ({1, 23 //MM

1
(1,227 + 2207 = (1, 2291 e QUds, (dn), 4O, TTs_(p,dp'))|.

Since (1 +y)? — y9 < 2971 (1 4+ y271), we have that
(1,201 < (1,25

t
+q2q—1/ /1,,L<N£ (L (1, 2291 g e Q(ds, (dn),dO, TT5_(p, dp)))]
0 Je - e

t
sup <17Z1_]L\476>q < <1vZéw’6>q +q2q71/ /1n<N£
0 Je ’

ugmin(vaw,t)
|:(1 + <17 Z‘iw76>q_1)10§@<37]lv{;i Q(ds, (dn)7 d@, H:—(p7 dp/)):| 9

and

E( sup  (LZ))9) <E((1,2,"9)9)

u<min(TH ,t)
t
+ q2q—1/ / E((14 (1,211 ZM<)ds.
Agex Space

Using the stopping time 7']]\\,4’6 with N; = E(sups<min(t oM
< TN
that 29 + 2 < 2(1 + ) for all z > 0 and ¢ > 1, we have that

) N,) and noticing

t
E( sup (1,Z£/I’€>q) < [E((l,ZéV[’e)q)—i—tqu]—i—qu/ E( sup (1,Zy’€>q)ds.
0

u<min(TH ,t) u<min(TH,s)
Now, using by Gronwall lemma, we find that

E(  sup (1, Z2M) < [E((1, Z)"9)9) + tq29)es?".

ugmin(‘r]]\?’s,t)
Thus, limy o TJ]\\,/[’E = oo for all (M,¢) and for all t <T

C5 = supE((sup(1, ZMey)ay < [sup (1, ZM1) 4 1g29)72" (4.17)

Lemma 4.4. Let m > 1 and assume that (where dp = r2 sin()drdfdg)
m ]\/I €
supIE // Zy " (da dp))) < 00, (4.18)
then we have that

cr = supIE( sup //amZtM’e(da,dp)> < oo, VI >O0. (4.19)

M,e te[0,T]
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Proof. We have that ZM: satisfies (4.3), for F : x + x and f(a) = a™, we find
that

t
<am,ZtM’e> = (am,Zéw’E> + m/ // amleiw’E(da,dp)du
0 R4 xSpace

1 ! m €
=7 L[t A5 v QUds. (dn). 00,1 (. d')].

t
(am,ZtM’E> < (am,Zéw’E> + m/ // amleéw’E(da,dp)du,
0 R4 x Space
and finally we find that
t
E((am,ZtM’e)> < E((am,Zéw’e)) —|—m/ E((am_lZy’E(da,dp»)du.
0
Using that a1l <agm+1 and (4.17), we have that

IE( sup <am7ny’e>) < ]E((am,ZéV[’6>) +mt[sup]E((1,Zéw’€)) + 2t}62t}

uSmin(T}\\]/I’E,t) M,e
+ m/ m ZM.e(dq, dp)>)d
Using Gronwall lemma we find

E( sup <am,Z7i”‘>) < (E(mm,Zéw’e)) +mt[supE(<l,ZéVI’€>)+2t]62t)emt

ugmin('r}y’g,t) M,e
Therefore, under assumption (4.18), we prove that (4.19) is satisfied. D

Lemma 4.5. Let m > 1 and assume that (where dp = 72 sin(0)drdfdg)
supIE // rmZ3¢(da, dp))) < 00, supIE // 12)"(da dp))) < oo, (4.20)

then we have that

DI = supIE( sup // rmZtM’E(da,dp)) < oo, VT >0. (4.21)
M,e te[0,T€)

Proof. We have that ZM: satisfies (4.3), for F': z — z and f(a) = r™, we find
that

m € m ;M€ 1 ! € m
sup (rm, Zyhe) = (™, Z, >+M[ . Loenm [(Xéw’ (s—)) Loco<nre
e ,

u<m1n(’r}y €t)

()" = ()" e cocpins sy Q(ds, (dn).dO, T (p,dp')]

n,s— —
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and finally we find that

E( sup <rm,foI’€>) < E(<Tm’Z(])V[’6>)

uSmin(T]]\v,I’E ,t)

n /OtE(<rm,ZfL”’E>> + ||P§_||em2m(2IE<<17Z£4’E>) +E(<rm,Zi”’e>))du,

E sup (rm,ZS/I’e}) < E((W”,ZOM’e))
uSmin(T]J\\,/[‘€7t)

t
—|—/ E((rm, Zy’e>)(1 + || PE_||em2™)du + || PE_||em2m T tCT .
0
Using Gronwall lemma we find that for all t < T :

B( sy i) <

uSmin(Tﬁ,j’E,te)
€ 1.2, om
(E(<7,m7 Zé%e) ||PS€,||€2m2m+1t031)6(1+”135*He m2 )t’

with and (4.21) holds. m|

Lemma 4.6. Let m > 1 and assume that

sup ((//amZo(da,dp))2)<oo, SﬁEE((//anZO(da,dp))), (4.22)

then we have that

0572 = supE(( sup // amZtM’E(da,dp))Z) < oo, VT >0. (4.23)
M,e t€[0,T)

Proof. We have that (see lemma 4.2), for all t < T,

((@™, ZM))? = ((a™, Z3"))?

vom [ (@ zit) [[ a1z o, dp)in
R4 xSpace

t 2 1
+/ 1n M _7ATJ¥LE 8—)m( (lm,Z;\/I’€ =+ 71424’5(8— 2m 1 M,e
A (O R B C( N+ 15 R A
Q(d87 (dn)v d®7 H27 (p7 dp/))a

therefore, we find that,

E( sup ((am,Zy’E>)2) < E((<amaZ(])VI’€>)2)

'u,Smin(TﬁI’6 ,t)

t t
1
m M. e m—1r7M,e 2m M e
—|—2m/OE((<a 2, >)//]R a2z, (da,dp))du+/o —MIE(<a 2, >)du,

+ X Space
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and using the lemma 4.4 and the Gronwall lemma (and noticing that a™~! <
a™ + 1), (4.23) holds. O

Lemma 4.7. Let m > 1 and assume that

31;EE((//rmZ0(da,dp))2><oo, supE // r*" Zo(da, dp))).

and (2.83), then we have that

DTQ—bupE( sup // " ZME(da dp)))<oo VT > 0.

M,e te[0,T€]

The proof of this lemma is similar to the previous ones.

5. Partial differential Equations calculus and lemmas

In this part, we prove the existence, regularity and compactness of solution to the
intermediate equation.

5.1. Proof of existence and uniqueness of solution to (1.7)

Lemma 5.1. (Ezistence/Uniqueness) Let Z§(a,p) = p§(a, p)dadp satisfying (2.6)
with p§ € C and

pyla=0.p) =2 / B(a,p)pS(a p)da, (5.1)

then Zg(a,p) = limps, 00 ZtM’“’e(da,dp) is equal to p*(t,a,p)dadp with p¢ C solu-
tion to (1.7).

Proof. Let T : g — f solution to

0
(O 2y~ Klgl(t.p) = ~Kn(t,p) 1 (0,0,1). 52)

f(t,0,p) = Q/B(a,p)f(t,am)dm ft=0,..)=p5(,-),
with K[f](t.p) = [ PL () =D f(t,a,p)dp/, Kr(t.p) = PS(p).
B Z f\I!” +(p)gdadpVolg
Pov') = €2 B k(P Vols . ’
1,5,k

.4,k

e, (p,dp) _ ‘I’F(|P*p'|)§*'2_(l>) ith
dp S (lg—p')GS_(q)dq’

G ()=1-7 ik Y5 (OR( / \P;j”“é?lfdidpvozc ). Using Gronwall lemma and
' i,k
IBlleo < 1, we have that

/ f(t,a,p)dadp < // 5 (a, p)dadpe®.

and
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By computation, and using that |R’| < £, we find that

- 3Volg
Klg| — K <
Kl = KG9 < R oo sdpe vt 19~ 9

1,5,k

Therefore, using the Characteristics (in (a,t)) of the transport equation (5.2) (see
20), we have existence and uniqueness of the solution. Moreover, for ¢ : t
[ 22 =Yds, and f = T(g), f = T(j), we have that (multiplying (5.2) by
¢ and integrating in (a, p))

/ f — flo(t)dadp < 3Volg

(1 — R([[ ps(a, p)dadpe?t)) Vol§ ;1

/ 19— §l6(t)dadp,

and so

. ¢ 3Volg

Therefore T : g € E— f € E with E = C’([O,T],Ll(R+ X R‘j)), is a contracting
mapping for 7' > 0 small enough and there exists an unique solution to (1.7). Now,
we construct a solution on [T, 27... and finally on Ry. Since ¥, and R are C°,
the regularity of p¢, solution to the transport equation (1.7) with the boundary
condition 5.1, is given by those of p§ (under the assumption (5.1), see 20, 18, 11,
27). Using uniqueness, we find that Zf(a,p) = p(t, a, p)dadp. |

5.2. Compactness of M(t,p) := [ p(t,a,p)da

Lemma 5.2. Let T > 0, p¢ solution to (1.7) and assume that (2.4) is satisfied then
we can extract a convergent subsequence of M2 (t,p) := [ p*(t,a,p)da in L?([0,T] x
Space).

Proof. Since M1(0,p) € Lz(Space) by assumption (2.4), we have, by integrating
equation (1.7) that Ml(t p) := [ p*(t,a,p)da follows the equation

oM (t,p) — [ Pe(p) =AM (1, p')dp' + P (p) M (t,p) = 2 [ B(a.p)p(t,a,p)da,
Mfl(t—07p = fpo (a,p)da.

(5.3)
First integrating (5.3) with respect to p and Gronwall lemma, we have that

/ M0, p)dp < / MY (t, p)dp < / M (0, p)dpe®™, Vit € [0,T],

therefore p¢ is uniformly bounded in L>([0,T], L'(Age x Space)). Secondly, multi-
plying (5.3) by M! and integrating with respect to p we find that

;;/( )2dp = // (a,p)pS(t, a,p)daM2(t,p)dp
// T ‘q ;\TC(; p(z)quZ_(p)](Mi(t,p) = M (t.p") ¥ (Ip" — pl)dpdp/,
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that can be rewritten as,

aat;/(Mel(t)p))de:/ B(a,p)pé(t,a7p)daMel(t’p)dp

1 P ()M, p') . Py (p)ML(t,p) e (o
w51 T - oG (@dg P ™ Tl - oy
(ML(t,p) — ML(t,p"))U(|p’ — p|)dpdp’.

Let py = (p+p')/2 and p— = (p — p')/2, then we have p=p; +p_, p' =p; —p-
and for all A, B C!'—functions we have that

A(p")B(p) — A(p)B(p) = Alp+ — p-)B(p+ +p-) — B(p+ —p-)A(p+ +p-)
= (A(p+) — VA(p+)p- +0( “N(B(p+) +VB(p+)p- +o(p-))
—(A(p+) + VA(p4)p- + o(p-))(B(p+) — VB(p4)p- + o(p-))
= 2(A(p+)VB(p+)p- — B(p+)VA(p+)p-) + o(p-).

Noticing that M(t,p) — M}(t,p') = 2VM}(t,p+)p— +o(p—) and changing the
variables in the integral, we find that

o1 . 0y P Mt ) ;
53 Jorenra = [t s o v e -

PLM(L, )
J¥e(lg - NGs_(a)dq

(2VM(t,p+)p-) Ve (2lp-|)dpdp- +/ B(a.p)p*(t, ap)daM; (¢, p)dp + o(1).

(p+)2p-]

G (p )V

Using the definition of P< (1.8)-(1.9) we find that

i [ (ke iy =0 [[ e )T R0k~ RY MG ps 2t

— M (t,p3) (1= R) (=) (M (t,02)) VM (1) 252 = RO (8, p4)) VM ()25

R
(VM (6, ) =) U 2lp-|)dprdp- + / B(a,p)p<(t, a, p)daML(t, p)dp + (1),

and so
o3 [ = -1 / PV P B2 1, )M 1)
/ 2w (2p_ )22 dp_ "TM (1,1 )) U 2lp—

+ / / Bla,p)o (t, a, p)dadL} (¢, p)dp + of1).
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Therefore, we have the following bound

%%/ﬂw( p))*dp +ACR(0) // 2P 70 1, ) 2t -
< [z

with Ay, > 0 the infimum (with respect of €) of the minimum of the eigenvalues of the
definite positive matrix [ 22=W(2[p_ |)2%dp_. Finally, using Gronwall inequality
we have that for all 7' > 0

lﬂMWmW@S/Uﬁ@MﬂW”,WSZ

and integrating the last inequality, we found that

tp) J(ML(0,p))2dp
/OT // TRV M )P (E py )dp- < W 2T (T 4+1).

We notice that, for all T > 0, the same computation leads to (multiplying (5.3) by
(pM1)? and integrating with respect to p)

/P(Me1 (t,p))%dp < [/p(Mel(07p))2dp+THMel||C([O,T],H1(Space)))‘M]eZT’ vt <T,

with Aps > 0 the supremum (with respect of €) of the maximum of the eigenvalues
of the definite positive matrix [ 2%\116(2|p,\)2tp‘ dp_.Thus, we have that (M),
is uniformly bounded in L*([0,T], H'(Space) x L2 ,,(Space)). Moreover, we have
directly that |22 [(ML(t, p))2dp| is uniformly bounded in L?([0, T). Therefore, by
the (Lions-Aubin) result (see 14), we can extract a convergent subsequence of (M}),

in L2([0,T] x (Space)). O

Lemma 5.3. Let T > 0. Assume that (VMZ(t,.)). is L>°(]0,T); L?>(Space)) and
M} converges CO([0,T); L?(Space)) to M* as € to O then

; f U (p) M (8, ) dadpV ol
DUk - Vot ) = C0([0,T]:L? (Space))
i,5,k

i,k
Volg(3r? + 6r + 3)
3r2 4+ 6rro(s) + 3ro(s)?

R( M'(t,p)).
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Proof. Indeed, we have that

v M} dadpV ol
/|Z Jk f z]k ) ( ) p G)

€
! Vol”k

R Vol (3r? + 6r + 3)
3r2 + 6rro(s) + 3ro(s)?

<R / ( / M2 (p + eu) — M2 (p)|du)®dp
u<l

e /(/ / |V M} (p + esu)|duds)?dp
u<1 Js€[0,1]

< 62/ / (/|VM€1(p+esu)\2dp)duds,
u<1 Js€[0,1]

M} (t,p))[dp

and so we find that
Volg(3r? + 6r + 3) 1
M- (t
/(R(3r2 + 6rro(s) + 3ro(s)? (t:p))
_R( Volg(3r? + 6r + 3)
3r2 4+ 6rro(s) + 3ro(s)?

< IR / (M (t.p) — MX(t, p))*dp,

with C > 0. Under the uniform boundness of (VMZ!(,.)). and the

C°([0,T7]; L*(Space))- convergence of M} we have that

¢ ! a o .
S g (0 Rt W LIUVOG ) coverges (as ¢ — 0) to R(M'(t,p)) in
2 sJs i,7,k

C°([0,T7; L*(Space)). O

M(t,p)))*dp

Lemma 5.4. Let T > 0, p° solution to (1.7) and assume that (2.4) is satisfied then
we can extract a convergent subsequence of M2 (t,p) = [ p*(t,a,p)da which limit is
a weak solution to

H

M (t,p) + div(M (¢, p)Ch(p) RV (log(1 - R)))

)

ot
M'0.p) = [ difa,p)da
and H € C([0,T), H'(Space)) and R defined in (1.10).

Proof. Let f € C!(R, x Space), multiplying (1.7) by f and integrating with
respect to a we find that :

at/f L(t,p)dp — // (a,p)f(p)p(t, a,p)dadp

-/ (f(p’) — J ) (') P2 (p) ML (1 )
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Rewritting the second member as follows, we have that
[ (46 = 1)1 (. a8V P (9IM 1 )
P.p’
_ el pin Ue(lp = p)Gs_(p")dp" Pi_(p) ,
= [, e U0 = 10) i e e M e
Ce [, ¥ (lqg - pl) (g — p)GS_(q)dq P<_(p)
_ t q s
- /p VI Jv<(lg - pl)Gs_(q)dg Ce

Ce W _ _ tag—n)d € €
=/ 'Vp) S (|;\pf()||i1(q—pll))c)lq(q ) qpségp)Mj(up)vGG{* (p)dp+o(1)

M (t,p)dp + o(1)

— [ VI pCHE) R (1og(1 - B )dp+ o(1).

Since, MZ(t,p) is bounded C([0,T], H'(Space)), we have that log(l —
R,) —Distribution 150(1 — R) and by Banach Aologlu in L? (and identifying the
limit)

Vlog(l — R.) —*~weak L* ¢ ]og(1 — R). Now, by lemmas 5.2 and 5.3, we have that
Vf(p)ML(t,p)Ch(p)Re — L Vf(p)M'(t,p)Ch(p)R and so (there exists H €
C([0,7], L?), the limit of [[ B(a,p)f(p)p*(t,a,p)dadp as e — 0)

aat/pf(p)Ml(t,p)dp//f(p)H(tvp)dp

— [ Vi epChE R (los1 ~ B) do

Therefore the limit is C([0,7], H') and is a weak solution to

O M1 (t,p) + div(01* (1. p)Ch(p)RY (105(1 ~ B)))

with M*(0,p) = [ po(a,p)da. m|

H,

5.3. Proof of existence and uniqueness of solution to (1.10)bis

Lemma 5.5. Let T > 0, p© solution to (1.7) and assume that (2.4) is satisfied then
we can extract a convergent subsequence of (p©)e in L?([0,T] x Space x Age).

Proof. Differentiate (1.7) with respect to a leads to

(ot 5a)3a" ~ b 9a”
Pla=0 = 2 [ B(a,p)p*(t,a,p)da, pi_o = pf.

Therefore, we have that

o 9.0 e (p,dp) 0 . AN
{ . 6 /PQW)M— (.0, p")dp’ + P5(p) 5 p(t,a,p) =0,

o 0 B
4 € <
(5't+5'a)/|8ap ldp <0,
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and for all ¢,a and €, we find that

d B) B
€ < —p° =
8t//|8ap Idpda_/laap |(a = 0)dp

Now, using the intermediate equation, we find that

0 € _ _ 9 €
3P (a=0)= 2/B(a,p)atp (t,a,p)da

II¢ (p'. d
s [ P;<p'>°°(§];”) [ Blas (oo 2P 0) [ Blap) (..o

and so, we have that

0 . N
%P (a=0)=
a go I7d € € €
—2 [ Blangor+ [ o) = )y~ P (109
€ (1 Héo(plvdp) /N e / / € €
+2 Poo(p )T B(Cl7p )p (t7a7p )dadp _2P00(p) B(a7p)p (t7aap)daa
0

€ _ — 52
2 (a=0)= / o B(a, p)da

—2 [ B | Pet) T o)t — P )

€ Hgo p/’d € € €
+2/Poo(p/)(dpp)/B(a=p/)p (taaap/)da’dp/_Poo(p)/B(aap)p (taaup)daa

and finally,
O oy 9
5o a=0) =2 [ 5 Bla.p)da

—2 [ ) B [ (Bap) - o) 10,0 o

Therefore, using the same computation as lemma 5.2, we have that
9
H%/} (a = O)HLQ(Space) < 8||B||W1v°°)(1 + )‘?\/I) Slip ||Mel||C'([0,T],H1(SpaCE)

with Aps > 0 the sup (with respect of €) of the maximum of the eigenvalues of the
t

definite positive matrix [ 22=W¢(2|p_[)2-£=dp_. And so, using the same computa-

tion as lemma 5.2, we have that

p¢ € C([0,T), H' (Age x Space).

Therefore, by the (Lions-Aubin) result (see 14), we can extract a convergent sub-
sequence of (p¢)c in L%([0,7] x (Space)). O
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6. Conclusion

In this paper, we prove the convergence of a stochastic process, which represent the
evolution of a cell population, as its population size goes to infinity and its cell size
converges to zero. A way to understand the result is to imagine that we observe the
evolution of the cell population at a certain distance (depending of the number of
cells). If the distance is fixed (i.e. a fixed cell size), then when the number of cells
goes to infinity, the whole space is filled by cells (we are too close) and we can only
observe Zt]V Le — Cst everywhere. If the distance is too far with respect to the size
population, i.e. cells are too small, we observe a concentrated mass on the boundary
of the oocyte (we are too far). To observe the cell population evolution we have to
be, neither too close nor too far, which explains the balance between € (cell size,
or observation distance to the follicle) and M (cell population size). The proof is
robust to the change of the birth rate B and cell displacement rate (function R),
as long as there are smooth and bounded. The next step is to study the dynamics
of the final equation (1.10) and make the link with the partial differential equation
of the follicle evolution given in 19, 6, 7.
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7. Annex

7.1. Regular approrimation of Xcs .
We introduce a regu-
lar approximation of the characteristic function X[o qx[0,x/N]x[0,27/N] (see fig. 4).
Let n €]0,1[ and

L (1,0,6) € RS o W)W (005" (0), (7.1
a C'™ positive function such that U" < 1, such that

(qjs-)‘[ne,e(lfn)] =1, \I’fﬂ|[fne,e(1+77)]c =0, (72)

(W)l (g zon) = 1, (U5)] 22 5y =0, Wg(0+7) = W5(6), V6, (7.3)

N°®* N

(\II;)|[—W+%,—#+2"T7"] = 17 (\II;)|[—7’I’+$7T(—%] = 07 \Ilfb((b—’_ 27T> = \IJZ&((ZS)? V(ba

(7.4)
and satisfying the unity partition formulae
Z Ui x(r,0,0) =1, Y(r,0,¢) € [1 4 ne, 00[x[0, 7] X [—7,7].
i3,k
with W7 ., a regular approximation of the characteristic function x ¢ i
e c . J k
V(1 0:0) = W((r = 1) —ie,0 = .6 — ). (7.5)

Fig. 4. Regularization of characteristic function x. Using the convolution and Gaussian function
it is easy to compute a regular approximation of x which satisfies.
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7.2. Proof of proposition 2.1 : Existence of the stochastic process
zMe

This process can be construct step by step (see 3, 15, 4, 25, 17), the only point is
to prove global bounds

M,e
NO

NM,e
0 < E( i -0

< Mey <
) < B(sup N2) < B(=2-

s<t

Yet/M < oo, (7.6)

NAI’E .
0<7r0(0) < E(supro(s)) < ro(O)ee%E( e/
s<t

< o0, (7.7)

where NM:¢ = (ZM:€ 1), Using (4.2), in the particular case f = 1, we have that
(using (1.4), we have B%f_ <1< o0)

1
N = // 12M(da, dp) = —Ng"*
Ry xSpace M
1t ;
+ MA A1n<N3£’E |:1]'0§®<B£/{‘Si:| Q(dS, (dn)a d(—)v Hi\/ﬁ (p7 dp/))

Therefore, for ¢ < 7a"° (the stopping time 74" is defined in (4.1)) and NtM’E =

E(supsgmin(m%@) NM-€) we have that
NM,e i NM,e t 1 i
E(=2 )< N < B(— —N;"d
( M ) — t = ( M ) +/O M E 8,

which implies (using Gronwall inequality on the right side) that

N} N
M M

E(=2—) < N, < B(=2—)er

and so, we find that

P(inf 732 8) = P( 2 1) = P( sup  NM<>N)
= sSmin(t,TJI\\j/I’E)
NOI\/I,e N . M
< E( M )e™M /N, P(th Ty =o00)=1.
— 00

Using Fatou lemma, we find that

E( lim sup NMey)
N—oo sgmin(t,rjl\\,/[’é)

JVO]V[’6 t

= E(lim inf sup NM)) <lim inf NtM’E < E( Jed
N—o0

N=oo sgmin(t,’rlj\\]/l’e)

M e
NO

and finally E(sup,o, NM*<) < BE(=%; Jerr. Similarly, we have (7.7). Let (Tj)x
the sequences of successive jumps of the ZM:€ process, then, lim, T}, = oo, a.e.
Indeed, let Uy C £, such that limyg Tk (w) < M for w € Uy, then necessarily
limy, s 0o N%’E(w) < oo (otherwise 74¢ < M/2 for N large enough, which is with
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null probability) and so, for all w € Uy, we can construct the time sequence (Tj (w))x
as a subsequence of a Poisson point process of intensity (1 + C/e?) Ny, (using (1.4)
and (1.5) we have that 1+ C/e? < oo) where No, = limy_,o, N7y, (w) which is a.e.
unbounded. Moreover, we have for all ¢ > 0, F and f belongs to W1 the in-
finitesimal generator of the Markovian process (thv I’e)tzo issued from Zéw “ is given
by

€ 8 € / € 8 €
LRAZ™) = GEPUL 2 oo = FULZYD [ 2 fla) 23" (dado)
+ X Space

Me 2 1 M, e
+ (//]RJrXSpace {(F<<f7 Zy %) + Mf(&p) - Mf(a,p)) — F({f, Z)"))B(0, a)

HEWL 2 43 fap!) = 7 Fasp)) = F(US, Z80) PETTa(psdp)| Z30 (da ).
(7.8)

The infinitesimal generator of the Markovian process (rg[’é(t))tzo issued from rq is
given by

LROY“(0)) = SE(FCH0)lemo = F(ro) Y w(li = 1)) (W55 Z85). (79)

.3,k

Indeed, let t < 7']1\\,/1’€ with T]I\\//I"e =inf{s >0, NM:<€ > N}, then using lemma 4.2,

we have that

M,E)

min(t, 7y
B( [
0

E(F( / / )z (da.dp)) ~ E(F( / / £(a,p) Zo(da, dp)))

R4 X Space

! M e 0 M,e _
P2 [ a2, ) =

~ [& /Omina,fgf,e) Jtucnse (P05 2+ 5550.500(5)

— (AN (5), XM (50)) = F((for 2D gz ppes

(RS Z0) + 3 A (5=),0) = 2 FAN (), XM (5-)) = F(Uf, 2)
loco B <pr_(x,(o )| @(ds, (dn), O, 1 (p,dp'))) |,

which can be rewritten (for simplicity) as

B[ 0 2y ey )

— E(F( / / _ fap)Zo(da.dp))) + BV (mint. 7). 2))
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with

v.2)= [ Przt) [ ez dadnd

K 2 1
LS e [P 2045 6500 509~ 20) Bl

(B (.2 LT TGO, g1 7.0)) e ) (p. )| 22 (da ).

with B(p,a) = 1 — e~ /2IPll2) " We have the following bound

|9 (min(t, 7y), Z)| < TNHFHWLOO(1+Hf||w1»oo(1+sup/|p'—p|P€(p)Hs—(p7 dp'))).
p

M, e

Since ZM “is cad and 7y ¢ > 0, we have that

8 . € € a
—\I/(mm(t,T]]\\,/[’ ), Z)|t=0 = F’((fO,Zéw’ ))// (a, p)Z “(da, dp)
ot R+X5paceaa

2 1
+(//R+Xspm (F(F. Z0) + 2 £(0,0.p) = == £(0,a,p)) = F((£. Z3")) B(0.a)

(g, 2oy HO PN TOGY) pi g 780 P g o, )] 28 (o ),

which is dominated by TNR/[ (L4 || fllwr.= (14 C/e)) < co. Therefore by
derivation under domination, we find (7.8).
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