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Abstract
In this work, we model the time and age evolution of a partially clonal population, i.e.,
able to reproduce sexually and asexually, in an environment with unlimited resources.
The population is divided in two subpopulations, sexual and asexual, whose densities
follow a coupled system of McKendrick–Von Foerster equations of evolution. The
transition from one subpopulation to another is driven by transition probabilities for
newborns to be sexual (resp. asexual)when their parent(s) is(are) in the asexual (sexual)
subpopulation. We study the optimization of the growth rate of the whole population,
with respect to these transition probabilities. We prove, using a result of the variation
of the first eigenvalue (Malthusian growth rate) for this problem, that the maximal
eigenvalue is reached when the probabilities are exactly (in time) equal to zero or
one. Moreover, depending on birth and death rates of both subpopulations (asexual
and sexual), we show that the maximal growth rate is reached when the population
newborns switch (completely) from sexual to asexual and then from asexual to sexual
(periodically in time) or when a subpopulation disappears.

Keywords Bang–Bang control · Growth rate · Eigenvalue · McKendrick equation

Mathematics Subject Classification 65N25 · 35Q93 · 49J30

1 Introduction

Species that reproduce asexually (such as bacteria) or by parthenogenesis (female able
to produce child without male and fertilization) produce clones at each generation,
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sexual beings produce halfmales and half females.At the specie scale, parthenogenesis
is muchmore prolific and cost free (no sexual disease, no time lost in partner selection)
than the sexual reproduction, and at the individual scale, this is the most selfish way
to reproduce (female do not have to share their genetic material) and so costless than
the sexual reproduction ([1] Ch. 1). Nevertheless, at the specie scale, variability of
the genome of a specie and ability to find a solution when environmental changes
arise (new diseases, new predators, climate, etc.,) give a long time advantage to sexual
reproduction. The dynamic balance between the long time evolutive advantage of
sexual function and its reproductive cost in the short time is an enigma of sexuality
[1,2].

Aphids are unusual organisms (partially clonal) which can both reproduce sexually
and by parthenogenesis, which is determined by environmental conditions [3–6]. In
[7], authors consider a time evolution model (using ODE) of aphids population, and
they study the nonlinear dynamics but do not study the optimal growth rate and their
optimizationwith respect to the fecundation function in an environmentwith unlimited
resources, i.e., when birth and death rates do not depend on the size of the population.
In this case, the population grows exponentially in time and the problem of optimal
growth rate becomes an eigenvalue optimization [8,9].

In this work, we first rewrite the model given in [7] to introduce transition proba-
bilities for a parthenogenetic individual to give birth to a sexual one and for a sexual
individual to give birth to a parthenogenetic one. Moreover, we add an age structure,
using the partial differential equation of evolution introduced by McKendrick–Von
Foerster [9], in Sect. 2. The population is divided in two subpopulations : the asexual
subpopulation of density n A(t, a) at time t and age a and the sexual subpopulation of
density nS(t, a) at time t and age a. In Sect. 3, we give first results on the dynamics of
(n A, nS)(t, a) and we show that the dynamic is time exponential and is driven by an
eigenvalue/eigenfunction. Then, in Sect. 4, we study the optimization of this eigen-
value (to improve the growth of the population) with respect to the probabilities to
switch from a way to produce offsprings to another (which could be a measure to the
ability of a population to invade (or replace) a less fitted population, i.e., with a smaller
Malthusian growth rate, see [10–15]). In Sect. 5, we give an example of application
to this work when the balance between death rates and birth rates changes and makes
the asexual subpopulation have a better growth rate, i.e., best fitted than an alternation
of sexual to asexual. We illustrate the work by giving numerical simulation in Sect. 6.
Finally, in Sect. 7, we discuss and conclude this work.

2 Model

In [7], a population u splits into asexual (i.e. born by parthenogenesis) : x and sexual
(i.e. born from females fertilized by males) y. Therefore, there are y/2 males and
x + y/2 females, and so, the excess of females per male is ψ := 2x/y. We notice that
authors assume that the ratio of male offsprings over the female offsprings on the sex-
ual population is 1:1 which is the case of most species [16]. In [16,17], Fisher develop
an evolutionary model (mathematically formalized by [18]) that explains that, this
approximatively 1:1, sex ratio of offsprings is an evolutionarily stable strategy. There-
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fore, we do not modify this point in this work. Then, authors introduce a fecundation
function, h : ψ �→ 1+ g tanh(ψ/g) where g = the limit number of females fertilized
per male−11. The dynamics of population x and y are driven by the following system

x ′(t) = −β(u)x + α(u)[x + y/2 − h(ψ)y/2],
y′(t) = −β(u)y + α(u)[h(ψ)y/2], (1)

where β is the death rate, α is the birth rate and u(t) = x(t) + y(t) is the total
population. No sexual activity means that h = 0 and so, we have,

x ′(t) = −β(u)x + α(u)[x + y/2],
y′(t) = −β(u)y.

Now, let q = tanh(ψ/g)
ψ/g ∈ [0, 1] and p = h − ψq ∈ [0, 1], then we can rewrite the

system (1) as follows

x ′(t) = −β(u)x + α(u)[(1 − q)x + (1 − p)y/2],
y′(t) = −β(u)y + α(u)[qx + py/2]. (2)

Therefore, we see that q is the probability for a parthenogenetic individual to give
birth to a sexual one and p is the probability for a sexual individual to give birth to
a sexual one. And so, the limit case p = q = 0 corresponds to the case where there
is no sexual activity. In an environment with unlimited resources, the birth rate α and
the death rate β do not depend on the size of the population and

(
x
y

)′
(t) = (−β I + αM)

(
x
y

)
(t), (3)

with

M =
(
1 − q (1 − p)/2

q p/2

)
.

What would be the optimal growth rate of the population with respect to the proba-
bilities (p, q) (chosen in [0, 1]2)? Since (p, q) ∈ [0, 1]2, solutions to the linear system
(3) are given by

(
x
y

)
(t) = e(−β I+αM)t

(
x
y

)
(0),

and the growth rate is given by the maximal eigenvalue of (−β I + αM) which is
αλmax(p, q) − β where λmax(p, q) is the maximal eigenvalue of M : λmax(p, q) =
1−q+p/2+

√
(1−q+p/2)2−2(p−q)

2 . Since we have

1 For aphids around 7 [7].
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Fig. 1 Left : Survival of species depending on the birth rate α and the death rate β. Right: (p, q) �→
λmax(p, q)

∂

∂q
λmax = −1

2
+ (q − p/2)√

(p/2 − q)2 + (1 − p)

and ∂
∂ p λmax = − 1

2 [ ∂
∂q λmax] − 1

2
√

(p/2−q)2+(1−p)
, the maximum of λmax is reached

on the boundary of [0, 1]2. We notice that

λmax(1, q) = max(1 − q, 1/2), max
q

(λmax(1, q)) = λmax(1, 0) = 1,

λmax(p, 1) = max(1, (1 − p)/2), max
p

(
p/2 + √

(p/2)2 − 2(p − 1)

2

)
= √

2/2,

and λmax(0, q) = λmax(0, 0) = 1. For all p′ ∈ [0, 1], we have,

λmax(p, 0) = max(1, p/2), max
p

(λmax(p, 0)) = λmax(p′, 0) = 1.

Therefore, the maximum of the eigenvalue (growth rate) λmax is reached as q = 0, i.e.,
when parthenogenetic gives only parthenogenetic whatever do the sexual population.
Then, we have

y(t) = y(0)e(α p/2−β)t , and x(t) = (x(0) + o(1))e(α−β)t ,

and so, the growth of a population which reproduces only by parthenogenesis is larger
than every other choices of reproduction function. Moreover, we observe that the
parthenogenesis/sexual population survival depends on the value of α and β (see
Fig. 1). In particular, we notice that the maximum of the larger eigenvalue is reached
when p = 0 and q = 0 (so h = 0) which means that there is no more sex.
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The same question, in the case where α, β, p, q are T −periodic functionsmodeling
seasonal variations of the parameters, since we have

max Sp((−β(t)I + α(t)M)) = −β(t) + α(t),

for all t , gives the same answer : The best way to reproduce is given by q = 0,

i.e., y(t) = y(0)e(
∫ T
0 (α p/2−β)(s)t/T and x(t) = (x(0) + o(1))e(

∫ T
0 (α−β)(s)t/T . Conse-

quently, we have again Fig. 1 with
∫ T
0 αds/T (resp.

∫ T
0 βds/T ) instead of α (resp. β).

To include specificities of parthenogenetic and sexual subpopulations in themodel, we
have to deal with the differences of birth and death rates of both subpopulations. We
add an age structure in the model (McKendrick–Von Foerster model [9–13]) for both
subpopulations, at time t and age x ; the density of asexual subpopulation n A(t, x) and
the density of the sexual population nS(t, x) have their time evolution driven by the
system of transport equations (with loss due to death term) :

∂

∂t
n A(t, x) + ∂

∂x
n A(t, x) + d(t)n A(t, x) = 0,

∂

∂t
nS(t, x) + ∂

∂x
nS(t, x) + d(t)χx>x0nS(t, x) = 0,

(4)

where d(t) is the death rate (due to environment and time periodic due to seasonal
variation). The only difference for death for both subpopulations is during the first
stage of development, and we consider that for age x less than x0, a sexual individual
is an egg which has a null death rate and the same death rate for individuals (not in an
egg). Newborns appear at age 0 which leads to the following boundary condition,

n A(t, x = 0) =
∫

x ′≥0
pS→A(t)BS(x ′)nS(t, x ′) dx ′

+
∫

x ′≥0
pA→A(t)BA(x ′)n A(t, x ′) dx ′,

nS(t, x = 0) =
∫

x ′≥0
pS→S(t)BS(x ′)nS(t, x ′) dx ′

+
∫

x ′≥0
pA→S(t)BA(x ′)n A(t, x ′) dx ′.

(5)

with

pA→A(t) + pA→S(t) = pS→A(t) + pS→S(t) = 1, ∀t .

Parthenogenetic female can give birth, with a birth rate depending on the age x of the
female : BA(x) to parthenogenetic female, with probability pA→A(t) at time t , and to
sexual female with probability pA→S(t). Respectively, sexual female can give birth,
with a rate BS(x) (which is < BA(x)) depending on the age x (in particular for eggs
BS(x) = 0 for x ∈ [0, x0]), with probability pS→A(t) at time t to a parthenogenetic

123



Journal of Optimization Theory and Applications

female and with probability pS→S(t) to sexual female (5). Since parthenogenesis is
much more prolific and cost free than the sexual reproduction, we assume that

BA(x ′) > BS(x ′). (6)

We set that for T > 0 (here T = 365 days)

t �→ d(t) ∈ L∞(R) T − periodic, (7)

x �→ BA(x), (resp BS(x)) ∈ L∞(R) and vanishing for x large enough. (8)

Remark 2.1 We consider an environment with unlimited resources. This means that
we assume that the death rate and the birth rate do not depend on the population itself
(only on time for death rate : season and more precisely for aphids: temperature and
only on age for birth rates (see [19] p 17)). Therefore, we expect that the population
has an exponential growth or decay [8,9].

We are expecting that the best way (to give an optimal growth rate) is to switch from
sexual to asexualwhen it is profitable to do so (and so a bang–bangprinciple). In Sect. 3,
we study the dynamics of (n A, nS) solution to (4)–(5). Then, in Sect. 4, we prove that
the optimal growth rate of (n A, nS) with respect to (pS→A, pA→A) ∈ [0, 1]R+ is
reached for pS→A, pA→A ∈ {0, 1}R+ . We give a theoretical result, in Sect. 5, showing
that under some conditions on the death rate, the sexual subpopulation could disappear.
We illustrate this work by a numerical example in Sect. 6, and we conclude in Sect. 7.

3 First Mathematical Results

We have the following results on the dynamic (and more precisely on the long time
behavior) of this system of partial differential equations. Proposition 3.1 cares about
the long time behavior of the solution, and we prove that it is characterized by a time
exponential growth rate (positive—growth, negative—decay) which corresponds to
the larger (in real part) eigenvalue, whereas Proposition 3.2 deals with the variation of
the eigenvalue with respect to the probability transition t �→ (pA→A(t), pS→S(t)).

Proposition 3.1 Under Assumptions (7)–(8) and for all initial data n A(0, .), nS(0, .) ∈
L1(R+,R+), there exists an unique solution to (4)–(5):

(n A, nS) ∈ L∞([0, T ], (L1(R+,R+))2).

Moreover, we have (n A(t, x), nS(t, x)) behaves as Cst eλt (NA(t, x), NS(t, x)),

(as ∼t→∞) where Cst ≥ 0, λ ∈ R and (NA(t, x), NS(t, x)) are T − periodic
L∞([0, T ], (L1(R+,R+))2) solutions to the following eigenproblem
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(
∂

∂t
+ ∂

∂x
+

(
d(t) 0
0 d(t)χx>x0

))(
NA(t, x)

NS(t, x)

)
+ λ

(
NA(t, x)

NS(t, x)

)
= 0,

(
NA(t, 0)
NS(t, 0)

)
=

∫
x ′≥0

(
pA→A(t)BA(x ′) pS→A(t)BS(x ′)
pA→S(t)BA(x ′) pS→S(t)BS(x ′)

)
(

NA(t, x ′)
NS(t, x ′)

)
dx ′.

(9)

Proof The proof of existence and uniqueness of (n A, nS) solution to (4)–(5) (trans-
port equation with a nonlocal boundary condition) is similar to the proves given in
[20] (chapter IV, using semigroup theory), [21] and [9] (chapter III, using Banach–
Picard fixed point theorem and bound given by an energymethods: the general relative
entropy [8] and [9] chapter III.3 and III.9.5 for the periodic case). The existence of
the eigenelements λ, (NA(t, x), NS(t, x)) is also a generalization of the Floquet result
[22], and the proof is similar to [8] p 1256–1259. The asymptotic behavior is a direct
application of the general relative entropy ([8] pp 1256–1259 and [9,12,13]) which
gives a general form of energy : let H any positive regular convex function, and define
the entropy by

Ht :=
[∫

[0,∞[
H

(
n A(t, a)e−λt

NA(t, a)

)
NA(t, a)ΦA(t, a)da

+
∫

[0,∞[
H

(
nS(t, a)e−λt

NS(t, a)

)
NS(t, a)ΦS(t, a)da

]
,

where (ΦA, ΦS) is solution to a dual eigenproblem (10) and then, we have

d

dt
Ht = ΦA(t, 0)NA(t, 0)

[
H

(∫
n A(t, a)e−λt

NA(t, a)
dν1(a) +

∫
nS(t, a)e−λt

NS(t, a)
dν2(a)

)

−
∫

H

(
n A(t, a)e−λt

NA(t, a)

)
dν1(a) −

∫
H

(
nS(t, a)e−λt

NS(t, a)

)
dν2(a)

]

+ΦS(t, 0)NS(t, 0)

[
H

(∫
n A(t, a)e−λt

NA(t, a)
dμ1(a)+

∫
nS(t, a)e−λt

NS(t, a)
dμ2(a)

)

−
∫

H

(
n A(t, a)e−λt

NA(t, a)

)
dμ1(a) −

∫
H

(
nS(t, a)e−λt

NS(t, a)

)
dμ2(a)

]
,

with dν1, dν2, dμ1 and dμ2 positive measures satisfying dν1 + dν2 and dμ1 + dμ2,
are probability measures. Therefore, using Jensen inequality, we find that d

dt
Ht ≤

0 (decay of entropy). This decay result implies uniform bound of n A(t,a)e−λt

NA(t,a)
(resp.

nS(t,a)e−λt

NS(t,a)
) and convergence (in L p norm, for H : z �→ |z|p) to a constant (due to the

equality case in the Jensen inequality) [8].

The next result allows us to differentiate the eigenvalue λ (of Proposition 3.1) with
respect to parameters of the model.
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Proposition 3.2 There exists a positive and T − periodic solution Φ := (ΦA ΦS ) ∈
L∞([0, T ], (L∞(R+,R+))2) to the dual eigenproblem (of (9))

L∗Φ = λΦ, (10)

which satisfies for all t > 0

∫
Φ(t, x)N (t, x)dx = 1, (11)

where N (t, x) =
(

NA(t, x)

NS(t, x)

)
, and

(L∗Φ)(t, x) := ∂

∂t
Φ(t, x) + ∂

∂x
Φ(t, x) − Φ(t, x)

(
d(t) 0
0 d(t)χx>x0

)

+Φ(t, 0)

(
pA→A(t)BA(x) pS→A(t)BS(x)

pA→S(t)BA(x) pS→S(t)BS(x)

)
.

Moreover, if we assume that pA→A(t) = ∑
j pA

j χI j (t), pS→S(t) = ∑
j pS

j χI j (t),
where (IJ ) j is a partition of [0, T ] and (p j ) j is a sequence of real numbers (in [0, 1])

∂

∂ pA
j

λ =
∫∫

R+×[0,T ]
(ΦA(t, 0) − ΦS(t, 0))BA(x)NA(t, x)χI j (t)

dxdt

T
,

∂

∂ pS
j

λ = −
∫∫

R+×[0,T ]
(ΦA(t, 0) − ΦS(t, 0))BS(x)NS(t, x)χI j (t)

dxdt

T
.

Proof The existence of the eigenelements λ, (ΦA(t, x),ΦS(t, x)) is similar to
[8] p 1256–1259 (see also [8,9]). Now, for the differentiation result, we follow
the same proof as [10,11] : we have by integration of (10) and condition (11)∫ L∗Φ(t, x)N (t, x)dx = λ

∫
Φ(t, x)N (t, x)dx = λ, and so, by differentiating with

respect to any parameter u we find that

∂

∂u
λ =

∫
∂

∂u

[
L∗Φ(t, x)N (t, x)

]
dx =

∫ [(
∂

∂u
L∗

)
Φ(t, x)N (t, x)

]
dx

+
∫ [

L∗ ∂

∂u
Φ(t, x)N (t, x)

]
dx +

∫ [
L∗Φ(t, x)

∂

∂u
N (t, x)

]
dx .

Since we have
∫ [

L∗Φ(t, x) ∂
∂u N (t, x)

]
dx = λ

∫ [
Φ(t, x) ∂

∂u N (t, x)
]
dx, and

∫ [
L∗ ∂

∂u
Φ(t, x)N (t, x)

]
dx =

∫ [ ∂

∂u
Φ(t, x)LN (t, x)

]
dx

= λ

∫ [ ∂

∂u
Φ(t, x)N (t, x)

]
dx,
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we obtain
∫ [

L∗ ∂
∂u ΦN

]
dx + ∫ [

L∗Φ ∂
∂u N

]
dx = λ ∂

∂u

∫
ΦNdx = 0. Therefore, we

have

∂

∂ pA
j

λ =
∫∫

∂

∂ pA
j

L∗Φ(t, x)N (t, x)
dxdt

T
=

∫∫
Φ(t, 0)BA(x)

(
1 0
−1 0

)
N (t, x)χI j

dxdt

T
=

∫∫
(ΦA(t, 0)

−ΦS(t, 0))BA(x)NA(t, x)χI j

dxdt

T
,

and the same calculus holds for ∂

∂ pS
j
λ. 
�

Moreover, the solution to the dual eigenproblem (10)–(11) is regular with respect
to age and time.

Lemma 3.1 Let
(
ΦA ΦS

)
solution to the dual eigenproblem (10)–(11) then Ψ (t) :=

Φ(t, 0) = (
ΦA(t, 0) ΦS(t, 0)

)
, satisfies Ψ (t) = ∫ ∞

0 Ψ (t + y)dμt
λ(y), with

dμt
λ(y) := B(t, y)e− ∫ y

0 D(t,z)dz where

D(t, x) =
(

d(t + x) + λ 0
0 d(t + x)χx>x0 + λ

)
,

B(t, x) =
(

pA→A(t + x)BA(x) pS→A(t + x)BS(x)

pA→S(t + x)BA(x) pS→S(t + x)BS(x)

)
.

Finally, we have Ψ ∈ C0(R+) and Ψ (t) = lim
n→∞

∫∫∫
R

n+
∏n

i=1 dμ
t+∑i−1

j=1 x j

λ (xi ). 
�

Proof We have, for all t ,

− d

dx
Φ(t + x, x) + Φ(t + x, x)D(t, x) − Φ(t + x, 0)B(t, x) = 0.

Therefore, we find

− d

dx

(
Φ(t + x, x)e− ∫ x

0 D(t,y)dy
)

− [
Φ(t + x, 0)B(t, x)e− ∫ x

0 D(t,y)dy] = 0.

Thus, integrating with respect to x , we find

Φ(t + x, x) =
∫ ∞

x
Φ(t + y, 0)B(t, y)e− ∫ y

x B(t,z)dzdy.

Applying in x = 0, we finally obtain Ψ (t) = ∫ ∞
0 Ψ (t + y)dμt

λ(y), and regularity
comes directly from this integral equation (convolution form). 
�
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4 Optimization and Survival Analysis

In this part, we focus on the optimization of the eigenvalue with respect to the proba-
bility transitions t �→ (pA→A(t), pS→S(t)), i.e. to find

λmax := sup
(pA→A,pS→S)∈[0,1]R+

λ(pA→A, pS→S),

and more generally to evaluate (pA→A, pS→S) �→ λ(pA→A, pS→S). Indeed, the
eigenvalue λ gives the growth rate of the population, and so, that can be used as a
fitness characterization of the population [10–15]; the larger is λ, the more invasive is
the population, and a negative λ implies the extinction of the population. Therefore,
questions are :

1. Do switching, i.e. bang–bang [23], form asexual to sexual gives the best exponen-
tial growth rate?

λmax := sup
pA→A,pS→S

λ(pA→A, pS→S) = λ(pswi tch
A→A , pswi tch

S→S )?

2. What happens to population if there is nomore switch, i.e., when pA→A and pS→S

are constant functions equal to zero or one?

(a) λmax := λ(0, 1), which means that the parthenogenetic subpopulation disap-
pears,

(b) λmax := λ(1, 0) which means that the sexual subpopulation disappears, or
(c) λmax := λ(1, 1) which means that subpopulations are no more mixed and so

there are two separated populations.

Theorem 4.1 (Sex Bang–Bang Optimization) The maximum of the eigenvalue is
reached for (almost) a couple of probabilities satisfying

(pA→A(t), pS→S)(t) ∈ {0, 1}, ∀t ∈ [0, T ].

More precisely, there exists (a j ) j and (b j ) j in [0, T ] s.t.

pA→A(t) =
∑

j

χ[a j ,b j ](t), pS→S(t) = 1 −
∑

j

χ[a j ,b j ](t),

with Φ A(a j , 0) = ΦS(a j , 0), Φ A(b j , 0) = ΦS(b j , 0), where (Φ A, ΦS) is solution
to the dual eigenproblem (10)–(11). 
�

The proof is subdivided in two parts. Using the same argument as in Proposition 3.2
(more general [10,11]), we prove that we can construct a sequence that increases the
eigenvalue. Then, we prove that its limit is the “best one”.
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Increasing sequence Let, for all τ ≥ 0,

pτ
A→A(t) := e

∫ τ
0 [(Φτ ′

A (t,0)−Φτ ′
S (t,0))]dτ ′

1 + e
∫ τ
0 [(Φτ ′

A (t,0)−Φτ ′
S (t,0))]dτ ′ ,

pτ
S→S(t) := e− ∫ τ

0 [(Φτ ′
A (t,0)−Φτ ′

S (t,0))]dτ ′

1 + e− ∫ τ
0 [(Φτ ′

A (t,0)−Φτ ′
S (t,0))]dτ ′ ,

with Φτ (t, x) = (
Φτ

A(t, x) Φτ
S (t, x)

)
solution to the dual eigenproblem

L∗Φτ = λτΦτ where

L∗ (
Φτ

A Φτ
S

)
(t, x) = ∂

∂t

(
Φτ

A(t, x) Φτ
S (t, x)

) + ∂

∂x

(
Φτ

A(t, x) Φτ
S (t, x)

)

− (
Φτ

A(t, x) Φτ
S (t, x)

) (
d(t) 0
0 d(t)χx>x0

)

+ (
Φτ

A(t, 0) Φτ
S (t, 0)

) (
pτ

A→A(t)BA(x) pτ
S→A(t)BS(x)

pτ
A→S(t)BA(x) pτ

S→S(t)BS(x)

)
.

Using the same argument as in Proposition 3.2, we have

d

dτ
λτ =

∫∫
pτ

A→A(t)(1 − pτ
A→A(t))(Φτ

A(t, 0) − Φτ
S (t, 0))2BA(x)NA(t, x)dxdt

+
∫∫

pτ
S→S(t)(1 − pτ

S→S(t))(Φ
τ
A(t, 0) − Φτ

S (t, 0))2BS(x)NS(t, x)dxdt

≥ 0.

Since (pτ
A→A, pτ

S→S, Φτ
A, Φτ

S ) are uniformly bounded, using Banach–Alaoglu theo-
rem, we can extract a weak* convergent subsequence as τ → ∞. Therefore, at the
limit, we have

0 =
∫∫

p∞
A→A(t)(1 − p∞

A→A(t))(Φ∞
A (t, 0) − Φ∞

S (t, 0))2BA(x)NA(t, x)dxdt

+
∫∫

p∞
S→S(t)(1 − p∞

S→S(t))(Φ∞
A (t, 0) − Φ∞

S (t, 0))2BS(x)NS(t, x)dxdt .

Finally, we have

– p∞
A→A,(resp. p∞

S→S) belongs {0, 1},
or

–
∫

BA(x)NA(t, x) = 0, (resp.
∫

BS(x)NS(t, x) = 0),
or

– Φ∞
A (t, 0) = Φ∞

S (t, 0).

The best Now, using Lemma 3.1, we have (Φ∞
A (t, 0),Φ∞

S (t, 0)) is continuous and
T - periodic; therefore, the set {t : Φ∞

A (t, 0) = Φ∞
S (t, 0)} = ∪ j I 0j is a countable
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union of intervals (the same holds for {t : Φ∞
A (t, 0) > Φ∞

S (t, 0)} = ∪ j I +
j and

{t : Φ∞
A (t, 0) < Φ∞

S (t, 0)} = ∪ j I −
j ). We have

p∞
A→A(t) =

∑
j

χI 0j
(t)p∞

A→A(t) +
∑

j

χI +
j
(t)p∞

A→A(t) +
∑

j

χI −
j
(t)p∞

A→A(t),

and the same for p∞
S→S(t). We notice that, for all piecewise constant functions, p∞,J

A→A

and p∞,J
A→A are defined as follows:

p∞,J
A→A(t) =

∑
j

χI 0j
(t)p0j +

∑
j

χI +
j
(t)p+

j +
∑

j

χI −
j
(t)p−

j ,

p∞,J
A→A(t) =

∑
j

χI 0j
(t)q0

j +
∑

j

χI +
j
(t)q+

j +
∑

j

χI −
j
(t)q−

j .

We have directly that ∂

∂ p0j
[L∗(Φ)] = ∂

∂ p0j
[λΦ], and so, we obtain that

(
∂

∂ p0j
L∗

)
(Φ) + L∗

(
∂

∂ p0j
Φ

)
=

(
∂

∂ p0j
λ

)
Φ +

(
∂

∂ p0j
Φ

)
λ.

Since we have ( ∂

∂ p0j
L∗)(Φ) = 0 and ( ∂

∂ p0j
λ) = 0, we find L∗( ∂

∂ p0j
Φ) = ( ∂

∂ p0j
λ)Φ.

Noticing that the first eigenvalue of L∗ has its eigenspace of dimension 1 (Perron–
Frobenius extension [9]), there exists a constant C so that ∂

∂ p0j
Φ = CΦ. This implies

that (Φ A(t, 0) − ΦS(t, 0)) = 0 for all p0j ∈ [0, 1]. We, thus, can choose p0j ∈ {0, 1}.
Since this result holds for all p∞,J

A→A, we can approximate p∞
A→A by a sequence of

(p∞,J
A→A)J and p∞

A→A(t) can be chosen in {0, 1} for all t .

End of proof To prove that Φ A(a j , 0) = ΦS(a j , 0), Φ A(b j , 0) = ΦS(b j , 0), when
pA→A(t) = ∑

j χ[a j ,b j ](t), pS→S(t) = 1−∑
j χ[a j ,b j ](t), it is sufficient to derivate

λ with respect to ai (resp. bi ). We find that

d

dai
λ = (ΦA(ai , 0) − ΦS(ai , 0))

∫
BA(x)NA(ai , x)dx .

Therefore, to be optimal, it needs to have (ΦA(ai , 0)−ΦS(ai , 0)) = 0 or no newborn
at time ai . The same holds for bi . When there is no newborn for asexual population,
we can choose pA→A = 1 without changing anything (and the same for pS→S when
there is no newborn for sexual population). Therefore, the only case where switches
appear are given by (ΦA(ai , 0) − ΦS(ai , 0)) = 0.

We show in Sects. 4.1 and 4.2 that assumption

∫
x≥0

BA(x)e−x
∫ T
0 d(s)/Tds < 1, (12)
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implies that a only parthenogenetic female population has a negative Malthusian
growth rate, i.e., extinguishes and assumption

∫
x ′>x0

BS(x ′)e− ∫ T
0 d(s)ds/T x ′

dx ′ max
t

e
∫ t+x0

t d(w)dw < 1, (13)

implies the extinction of the only sexual female population. Therefore, under Assump-
tions (12)–(13),we haveλ(1, 1) = max(λ(0, 1), λ(1, 0)) < 0.Nevertheless, it suffices
that the condition2

∫
x ′>x0

BS(x ′)e− ∫ T
T −x ′

0
d|s>x0ds/T x ′

dx ′

max
t

e
∫ t+x0

t d|w>x0dw

∫
x≥0

BA(x)e−x
∫ T −x ′

0
0 d|s>x0/Tdsdx > 1,

is satisfied, for almost a x ′
0 > x0, to find a, mixing way of reproducing, survival

strategy, i.e., we have λmax > 0. Therefore, we have the following inequality
λmax ≥ λ(pwinter switchA→A , pwinter switchS→S ) ≥ 0.

4.1 Only Parthenogenetic Female: No Sex

Assuming that
p∞

A→A = 1, p∞
S→S = 0, (14)

is satisfied. Then, after a living time of the individuals of the sexual population (since
there is no newborn), the sexual population (able to reproduce) vanishes. Therefore,
we only have to look for n A solution to the McKendrick–Von Foerster equation

∂

∂t
n A(t, x) + ∂

∂x
n A(t, x) + d(t)n A(t, x) = 0,

n A(t, x = 0) =
∫

x ′≥0
BA(x ′)n A(t, x ′) dx ′.

(15)

Using Proposition 3.2, to study the dynamics of n A solution to (15), it is sufficient
(see Lemma 4.1) to study the eigenproblem (9), which becomes under Assumption
(14)

∂

∂t
NA(t, x) + ∂

∂x
NA(t, x) + d(t)n A(t, x) = −λA NA(t, x),

NA(t, x = 0) =
∫

x ′≥0
BA(x ′)NA(t, x ′) dx ′.

(16)

and leads to a condition on λA :

1 =
∫

x≥0
BA(x)e

∫ x
0 (−λA−∫ T

0 d(s)ds/T )dx . (17)

2 For the survival (and more precisely the growth) of the asexual population during Spring to Autumn.
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We have then the following result on the survival of the parthenogenetic
population:

Proposition 4.1 Assuming that

∫
x≥0

BA(x)e−x
∫ T
0 d(s)/T ds < 1 (≥ 1). (18)

then λA < 0 (resp. λA ≥ 0), i.e., parthenogenetic population disappears (resp. sur-
vives) in long time with a Malthusian exponential growth rate : λA. 
�
Lemma 4.1 Solution (λA, NA) to the eigenproblem (16) is given by

NA(t, x) = e− ∫ t
0 (d(s)−∫ T

0 d(w)dw/T )dse
∫ x
0 (−λA−∫ T

0 d(s)ds/T )dx

where λA satisfies (17).

Proof We search a solution of the form NA(t, x) = f (t)g(x). Therefore, we have

f ′(t)/ f (t) + g′(x)/g(x) + (d(t) −
∫ T

0
d(s)ds) = −λA −

∫ T

0
d(s)ds,

g(0) =
∫

x ′≥0
BA(x ′)g(x ′) dx ′.

and so, we have f ′(t) = − f (t)(d(t) − ∫ T
0 d(s)ds/T ), g′(x) = g(x)(−λA −∫ T

0 d(s)ds/T ). Finally, the boundary condition implies that (17) is satisfied.

4.2 Only Sex: No Parthenogenesis

Assuming that
p∞

A→A = 0, p∞
S→S = 1, (19)

is satisfied. Then, after a living time of the individuals of the asexual population (since
there is no newborn), the asexual population vanishes. Therefore, we only have to look
for nS solution to the McKendrick–Von Foerster equation

∂

∂t
nS(t, x) + ∂

∂x
nS(t, x) + d(t)χx>x0nS(t, x) = 0,

nS(t, x = 0) =
∫

x ′≥0
BS(t, x ′)nS(t, x ′) dx ′

(20)

Using Proposition 3.2, to study the dynamics of nS solution to (20), it is sufficient
(see Lemma 4.1) to study the eigenproblem (9), which becomes under Assumption
(19)
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∂

∂t
NS(t, x) + ∂

∂x
NS(t, x) + d(t)χx>x0 NS(t, x) = −λS NS(t, x),

NS(t, x = 0) =
∫

x ′≥x0
BS(t, x ′)NS(t, x ′) dx ′

(21)

where NS(T , .) = NS(0, .).

Proposition 4.2 Assuming that

∫
x ′>x0

BS(x ′)e− ∫ T
0 d(s)ds/T x ′

dx ′ max
t

e
∫ t+x0

t d(w)dw < 1,

(resp
∫

x ′>x0
BS(x ′)e− ∫ T

0 d(s)ds/T x ′
dx ′ min

t
e
∫ t+x0

t d(w)dw > 1), (22)

then λS < 0 (resp. λS ≥ 0), i.e., sexual population disappears in long time (resp.
survive) with a Malthusian growth rate : λS.

Proof Here, the term d(t)χx>x0 leads to some difficulties. We write the problem on
[0, x0] and on [x0,∞]. We define

NS(t, x) =
{

N 0
S (t, x), x ∈ [0, x0],

N 1
S(t, x), x ∈ [x0,∞],

which satisfy

∂

∂t
N 0

S (t, x) + ∂

∂x
N 0

S (t, x) = −λS N 0
S (t, x), x ≤ x0,

∂

∂t
N 1

S(t, x) + ∂

∂x
N 1

S(t, x) + d(t)N 1
S(t, x) = −λS N 1

S(t, x), x ≥ x0,

N 1
S(t, x0) = N 0

S (t, x0), N 0
S (t, x = 0) =

∫
x ′≥x0

BS(t, x ′)N 1
S(t, x ′) dx ′.

We let
M1

S(t, x) := N 1
S(t, x)e

∫ t
0 (d(w)−∫ T

0 d(s)ds/T )dw. (23)

Then, we have

M1
S(t, x) =

∫
x ′≥x0

BS(x ′)M1
S(t − x, x ′) dx ′e

∫ t+x0−x
t−x (d(w)−∫ T

0 d(s)ds/T )dw

︸ ︷︷ ︸
:=J (t−x)

eλS x0e(−λS−∫ T
0 d(s)ds/T )(x−x0).

Now, using the boundary condition and Eq. (23) we find that J satisfies J (t) =∫
x ′≥x0

J (t − x ′)dμλS (x ′)U (t), where U (t) = e
∫ t+x0

t d(w)dw (independent of λS) and
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dμλS (x ′) = BS(x ′)e(−λS−∫ T
0 d(s)ds/T )x ′

dx ′. Consequently, assuming that (22) is sat-
isfied, J �= 0 and λS ≥ 0 (resp. λS ≤ 0), we find that

sup
t

J (t) < sup
t

J (t), (resp. inf
t

J (t) > inf
t

J (t)),

which is absurd, therefore, λS < 0 (resp. λS > 0). 
�

5 Environment Change

Since parthenogenesis is much more prolific and cost free (no sexual disease, no
time lost in partner selection) than sexual reproduction, when the death rate does not
depend on time, we have a better Malthusian growth rate for the asexual population
than for the sexual population. For aphids, eggs produced (by sexual reproduction)
have the ability to survive to winter [3–6]. When the death rate due to winter is large
enough, it suffices to produce only parthenogenetic female between the end of winter
and to change before the next winter to sexual female that produce eggs (which are
not sensible to the death rate that eliminate the whole population) to survive and
improve growth rate. However, in our model, the end of winter, i.e., the increase in
temperature, means the end of sex as soon as a mutant, which reproduces exclusively
by parthenogenesis, appears. We notice that there exists a threshold death rate, under
which the parthenogenetic strategy is better.

Proposition 5.1 Assuming that

∫ ∞

0
BS(y + x0)e

−d ydy <

∫ ∞

0
BA(y)e−d ydy, (24)

(verified as BS(. + x0) < BA(.)) and d(t) = d, then pA→A = 1, pS→S = 0, is the
best choice to have the best growth rate.

Proof We notice that solution to the dual eigenproblem (10)–(11), as we have
pA→A = 1, pS→S = 0, is given by ΦA(x) = ∫ ∞

x BA(y)e−(d+λ)(y−x)dx, and

(ΦS(x)e−d
∫ x
0 χy>x0dy−λx ) = ∫ ∞

x BS(y)e−d
∫ y

x χz>x0dz−λ(y−x)dy. Using (24), we have
directly that

∫ ∞
0 BS(y + x0)e−d ydy <

∫ ∞
0 BA(y)e−d ydy. Therefore, we have

ΦS(0) = ∫ ∞
0 BS(y)e−d

∫ y
0 χz>x0dz−λydy < ΦA(0), and so, using Proposition 3.2,

λ is increasing with respect to pA→A and decreasing with respect to pS→S .

6 Numerical Simulations

For numerical simulations, we consider that death rate depends on time (with annual,
i.e., 365 days, periodicity) t �→ d(t) and death rate is higher in winter : d|Winter ≥
d|Summer,Spring,Autumn [3–6]. We consider that death rate for eggs (sexual population
of age x ∈ [0, x0] [3], for U. cirsii aphids) is null, and we chose for birth and death
rate as in Fig. 2.
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Fig. 2 Rates. Right : death rate on a time period. Left : birth rates (asexual in blue, sexual in red). From 0
to 50 days, there is no birth (egg time) for sexual population. The birth rate for asexual population is higher
than for the sexual population after egg time. During winter, the death rate is higher than the death rate
during other seasons

Table 1 Parameters and functions definition

Definition Variable Value

Maximal age of an aphid Agemax 90 days

Maximal age to reproduce Agerep 30 days

Time in egg state eggstate 50 days

Definition Function Value

Birth rate for asexual BA .8χa∈[0,Ageep]
Birth rate for sexual BS .125χa∈[eggstate,eggstate+Agerep]
Death rate d 10χt<30 + .5χ30≤t<365

We can notice that asexual birth rate is higher (see [3], for pea aphids: in 10 days
a female can give birth to 80 clones) than for the sexual (for E. betulae aphids, see
[6], in twenty days, population is multiplied by approximatively 1.5). Parameters are
chosen to take in account the difference between asexual and sexual birth rates and
the difference during winter and for other seasons for death rates, but are not fitted for
a peculiar aphid specie (see Table 1).

We search for the best bang–bang strategy, i.e.,

max
pA→A(t)=χ[xa ,xb ], pS→S(t)=1−pA→A(t)

λ(pA→A, pS→S).

We observe in Fig. 3 that for xb to large, i.e., when the sexual population appears to
late before winter, the population disappears (zero multiplicative growth). The same
happens if the asexual population arise too late (xa too large). Maximum is reached
for xa = 21 and xb ∈ [5, 30] days. We see, in Fig. 4, that sexual population nS vanish
except before winter and asexual population n A increase exponentially between the
end of winter and the end of autumn and then disappears just before winter.
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Fig. 3 Computation of (xa , xb) �→ eT λ, as pA→A = χ[xa ,xb], pS→S = 1 − pA→A . At the right, we
show the decay as xb is near 0 (zoom of the highest part of left figure)

Fig. 4 Computation of n A (left figure) and nS (right figure) with respect to age and time. In particular, in
dark blue, we have the extinction of the population

7 Conclusions

In this work, we have proposed a partial differential equations model to study the time
evolution of a population that uses both sexual and asexual way of reproducing in an
environment with unlimited resources. Then, we show that the bang–bang strategy
(switch from parthenogenesis to sex and from sex to parthenogenesis) is the best
in order to optimize the growth rate of the population. Moreover, even in the case
of both type of subpopulation can extinguish (if they do not cooperate), a mixing
strategy (a cooperation), i.e. sexual can produce asexual and asexual can produce
sexual, may imply survival of the population. Nevertheless, environment variations
imply adaptation of species to these variations. Consequently, if the death rate that
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penalizes the asexual population (which has a higher birth rate than the sexual one)
decreases, at some point, the asexual population becomes the best (in a growth rate)
way to reproduce. Thus, a mutant, that has lost sex, can invade the population. It could
be interesting to develop the research of an optimal strategy by taking in account the
growth rate and its variations due to random variations of the environment.
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