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Abstract

We introduce the notion of General Relative Entropy Inequality for several linear PDEs. This
concept extends to equations that are not conservation laws, the notion of relative entropy for con-
servative parabolic, hyperbolic or integral equations. These are particularly natural in the context of
biological applications where birth and death can be described by zeroth order terms. But the concept
also has applications to more general growth models as the fragmentation equations. We give several
types of applications of the General Relative Entropy Inequality: a priori estimates and existence of
solution, long time asymptotic to a steady state, attraction to periodic solutions for periodic forcing.

0 2005 Elsevier SAS. All rights reserved.

Résumé

Nous introduisons la notion d’Entropie Relative Généralisée pour différentes EDP linéaires. Ce
concept étend la notion d’Entropie Relative au cas d’équations qui ne sont pas des lois de conserva-
tion et peuvent étre paraboliques, hyperboliques ou intégrales. Notre motivation provient du contexte
de la biologie ou naturellement des termes d’ordre zéro représentent la mort ou la naissance d'in-
dividus. Mais ce concept a aussi des applications au cas des modéles de croissance plus généraux
tels I'équation de fragmentation. Nous donnons trois types d'utilisations de I'Entropie Relative Gé-
néralisée : estimations a priori et existence de solutions, comportement asymptotique en temps long,
attraction vers une trajectoire périodique en cas de forgage par des coefficients périodiques.
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1. Introduction: hyperbolic, parabolic and scattering equations

Many linear Partial Differential Equations or Integral equations with non constant coef-
ficients satisfy some entropy dissipation property. The purpose of this paper is to give on
several examples the entropy functional, the difficulty being that it depends upon the coef-
ficients in a very specific form which does not seems to be known. As we show it below,
the most general case of interest is when the equation is not a conservative law, otherwise
the principle is known and can be related the Markov process underlying the equation, see
for instance [29]. These are particularly natural in the context of biological applications
where birth and death can be described by zeroth order terms. To the best of our knowl-
edge this General Relative Entropy (GRE in short) inequality has been introduced, in a
less general framework, in [26], and some of the results of the present paper have been
announced in [25].

We first exemplify the notion of GRE on the standard hyperbolic—parabolic equation on
the unknowm = n(r, x):

o L9 an L
o e (aljaxj>+;8xi( in) +dn (0, 00) x (1.1)

L=

where the coefficients depend on> 0 andx € R?, d = d(r,x) (no sign assumed),
b; = b;(t, x), and the symmetric matrid(z, x) = (a;; (¢, x))1<i, j<a SatisfiesA(z, x) > 0.
We could also set the equation on a domain and assume Dirichlet, Neuman, Robin or pe-
riodic boundary conditions without substantial changes in the above calculation. In full
generality, it is not obvious to derive a priori bounds on the soluti@nx), by opposition
to the cased > vlid > 0, divb + d(x) > 0 where the maximum principle holds.

Consider the associated dual problem (it should be understood as a final time problem)

d d
_ a( 8¢>—;bi%w+d1ﬂ=0 on(0,00) xRY,  (1.2)

ot o \ 9
ij=1""" J

with solutionyr = v (¢, x).
A straightforward computation leads to the following result:

Lemma 1.1(General Relative Entropy, parabolic—hyperbolic equatiba) any solutions
p(t,x) > 0andn(z, x) to the primal equatiorfl.1), any solutiony (¢, x) to the dual equa-
tion (1.2)and any functiord : R — R there holds
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The interest of such a formula appears clearlyfloconvex and/ > 0 because it pro-
vides a Liapunov functional for the primal equation (1.1). More precisely, if the different
guantities have enough decay at infinity (this are the cases below), we can integrate over
the above identity. Then using that the two terms in divergence form (at the left-hand side)
vanish and that the right hand side is nonpositive, we obtain:

t—= Hynlp) = / WpH(z> dx is decreasing. (1.3)
Rd P
Up to our knowledge the above entropy principle is only known and used in conservative
cases.

Example 1.We assumel(¢, x) =0, A = Id andb(x) = —VV (x) for a given potentialV'.
In that case, the steady state solutions of (1.1) and (1.2) are

p=Nx)=e"® yu=1

When moreoveV (x) — oo as|x| — oo fast enough in order to fulfill appropriate integra-
bility conditions, one arrive at the Relative Entropy Inequality,

E/1\/()6)['1<n(t’x))d)c=—/N(;g)[{“(ﬁ)‘v(’“ﬂx))
dr N(x) N NG
Re e

See Carillo et al. [9,3] for similar issues in relation with Monge—Kantorovich mass trans-
portation. It is also related, as far as the control of the entropy by the entropy dissipation is
concerned, to logarithmic Sobolev inequalities [4,28,2,9] and the references therein.

2
dx <O.

Another class of classical equations satisfies the same kind of General Relative Entropy,
namely the scattering (linear Boltzmann) equation

9
En(r,x) +kr(t,x)n(t,x) = / K, y, x)n(, y)dy. 1.4
Rd
Here 0< k7 () € L°(RT x RY) and 0< K (¢, x, y) € L®°(R*; L1 N L>®(R%)) and espe-

cially we consider the non-conservative and non-symmetric case as motivated by [12,21,8].
The associated dual problem reads now
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—o V) Hhr )Y x) = | Kt x, y) ¥ (. y)dy. (1.5)
R4
Again a straightforward computation leads to the following result:

Lemma 1.2(General Relative Entropy, scattering equatidiy any solutiong (¢, x) > 0
andn(z, x) to the primal equatior(1.4), any solutiony (¢, x) to the dual equatiorf1.5)
and any functiord : R — R there holds

i[ t t,x)H n(t, x) }
o1 Y (r,x) p(t, x) (p(t,x))

n(t, x)
+/[K(t,x,y)w(t,y)p(t,X)H( )
A p(t, x)

— K(t.y.x) ¥ (6. x) (. y)H(”(t’ Y) )] dy
p(t,y)

~ n([’x) ”(ta)’)
_/K(t,y,x)lﬂ(t,X)P(t,Y)[H(p(t’x)> _H(p(t,y))

R4
4 H,(n(t,x) ) [n(t, y) 3 n(t, x) i|:| dy.
pt,x))Lpy) p x)
When H is convex and) > 0 the above identity provides again a Liapunov functional
for the primal equation (1.4): integrating in thevariable we see that the second term

vanishes and the right hand side is nonpositive so that (1.3) holds again. A classical case
for which the entropy principle (1.3) is known is the following:

Example 2.We assume that the kernélg = k7 (x) andK = K (x, y) do not dependent of
time, that they are linked by the relation

kr(x) = f K (x,y)dy,
R4
and that the following detailed balance condition holds:
AN; Nx)>0, K(x,y)Nx)=K(y,x)N(y).

We easily check thaf = 1 is a solution of the dual equation (1.5) (that means that the pri-
mal equation is conservative) and that N (x) is a solution of the primal equation (1.4).

As a consequence, we obtain again the usual relative entropy inequality: for all convex
function H there holds
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d n(t, x)
al NmH( NG )dx
R4
___//K(x y)N(x)[ (n(t X)) H/(n(t,y)ﬂ(n(t,ﬂ _n(t,y)>dxdy
N(x) N() NXx) N

Rd Rd

<0.

The aim of this paper is to present and to use this general relative entropy principle
on a family of fragmentation-growth type equations issued from physical, biological and
ecological situations and which take form as a particular case of the combination of the
two above equations.

In Section 2, we present the general framework and give the three examples we want
to deal with, namely the pure fragmentation equation, the cell division equation and the
renewal equation with periodic coefficients. We also present the general problematic: first,
the problem of existence of particular relevant solutipnandy to the primal and dual
equations; next, the use of the GRE inequality in order to get some insight on the long time
dynamic of the models under consideration. Two kinds of long time behaviors are treated
in the following sections: attraction to a steady state or to a periodic solution.

Sections 3, 4 and 5 are then dedicated to study of the three mentioned models and to
illustrate in these specific cases the use of the GRE inequality.

2. Growth models and first consequences of GRE inequality

From now on, we are interested in growth models which take the forrmudiss pre-
servingfragmentation equation complemented with a drift term. More precisely, we denote
by n = n(z, x) > 0 the density of particles/cells of size> 0 at timer > 0 or the density
of individuals of agex > 0 at timer > 0 and we consider that the time dynamic of the
population of particles/cells/individuals is given by the following equation:

boundary condition inr = 0,

whereF is amass conservativieagmentation operator,

o0

(Fn)(t,x) = / b(t,y,x)n(t,y)dy —n(t,x)B(t, x)
0

andDy is a drift term with velocityv(x) > 0

(Don)(t,x) = ) (v(x)n(t x)) +w(t, x)n(t, x).
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We also complement the equation by an initial condition, namely:
n(=0,x)=no(x). (2.2)

Notice that whenfo' Tlm dx = oo the boundary condition at = 0 in (2.1) is not needed.
This is the case of hematopoiesis [1] and also of Example 3 below. Anyway the boundary
condition will be made precise for any example treated below. Also, we would like to make
clear that all the equations are to be understood in distributional sense.

The fragmentation operatdf models the division of a single particle of sizénto two
or more pieces of size, > 0, or in other words, the event

)2 o o (2.3)

in such a way that the mass is conserved,

x:Zxk, 0<xp <x.
k

Thenb(x, y) is the production rate of particles of sizeas the result of the fragmentation
event (2.3). For consistency with the modelling we assume

b(t,x,y) >0, b(t,x,y)=0 fory> x, (2.4)

X

B(1, x) = / %b(t, X, y)dy. (2.5)
0

It the fragmentation creates in the averafgenew particles, with < kg < oo, then we
have:

y
/b(t, x,y)dy =koB(t, x). (2.6)
0

For individuals or cells, in Examples 4 and 5 below, this is the caseAwith 2. At odds
with this case, we do not need the condition (2.6) in Example 3, wheteco is allowed,
which means that a fragmentation event may produce an infinite number of particles (with
finite total mass!).

The drift termDg models the growth (for particles and cells) or the ageing (for individ-
uals) which can be schematically represented by:

{x} — {x + vdx}.

For Eq. (2.1), the associated dual equation reads:

9
—gllf(t,x)+7381//=f*l/f, (2.7)
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with

8 X
Doy =—v % +wy, (FY)x) = /b(t,x, WY, y)dy — B(t, x)¥ (1, x).
0

(2.8)
We start establishing the GRE principle in the present context.
Theorem 2.1(General Relative Entropy, fragmentation drift equatidfor any solutions

n(t,x) andp(z, x) > 0to (2.1)and any solution/ (¢, x) > 0to the dual equatiof2.7)and
any functionH : R — R there holds

0 ; e VH n(t, x) 0 ; ; e VH n(t, x)
E[W(JQP(’X) <p(t’x)):|+a|:v(7-x)1p(7x)p(7x) <p(t,x)):|

+/[b(r,x,y)wa,y)p(t,x)H(”“’x))
0

p(t, x)

—b(t,y, x)¥(t,x) p(t,y) H(n(z, y)):| dy
p(t,y)

) 0 n(t,x) 3 n(t,y)
_O/b(t,y,x)llf(f,x)l?(fvy)[H<p(z,x)> H(P(t,y))

H/(n(t,x)>|:l’l(t, )’) _ n(tix)ili| dy
p(t.x) ) pt,y) p(t x) '
Following the argument given in the introduction, we consider now the case #hsn

convex and there is enough decay folarge. Again, we can integrate in thevariable.
Since the second and third terms vanish, (1.3) holds and we can quantify it as

d
EHw(nIp) =—Dy (n|p) <0, (2.9)

with

Dy (nlp) :=//b(r,y,x>w(r,x)p(z,y>
00

" [H<n(t,x)) B H(ﬂ(t,y)> +H/<n(t,x))<n(t,y) B n(t,x)ﬂ drdy. (2.10)
p(t, x) p(t,y) p,x)/\p,y) p@ x)
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This theorem is nothing but a combination of the similar results in the parabolic and
scattering cases (Lemmas 1.1 and 1.2) and relies on an easy calculation that we leave to
the reader. We list now the three examples we have in mind.

Example 3 (Pure fragmentation with scaling invariant fragmentation fatéd/e assume
that B(¢t,x) = B(x) =x”, y > 0, andb(z, x, y) = B(x) B(y/x)/x whereg is a measure
on|[0, 1] such that

1 1

B =0, /zﬂ(dz) =1, /zmﬁ(dz) < oo for somem < 1, (2.11)
0 0

andp satisfies the following positivity condition:
dB0>0, 0<d1<d2<1 PB(z) > BoVzeld,d2]. (2.12)

The pure fragmentation model is then obtainedfr= 0 in (2.1). This equation arises

in physics to describe fragmentation processes [22,7,5,6,16,5]. For this equation the only
steady states are the Dirac masses, namely, x) = p §,—o, and then the GRE principle

is not pertinent. On the other hand yifis a solution to the pure fragmentation equation,

we may introduce the rescaled dengjtdefined by:

g(t,x) = e_2’n(e’” -1, xe_’), (2.13)
which is a solution to the fragmentation equation in self-similar variables (see, for instance,

[16])

0 d
—g+—(xg)+g=yFg. (2.14)
Jat 0x

This is a mass preserving equation with no detailed balance condition and then the GRE
principle may be used in order to understand in an accurate way the dynamic of the frag-
mentation mechanism. We refer to Section 3 below which deals with this model.

Example 4 (The cell division equation We consider a population of cells which grow
at constant rate and divide through a binary fragmentation mechanism. We demote by

n(t, x) the density of cells/organisms with mass or volume 0 at timer > 0. The general
cell division equation (see [23]) reads then

%n(r, x) + ain(t, xX)+ B@)n(,x) = / b(y,x)n(t,y)dy (2.15)
X
0

which we complement with a flux condition at the= 0, namely

nit,x=0=0, r>0. (2.16)
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In order to take into account that the cell division is a binary and symmetric fragmentation
process we assume:

X

/b(x, y)dy=2B(x) and b(x,y)=b(x,x —y). (2.17)
0

We can recover the equal mitosis equation as some particular example of this equation,
with the following appropriate choices fér

b(x,y)=2B(x)d(y =x/2) (equal mitosis) (2.18)

which yields the equation
ad 0
En(t, x)+ a—n(t, x) + B(x)n(t,x) =4B(2x)n(t, 2x).
X

This equation is studied in [27] foB(x) close to a constant and especially long time
convergence to a steady state is proved with an exponential rate. We refer to Section 4
where we consider this model.

Example 5(Renewal equation with periodic coefficienis order to illustrate the case of
periodic coefficients, we finally consider a population of individuals with age0 and
which is described by the renewal equation

e¢]

%n(r,x)+%n(r,x)—i—d(t,x)n(t,x)zo, n(t,x=0):/B(t,y)n(t,y)dy.
0
(2.19)

Here we assume that thereTis> 0 such that/ and B are T -periodic.

Although our method also applies to the general cell-division equation, (2.19) allows
us a much simpler proof and also, sometimes, to access explicit formulas that can serve
as guidelines for our assumptions. Notice that it can also be handled via Volterra integral
equations and thus via Laplace transform [17,23] but these methods have not been extended
to general cell division equations. Notice that the renewal equation can also be seen as a
particular example of the cell division equation (2.15) making the following choick:for

b(t,x,y) =B, x)[§(y=x)+8(y=0)] (renewal equation) (2.20)

This choice satisfies the assumptions (2.4)—(2.6) gtk 2. Because it rises a Dirac mass
atx = 0 in the right hand side of the cell division equation (2.15), it can be interpreted, in
distribution sense, as a boundary data at O which is the renewal equation. We refer to
Section 5 where we study this model.
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We give now three types of possible applications of the GRE principle: we show a priori
bounds on any solutiom by comparison tg, we also state a contraction principle in the
spaceL! with weighty and finally state a result on the long time behavior. For each of
the three examples, we prove these results under specific assumptions. They imply the
non-degeneracy of the drift and fragmentation terms, and that

pt,x)>0 forx>0, (,x)>0, /p(t,x)gb(t,x) dx=1
0

Theorem 2.2 (Existence and a priori boundslet ¢ > 0 be a solution to the dual
equation(2.7) with initial condition v (0,.) = . For any initial datumng such that
novo € L1(0, 00), there exists gunique solution to Eq(2.1) such that

/n(t,x)lﬂ(t,x)dx:/nolﬂodx V>0, (2.21)
0 0

Moreover, letp > 0 be a solution tq2.1)with initial condition p(0, .) = po, for any initial
datumng such thatno py/4ty’? € L9(0, 00), ¢ € (1, 00), (respectivelyaCo, |nol <
Copo), the solutiom satisfies

? q q
ll,rét(t ))Cslll//(t dr < / |n0(§;|1‘/f () d

(respectively |n(t,x)| < Cop(t,x)) Vt=0. (2.22)

Theorem 2.3(L?* contraction) Lety > 0 be a solution to the dual equati¢8.7)with ini-
tial conditiony (0, .) = . For any initial daturmug, mo € L1(0, oo; Yo dy) the associated
solutionsrn andm to (2.1) satisfy

f|n(r,x> —m( Yt x) dr < /|no(x) ~ mo()| (0, x) dr.
0 0

The next question, usual when entropy inequalities are available [13,30], is to derive
the long time asymptotic of solutions. This is possible under the assumptions of Theo-
rem 2.2 and appropriate additional assumptions of positivity of the fragmentation operator
F. Introducing the “total massp > 0 associated to the conserved quantity (see (2.21)),

/n(O, ) Yo(y) dy:p/p(O, ¥) vo(y) dy,
0 0
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there holds:
o0
/|n(t,x) —p p(t,x)| I//(t,x)dxt—> 0. (2.23)
—> 00
0

This result is based on the mixing property of Eq. (2.1). It acts in such a way that the initial
condition is asymptotically forgotten and the solution only keeps memory of the single
information contained in the conservation law (2.21). The property (2.23) will be proved
in any example under appropriate assumptions of positivity of the fragmentation operator
which guarantees the mixing property of the flow. The asymptotic behavior (2.23) is par-
ticularly relevant when (for instance)is a stationary solution for coefficients independent
of time or whenp is a periodic solution for time periodic coefficients. The former phenom-
ena is known as ‘desynchronization’ [10], the later is resynchronization (on a circadian or
seasonal rhythm, for instance) [20].

In the theory we develop here, the first question one has to answer in order to obtain
pertinent general relative entropy is precisely to find the pertinent particular sojution
the case of Example 3 the model is mass conservative and it is possible to prove existence
of a stationary solution with the help of the Schauder theorem (see, for instance, [18,16]
for details), in other words O is the first eigenvalue. On the other hand, in the case of the
models described in Examples 4 and 5, the equations are not conservative and do not have
stationary solutions. One has to solve simultaneously the eigenvalue problem associated to
the primal and the dual equations. More precisely, we lookXer p, ¥) such that

% +Dop+rop=Fp  on(0.00)x (0.00), 2.2
— W L DEy 4 roy =F Y 0n(0,00) x (0, 00),

with appropriate boundary conditions, initial conditions and stationary or periodicity con-
ditions. Here in very particular cases an explicit computation may be performed (see [27])
but in general existence ¢fo, p, ) is obtained by the mean of the Krein—Rutman theo-
rem.

The second question is to understand how the GRE inequality, based on these partic-
ular solutions may be used in order to get some information on generic solutions. While
Theorems 2.2 and 2.3 are standard, the question of long time behavior is more subtle and
require more attention (and additional assumptions) and will be treated for each example
separately.

We conclude this section stating some problems of interest which are closely related to
the present work.

(1) Rate of convergence to the steady state, or to periodic solution, in (2.23). See however
[26,27,19].

(2) Dependance dfg with respect to the coefficients involved in the model? As a biologi-
cal interpretation, one can expect to observe in nature only those species that maximize
Ao in @ given environment.



1246 Ph. Michel et al. / J. Math. Pures Appl. 84 (2005) 1235-1260

(3) Use of the entropy method for nonlinear problems (see [14] for finite-dimensional
models).

3. The pure fragmentation equation

In this section we consider the pure fragmentation equation in self-similar variables
(2.14) as motivated in Example 3. We assume #haifills the assumptions (2.11)—(2.12)
as stated in the presentation of Example 3 above. Let first consider the dual problem,

8 k Sk
—5¢+D0W=7/7'— v

It has a simple solutiogl (x) = x sinceDjh = x% — h andF*x = 0 by assumption (2.5).

Therefore, using (2.21), we deduce that (2.14) is a mass conservative equation, that is

e ¢]

/xg(t,x)dxzcst Vt>0.
0

In order to apply the GRE inequality we need next to find particular relevant solutions to
Eq. (2.14) which are here stationary solutions. More precisely, we are looking for a steady
solutionN to the self-similar profile fragmentation equation,

o
0
a—(xN)+N=.7:N, N >0, /xN(x)dx:l. (3.1)
X

0

The self-similar profile is given by the following. Here and below we denote:
Li={g e L (0,00); x*g(x) e L}

Theorem 3.1.With assumption§2.11)—(2.12) there exists a unique solutiak in L% to
Eg.(3.1). MoreoverN e Wlé’coo(o, 0), YN e L® Vk>1+mandN > 0on (0, 00).

We may now give a consequence of the GRE inequality on the long time behavior.
Theorem 3.2.For any go € L}, N L}, with M > 1 and p := [~ x go(x) dx, there exists

a unique solutiong € C([0,7); L}) N L*(0, T; le/JrM) (VT > 0) to the fragmentation
equation(2.14) and

o0
/xg(t,x)dx:p forall r > 0.
0

Moreover,g satisfies
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((1)),, is uniformly bounded ii.; Vi > m, (3.2)
o
lim /x’g(t, x) — pN(x)‘ dx =0. (3.3)
t—>—+00

0

Back to the pure fragmentation equation (2.1), its solution
1
n(t,x):(1+t)2/yg<—|n(l+t),(1+t)l/yx> (3.4)
14

converges as — oo to a Dirac mass. Then, our theorem gives the precise convergence
speed and the profile. Those are determined as

n(t,x)~ 1+ 0" N(@1+0Y" x) whent — oo.

Proof of Theorem 3.1. We refer to [16] for the existence of solutiov € L} to Eq. (3.1)
such thatv € L}, F N € L} for anyk > m. Writing for k > 1+ m

9
dy

(yk N) = ai(y]“z y2 N) =k —2)y*IN+ Y1 FEN (3.5)
y

we deduce that* N € L™ for anyk > 1+ m. Furthermore, gathering (3.5) with N

Ly, and

(FFN)(x) = f ) "B/y) N dy < [IN 32 1 / ()2 BGx/y) dy

3 d
2 2 Z 2 -2
< |INx +V||L00/Eﬂ(z)xz—2:||Nx Y| oo x EL|OOOC,

0

we obtain that? N € Wé’coo. That concludes the proof of the regularity estimate.
Finally, there holds:

%(yzzv(w &) =y (FrN)(y) e 7. (3.6)

Since N # 0 there existsg € (0, 0o0) such thatV (xg) > 0. On the one hand, integrating
(3.6) between 0 and, for anyx € (82 xop, xo), we have:

00 1
2 N(x)e'” EfN(y)yyeyy/V/B(z)zezy/y 1.<y/ydzdy
0 0
(81+32)/(281) 1

>C / N(y) / B(2) 7 15,<28155/(51+8,) dzdy > 0.

X0 0
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By an iterative argument, we find > 0 on (0, xp). On the other hand, for any > xq,
integrating (3.6) betweery andx and using the fact thaf+ N > 0, we find:

N(x)>cstx 2/ =0 on(xg, o),
and that conclude the proof of positivity property n 0O

Proof of Theorem 3.2. From [16] we already know that, with the assumptions made
above, there exists a unique solutigrsatisfying the estimate (3.2) and we just have to
prove (3.3). This will be achieved in several steps.

Stepl. Let us first assume that y g2(y) N~1(y) € L. We use Theorem 2.1 with
H(s) = (s — 1)2 and denote simply by{ andD the corresponding entropy and entropy
dissipation. Then, thanks to Theorem 2.2, there exists a unique sofugissociated to the
initial datagg such that

o0

H(gIN) = / N1y dy < H(golN) < o0 (3.7)
0

and, using the fact that for arfy £’ > 0 there holdsH (§) — H(') + H'(§/) (§' — &) =
(& — €2,

D(gIN) : //b(x,y)N(x)y(If,((x)) if(?)) drdy e L1(0,00).  (3.8)
00

Consider now a sequenc(e,) such thatr, — oo, a timeT > 0 and defineg,(z, y) :=
gt +1t,,y). From O< N € WI and (3.7), we know that the sequengg) is bounded

in L%C([O T1 x (0,00)) and we may extract a subsequence still denotedz:pysuch

that g, — g weakly in Lloc([o, T] x (0,00)). On the one hand, for any functian €
CC (10, oo[), using Eq. (2.14) and the estimate (3.2) we have,

o0
% f gn ¢ dx is bounded inL1(0, 7),
from which we deduce that
o0
/g,,(pdx — /g(pdx in L0, T) V¢ € C1(10, o). (3.9)
n—oo
0 0

On the other hand, we introduce for anyg (0, 1) the truncated dissipation entropy:
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1/e1/e

2
paam= | (3653 o

Thanks to (3.9) and standard convexity arguments (see [15]), we seethd(g|N) is
I.s.c. for the above sense of convergence(#g)y and therefore using (3.8),

(3.10)

o]

T T

/Dg(gw)dtgliminf/Ds(gn|N)dtgliminf/D(g|N)ds=0 Ve>0. (3.11)
n—oo n—0oo

0 0

Iy
We set§ (x) := g(t, x)/N (x) and combine (3.10) and (3.11), thendet> 0. We get:
E(y)=£&x) fora.et,x,ys.t.y/xe[d1,382] (3.12)

Step2. We prove tha{3.12)impliesg = pN. On the one hand, for any, z > 0 there
existsn, m € N* s.t.

187y, 85 y[N 187" z, 85 z[ # 0. (3.13)

Indeed, assuming for instange< z, we may first findk € N such thatS'Z‘“z <y< 8’2‘ Z.

We next define: € N such that
stz <81 8kz forallr=0,...,n—1, and &5 z> 608k
As a consequence,
8$+1+kz < 6118%+kz < ;Ey < 8;-!812(Z < 8;+1+kz
and (3.13) holds wittw :=n + 1+ k.

On the other hand, we defin€ = {x € (0, 00); £(y) = &£(x) for a.e.y € [81x, 82x]}
and fixingx € K we defineA, = {y € (0,00); &(y) = &(x)}. From the definition ofk
andx there holdgA. | > 0. DefineA_ := (0, 00)\ A+ and assume by contradiction that
|A_| > 0. That means that, there existg A;,z € A_suchthave >0 |B(y,e)NA4| >

0,|B(z,e) N A_| > 0. Thanks to (3.13) we may find> 0 such that for any’ € B(y, ¢),
7 € B(z, ¢) there holds

181y, 85 y'[N18Y 2/, 85 2/ [ # 0.
As a consequence, foray.e AL NB(y,¢),fora.ez’ € A_NB(z,¢) there holdg (y') =
&(Z') and that is absurd. Therefore we have | = 0 so that = &(x) a.e. Then, we have
proved that for some = x(¢) € (0, 00),

gt,y)=§&@,x)N(y) fora.e.(r,y) € (0,T) x (0, c0)

and the mass condition impliész, x) = p for anyr € (0, T).
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Step3. Combining (3.2) with the results obtained in steps 1 and 2, we have yet proved
that

en(t,)—~pN weaklyinLinL2, (3.14)

and we have to prove that this convergence holds in fact in the strong sense. Let fix
g0 € (0, 1) such that

1/e0

/ zB(zx)dz > 1/2.

€0
For anye € (0, g9), there exists), > 0 such that there holds:

T 1/¢

ﬂe//(gn(l,X)—pN(x))zdxdt
0 ¢

T 1/el/e

2 2
<f [ Jreomen| (55 -0) + (=55 |

&

- / Da.c(gIN)dr
0
T s /e

+2///b(x’y)N(x)y[g(t,X) 8. y) +p2_pg(t,X) —pg(t’y)]dxdydt.
0 ¢ ¢

N(x) N(y) N(x) N(y)

Thanks to (3.14)—(3.9) and (3.11) we easily deduce that
T 1/e

’78/f(gn(l,x)—PN(x))zdxdt—)O Ve>0,

and we conclude that (3.3) holds using (3.14) and the contraction principle stated in Theo-
rem 2.3 applied t@ag = p N andmo = g(t, + t,.) for somer € (0, T).

Stepd. Forgg € LY, N L}, we consider a sequencgy ) such that(go »|N) < oo, the
mass associated {9, is p andgo, — go in L1, N L1,. On the one hand, the solutigp
associated tg@o , satisfied|g, — p N”Ll — 0. On the other hand, the contraction principle
stated in Theorem 2.3 implies thiatg — g,,)(t)||L1 llgo — gon)”Ll As a conclusiorg
satisfies the asymptotic property (3.3)a

4. Cell division, existence and steady states

In this Section we consider the cell division equation of example 4 of Section 2. We
restrict our attention to the case of coefficients independent of time
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b(t,x,y)=b(x,y), B(t,x) = B(x), 4.1)

A classical question is the existence of a global attractive steady state, the so-called Stable
Size Distribution [23], i.e., that is observed in practice. Steady states do not always exist
because an exponential growth is expected. Therefore we have to settle this in an eigenvalue
problem and we use the notatidf(x) = p(t, x) € and¢ (x) = ¥ (¢, x) €%’ Then, the
problem is first to find Ao, N (x), ¢ (x)) such that

%N(x)+(A0+B(x))N(x):fxoob(y,x)N(y)dy, x =0, 4.2)
Nx=0=0, Nx)>0forx>0, [N=1, '
%(b(x)—(AO+B(x))¢(x)=—foxb(x,y)¢(y)dy, x>0, (4.3)
¢(x)>0, [¢N=L1 '

Also the precise dynamic of the system is better described after renormatizaigng
into account the exponential growth. Therefore, wegggtx) = n(z, x) €' and obtain

{ Pe+Lg+ Mo+ B)g=[Tb(y.x)gt, y)dy, x>0, (4.4)

gx=0=0.

The existence of eigenelemertis), N, ¢) relies on the balance between transport (to
larger values ok) and division (that reducesand increases). Such an eigenvalue prob-
lem does not always have a solution since we have:

Lemma 4.1.With the assumption@.4)—(2.6)with ko = 2, (2.17)and (4.1), if a solution
to (4.2) exists, then

e ¢]

/mmm>yz (4.5)
0

Proof. First, we integrate Eq. (4.2) in the size variable all oRar, then using (2.6), we
get

A0=/B(x)N(x)dx>O.

Next, integrating again Eqg. (4.2) in the size variable, but between G awe find

NG) < / / b(z YN () dydz < / f b(z, y)N(y) dydz
z=0y=0 00
=2fB(y)N(y)dy, Vx >0,
0
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and thus
[NlLe < 2Ao.

Finally, we come back to the first identity and we obtain

Ao = / BGN (x) dx < f B(x) dx||N ||~ < zxo/ B(x) dx.
0 0 0

Hence, if there is a solution, then we should have (4.%).

In view of Lemma 4.1, we consider only a simple case for existence, better conditions
can be found in [24]. But optimal conditions are known only in the case of the renewal
equation (2.19), a special case (see Example 5, Eqg. (2.20)) where we find as a necessary
and sufficient condition B > 1.

Theorem 4.2(First eigenvectors)Assumé?2.4)—(2.6)with kg = 2, (4.1)and

O<B, = grgB(x), T;(;(B(x) = By < o0. (4.6)

There exists a unique Lipschitz continuous solutiof N, ¢) to (4.2), (4.3)and

By < o< By, (4.7)

AoB
. sup N(x)e’*x<A0+)L0 M Vuel0, ),

o0
/N(x)e’” dx <
, A= xe0,00) 0o— MU

3C >0, s.t.0< p(x) <C(L+x).

The exponential decay fav is (close to be) sharp with our assumptions since for the
renewal equation (2.19), we have exagdtlyx) = 1oe 0%, See [24] for more precise esti-
mates in this direction.

Theorem 4.3.We make the assumptions of Theorkehand

ACo, s.t.Vx |g(0,x)| < CoN(x). (4.8)

There is a unique solution t@.4)and for allz > 0,

lg(t, )] < CoN, /g(t,y)qb(y)dy:/g(oa V() dy:=p, (4.9)

/|g(t,y)|¢(y) dy </}g(0, y)|¢(»)dy (contraction principle. (4.10)
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With the following non-degeneracy condition on the suppork:athere exists aCt
functionI": (0, o0) — (0, oo) such that

{(x,T(x)), x>0} S A= Supp b(x,y) and ir(x) £1Vx#£0, (4.11)
[0, 00[ x [0, 00[ dx

we have
tingoug(t, D)= :ONH Li(Napdy) — 0 Vgell, 00). (4.12)

Remark 4.4.The condition (4.11) is much more general than the non-degeneracy condition
(2.12) for scaling invariant fragmentation kerngldn this case, the condition (4.11) holds
with I"(x) = 2522 x but is not enough to prove (3.3) in Theorem 3.2. The condition (4.11)
is also fulfilled for equal mitosis(x, y) = 2B(x)8,—x,2 While condition (2.12) is of course

not fulfilled for such a kernel.

The exponential rate of convergence here is known in special cases. For the renewal
equation (2.19), an abstract argument due to [17] proves the exponential rate (but the rate
is not explicitly known) forB with compact support. In [26], an explicit rate is given when
suppB is an interval that contains = 0 and an a recent improvement is due to [19]. For
equal mitosis (2.18), an explicit rate is also given in [27] wiBgr) is close to a constant.

We now turn to the proof of these two theorems.

Proof of Theorem 4.2. We refer to [27,24] for the method and ideas developed here, and
we only sketch the main estimates. The rigorous proof goes through an approximation
process which is written in details in the above references. Then, we only need to prove a
priori estimates that imply compactness(dg, N, ¢).

Stepl. Bounds orkg. After multiplying Eqg. (4.2) by 1 and and integrating, we obtain:

o0

Ao = f BONG)dy and Ao / YNG)dy =1 (4.13)
0 0

The upper and lower bounds ap follows from the first identity, the assumption (4.6) and

the normalization ofV in (4.2).
Step2. Bounds onV. We firstly prove that

/b(x, y)e¥dy < (1+ ") B(x). (4.14)
0

To do this, we notice that, becauseyok x in the integrals below (thanks to (2.17)), and
using (2.5),
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o0 X
p
fypb(t,x,y)dy:xpfb(t,x,y)<z> dy <x’B(t,x), Vp=23,4,....
X
0 0

Secondly, we deduce

¢ 4 )4
/b(x,w(“” dy< ¥ g, px1
, p! p!

and thus, using (2.17), the inequality (4.14) holds.
Therefore, multiplying Eqg. (4.2) by*e with 1 < Ao and integrating, we obtain:

X

Vx N(x)e“x—i—/[)»o—u—f-B(z)]N(Z)e’“ dz<//b(y,z)e’“N(y)dzdy
0 00

< / [B(y) + B(y) &N (y) dy.
0

Lettingx — oo and using (4.14), we deduce that

o0

f (o — WN(2) € dz < [ B()N(y) dy = Ao.
0 0

This is the first bound oV, the second one follows from the same inequality, using the
information,

o]

N(x)e" < f[B(y) + B(y) €N (y)dy <Ao+BMfe’”N(y)dy~
0

Step3. Estimate orp. We refer to [27] to prove the existence of a constérguch that
#(y) < C(1+ y*) for somek > 0 in the case of equal mitosis. Here we improve the proof
in order to get the linear growth and treat more general keinels

We follow the proof in [27], using a solutiotW,, Ay, ¢;) of the eigenproblem on a
bounded interva(0, L) with ¢ (L) = 0. Then firstly, one can derive, as above, an priori
bounds onV,,. Secondly one derives local boundsgn We write, integrating Eq. (4.3)
on (0, xp),

XLy
sup ¢r(y) < ¢r(x) + sup d)L(y)//b(y,y’)dy’dy,
(0,x1) (0,x1) 0%
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and choose, = a such that(J [o b(y. y')dy’ dy = 1/2. Then sup, ,, ¢1.(y) < 2¢L(a).
It remains to boun@, (¢) which we do using that

fg NL(X)¢L(x)eff()»+B(s))ds dx _ SURY< r<a e/f()\—&-B(s))ds dx

< a N a
Pri@ JENL () dx JENL () dx

’

that we deduce becauge (x)e~ /o *+B(6)ds s decreasing and finite by the choice- 0
(thereforefg’ N¢ is uniformly positive). Thirdly, and this is the new point here, we find a
supersolution (independent b)) for the equation orp; . We notice that(y) = C(L — y)

is a supersolution of the equation @n(y) = ¢, (L — y). Indeedy, (y) satisfies:

L—y

) _ ) i
L)+ (b + B = )FL0) = f (L — v, ¥)BL(L - y)dy,
0

and usingf(;‘ yb(x, y)dy = B(x)x, we find thatu(y) is a supersolution if. — y is large
enough, indeed

L—y

—C—l—CXL(L—y)+C|:B(L—y)(L—y)— f b(L—y,y’)y’dy’:|>O,
0

if L —y > 1/A.. Therefore we have indeed(y) < C(1 + y) and Theorem 4.2 is
proved. O

Proof of Theorem 4.3. We first notice that the first inequality in (4.9) follows directly
from the GRE inequality (2.1) with for instancH (h) = (h — Co)i- This is a non-
negative convex function, therefore it givqé’o N¢H(g(t)/N)dx < 0 for all r > 0,
and thusH (g(t)/N) =0, i.e.,g(t)/N < Co. A similar argument proves the inequality
g()/N > —Co. The equality in (4.9) follows also directly from the GRE inequality with
H (h) = h. Finally, the contraction principle (4.10) follows from the GRE inequality with
H (h) = |h|. It remains to prove (4.12) which we do in several steps.

Stepl. We proceed along the lines of the proof of Theorem 3.2. Arguing as in Step 4
of Theorem 3.2, we see that we can restrict ourselves to consider a smooth initigh data
such that® = go/N € C3.

Step2. We then introduce the sequence of functigiiz, y) = g(t + t,, y). As in the
Step 1 of Theorem 3.2, we hayg — gandg/N(¢t,x) =g/N(t, y) Vt V(x, y) € A. There-
fore the functior: := g/N satisfies

u(t, F(x)) =u(t,x), V>0, x=>0. (4.15)

Step3. In the limit, the entropy dissipation (2.10) vanishes in (2.9), and thus this function
u satisfies:

d d
—u+ —u=0. (4.16)
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Step4. Thanks to Lemma 4.5 below we hawé, x) = ¢st and the mass condition
allows us to concludg = pN.
Step5. We conclude the proof as in Theorem 3.2 using the contraction property.

Lemma 4.5.Any functioru satisfying(4.16), (4.15)s constant.
Proof. On one hand we have:
@) (1, x) = (Bu(r, T (%)) = Bu) (1, I (x)). (4.17)
On the other hand we have
(@c10) (1, %) = (du(r, x)) = (Beue(r, T (x))) = ') @eu) (1, T (x)).  (4.18)
We deduce gathering (4.17), (4.18) and using (4.16) that
@) (t, I (x)) + I (x)@)u(t, I'(x)) =0, Vt>0, x>0, (4.19)
and from (4.16) we also have
@) (1, T (x)) + @0)u(t, F'(x))=0, V>0, x>0. (4.20)
Combining (4.19), (4.20) we get:
(I'"(x) = 1)@)u(t, I'(x)) =0,
from which we deduce, sincg’(x) # 1,
@0u(t,x) = I'"(x)@)u(t, ['(x)) = 0.

Finally using again the transport equation (4.16) we obtain indeed tisatonstant. O

5. Renewal equation and periodic solutions
We now consider the renewal equation witkperiodic death and birth ratesand B,

%n+ %n+d(t,x)n=0,
n(t,0) = [;° B(t, y)n(t,y))dy, (5.1)
n(t=0,x)=no(x)

and we make the following assumptions on the nonnegative funcfioBs
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o0
sup [ B(,y)eJo 4=y gy o oo,
te(0,7)
0
o0
inf | B(-, y)e Jo dery =y gy o g (5.2)
te(0,T)
0
B(t,x) > 0, (5.3)
d,BeWwWbh>®, (5.4)

These conditions could be relaxed, to the expense of more steps in the proof. Especially
the positivity of B on the half-line can be reduced to the positivity on an interval using
a compactness argument. We also refer to [26] for the variant in the proof whem
vanish. Finally, similar results as below hold for the general cell division equation, but the
proof goes through discrete approximation that is longer to develop.

As in Section 4 for steady states, the theory uses an eigenvalue problem to find the
periodic solution. Therefore we consider the problem:

AN x)+ENE,x)+ (ho+d(t, x))N(t,x)=0, t>0, x>0,

N(t,x=0)= [5° B(t,y)N(t, y)dy, t >0, (5.5)

N(t,x) >0, fOT Jo N, x)dedr =1, N is T-periodig

T, x)+ ¢ (t.x) — (ho+d(t, x))p(t,x) = —B(1,x)¢(t,0), >0, x>0,

¢(t,x)>0, [N, x)p@,x)dx=1, ¢ is T-periodic
(5.6)

Following the previous sections, we prove

Theorem 5.1.With the assumption&.2)—(5.4) there exists a unique solutiqirg, N, ¢)
to the eigenvalue proble(s.5)—(5.6)and N, ¢ € C ([0, T]; W),

Theorem 5.2 (Attraction to periodic solutions)With the assumption&.2)-(5.4) and
no € LY(R*, ¢(0, x) dx), then the solution t¢5.1) satisfies

/ |n(l‘,X)e_)not _ pN(t,X)|¢(t,x)dxtjo>oQ

with p = [n(0, x)¢ (0, x) dx.

The existence of periodic solutions (Theorem 5.1) is not surprising and in spirit com-
bines compactness arguments with Floquet’s theory for a positive matrix (see [11, Chap-
ter 3, Section 5], for instance) although our proof is more direct. The attraction to the
periodic solution requires a dissipative mechanism which, in our approach, is expressed by
the dissipation of entropy.
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Proof of Theorem 5.1. By opposition to the case when the coefficients are independent
of time, here we do not have explicit solutions at hand. Nevertheless, it can be solved as
an eigenvalue problem thanks to Krein—Rutman theorem considering, as it is classical, an
operator on the boundany= 0. To do that, we use the explicit solutions to (5.5)—(5.6),

N(t,x) =N (1 — x)e Jo Gotd) ' —xyhd' (5.7)

o0
ot x) = f Bt +y—x, VU@t + y — x)e fi Gotdthy'—xyNdy gy, (5 g)

X
and we reduce the problems (5.5) and (5.6) to the integral equations:

o]

N(@) = / B(t, y)e Jo Cordty=y ) r(p _ ) dy, (5.9)
0
o0

Ut) = / B(t + y, y)e Jo Gotd@Hy YD1 4y dy. (5.10)
0

Finally, we directly obtain the solutions to (5.5), (5.6) (their properties follow without
any difficulty) from the

Lemma 5.3. With the assumption.2)—(5.4) there is a unique solutiorg, NV, /) to
(5.9), (5.10with A/ andi/ two T -periodic functions, andv' () > 0, U(t) > 0.

Proof. We consider a parameter> 0, the Banach spaceé = Cpe(0, T') and the operator
which, toM € X associatesV’ € X given by

[e¢]

N(t):/B(t»y)e’fg(k*”’)(’*y/*y’y/)dy//\/l(t—y) dy,
0

and its dual, which, t&’ € X associates/ € X given by:
oo
U = / B(t +y, y)e o GHdaty Dby ) dy,
0

This linear operator is continuous (using the first inequality in (5.2)), strictly positive
(thanks to assumption (5.3)) and compact (it is convolution like). Therefore, using Krein—
Rutman theorem it admits a simple first eigenvalge) > 0, the corresponding eigenvec-
tor (positive and normalized with unit mass) is denatéd) and a dual eigenvector is
denoted by, () > 0. One readily checks that, using the second inequality in (5.2),
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o0
(0) > min/ B(-, y)e Jo dtHy=yhdy gy o 1.
0

It is also clear that (o0) = 0 and that’(1) < 0 (just by the maximum principle). There-
fore, there is a uniquig such that (Ag) = 1, and thus a solution to (5.9), (5.10)0

Proof of Theorem 5.2. We do not repeat the details of the proof which were already given
in Sections 3 and 4. From Theorem 2.1, we have the entropy inequaligy=fore=*o,

d
EH¢(8|N) = —Dy(gIN) <0, (5.11)
whereHy (g|N) is defined in (1.3) and

Dy (gIN) :=¢(2,0) / B(t,x)N(t,x)dx
0

i i g(t,y) g(t, x)
x/|:H< e dm(y)) _H(N(t,x)>:|dﬂt(x)’
0

y=0

s (x) = B(t,x)N(t,x)dx//B(t,x)N(t,x)dx.
0

We are in the same situation as in the proof of Theorem 3.2 and Theorem 4.3. For the
convex functionH (-) = | - |, and applying the GRE inequality go— p N, we find that

f |n(t,x)e_)‘°t — pN(t, x)‘d)(t,x)dx J L ast— oc.

It remains to prove that = 0. By weak compactness there is a subsequence (but we keep
again the notation of the full sequengg)z, x) = g(¢ + k, x) which converges. From the
entropy dissipation term, we deduce that the ligndtatisfies,

g, x)
N@, x)

C(1),
Thanks to the mass conservation, this implies fiatx) = pN (¢, x) and the strong con-

vergence holds as proved in Section 3. From this it follows that the lirsit0. O
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