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Abstract

We introduce the notion of General Relative Entropy Inequality for several linear PDEs.
concept extends to equations that are not conservation laws, the notion of relative entropy f
servative parabolic, hyperbolic or integral equations. These are particularly natural in the con
biological applications where birth and death can be described by zeroth order terms. But the
also has applications to more general growth models as the fragmentation equations. We give
types of applications of the General Relative Entropy Inequality: a priori estimates and existe
solution, long time asymptotic to a steady state, attraction to periodic solutions for periodic fo
 2005 Elsevier SAS. All rights reserved.

Résumé

Nous introduisons la notion d’Entropie Relative Généralisée pour différentes EDP linéair
concept étend la notion d’Entropie Relative au cas d’équations qui ne sont pas des lois de co
tion et peuvent être paraboliques, hyperboliques ou intégrales. Notre motivation provient du c
de la biologie où naturellement des termes d’ordre zéro représentent la mort ou la naissan
dividus. Mais ce concept a aussi des applications au cas des modèles de croissance plus
tels l’équation de fragmentation. Nous donnons trois types d’utilisations de l’Entropie Relativ
néralisée : estimations a priori et existence de solutions, comportement asymptotique en tem
attraction vers une trajectoire périodique en cas de forçage par des coefficients périodiques.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction: hyperbolic, parabolic and scattering equations

Many linear Partial Differential Equations or Integral equations with non constant
ficients satisfy some entropy dissipation property. The purpose of this paper is to g
several examples the entropy functional, the difficulty being that it depends upon the
ficients in a very specific form which does not seems to be known. As we show it b
the most general case of interest is when the equation is not a conservative law, oth
the principle is known and can be related the Markov process underlying the equatio
for instance [29]. These are particularly natural in the context of biological applica
where birth and death can be described by zeroth order terms. To the best of our
edge this General Relative Entropy (GRE in short) inequality has been introduced
less general framework, in [26], and some of the results of the present paper hav
announced in [25].

We first exemplify the notion of GRE on the standard hyperbolic–parabolic equati
the unknownn = n(t, x):

∂n

∂t
−

d∑
i,j=1

∂

∂xi

(
aij

∂n

∂xj

)
+

d∑
i=1

∂

∂xi

(bin
) + dn = 0 on(0,∞) × R

d , (1.1)

where the coefficients depend ont � 0 and x ∈ R
d , d ≡ d(t, x) (no sign assumed

bi ≡ bi(t, x), and the symmetric matrixA(t, x) = (aij (t, x))1�i,j�d satisfiesA(t, x) � 0.
We could also set the equation on a domain and assume Dirichlet, Neuman, Robin
riodic boundary conditions without substantial changes in the above calculation. I
generality, it is not obvious to derive a priori bounds on the solutionn(t, x), by opposition
to the caseA � ν Id > 0, divb + d(x) � 0 where the maximum principle holds.

Consider the associated dual problem (it should be understood as a final time pro

−∂ψ

∂t
−

d∑
i,j=1

∂

∂xi

(
aij

∂ψ

∂xj

)
−

d∑
i=1

bi

∂

∂xi

ψ + dψ = 0 on(0,∞) × R
d , (1.2)

with solutionψ = ψ(t, x).
A straightforward computation leads to the following result:

Lemma 1.1(General Relative Entropy, parabolic–hyperbolic equation). For any solutions
p(t, x) > 0 andn(t, x) to the primal equation(1.1), any solutionψ(t, x) to the dual equa-
tion (1.2)and any functionH :R → R there holds:
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∂

∂t

[
ψpH

(
n

p

)]
−

d∑
i,j=1

∂

∂xi

{
ψ2aij

∂

∂xj

[
p

ψ
H

(
n

p

)]}
+

d∑
i=1

∂

∂xi

[
biψpH

(
n

p

)]

= −ψpH ′′
(

n

p

) d∑
i,j=1

aij

∂

∂xi

(
n

p

)
∂

∂xj

(
n

p

)
.

The interest of such a formula appears clearly forH convex andψ > 0 because it pro
vides a Liapunov functional for the primal equation (1.1). More precisely, if the diffe
quantities have enough decay at infinity (this are the cases below), we can integratex

the above identity. Then using that the two terms in divergence form (at the left-hand
vanish and that the right hand side is nonpositive, we obtain:

t �→ Hψ(n|p) :=
∫
Rd

ψpH

(
n

p

)
dx is decreasing. (1.3

Up to our knowledge the above entropy principle is only known and used in conser
cases.

Example 1.We assumed(t, x) ≡ 0, A = Id andb(x) = −∇V (x) for a given potentialV .
In that case, the steady state solutions of (1.1) and (1.2) are

p = N(x) := e−V (x), ψ(x) ≡ 1.

When moreoverV (x) → ∞ as|x| → ∞ fast enough in order to fulfill appropriate integr
bility conditions, one arrive at the Relative Entropy Inequality,

d

dt

∫
Rd

N(x)H

(
n(t, x)

N(x)

)
dx = −

∫
Rd

N(x)H ′′
(

n

N

)∣∣∣∣∇
(

n(t, x)

N(x)

)∣∣∣∣
2

dx � 0.

See Carillo et al. [9,3] for similar issues in relation with Monge–Kantorovich mass t
portation. It is also related, as far as the control of the entropy by the entropy dissipa
concerned, to logarithmic Sobolev inequalities [4,28,2,9] and the references therein

Another class of classical equations satisfies the same kind of General Relative E
namely the scattering (linear Boltzmann) equation

∂

∂t
n(t, x) + kT (t, x)n(t, x) =

∫
Rd

K(t, y, x)n(t, y)dy. (1.4)

Here 0� kT (·) ∈ L∞(R+ × R
d) and 0� K(t, x, y) ∈ L∞(R+;L1 ∩ L∞(Rd)) and espe-

cially we consider the non-conservative and non-symmetric case as motivated by [12
The associated dual problem reads now
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∂t
ψ(t, x) + kT (t, x)ψ(t, x) =

∫
Rd

K(t, x, y)ψ(t, y)dy. (1.5)

Again a straightforward computation leads to the following result:

Lemma 1.2(General Relative Entropy, scattering equation). For any solutionsp(t, x) > 0
and n(t, x) to the primal equation(1.4), any solutionψ(t, x) to the dual equation(1.5)
and any functionH :R → R there holds:

∂

∂t

[
ψ(t, x)p(t, x)H

(
n(t, x)

p(t, x)

)]

+
∫
Rd

[
K(t, x, y)ψ(t, y)p(t, x)H

(
n(t, x)

p(t, x)

)

− K(t, y, x)ψ(t, x)p(t, y)H

(
n(t, y)

p(t, y)

)]
dy

=
∫
Rd

K(t, y, x)ψ(t, x)p(t, y)

[
H

(
n(t, x)

p(t, x)

)
− H

(
n(t, y)

p(t, y)

)

+ H ′
(

n(t, x)

p(t, x)

)[
n(t, y)

p(t, y)
− n(t, x)

p(t, x)

]]
dy.

WhenH is convex andψ � 0 the above identity provides again a Liapunov functio
for the primal equation (1.4): integrating in thex variable we see that the second te
vanishes and the right hand side is nonpositive so that (1.3) holds again. A classic
for which the entropy principle (1.3) is known is the following:

Example 2.We assume that the kernelskT = kT (x) andK = K(x,y) do not dependent o
time, that they are linked by the relation

kT (x) =
∫
Rd

K(x, y)dy,

and that the following detailed balance condition holds:

∃N; N(x) > 0, K(x, y)N(x) = K(y,x)N(y).

We easily check thatψ ≡ 1 is a solution of the dual equation (1.5) (that means that the
mal equation is conservative) and thatp = N(x) is a solution of the primal equation (1.4
As a consequence, we obtain again the usual relative entropy inequality: for all c
functionH there holds
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dt

∫
Rd

N(x)H

(
n(t, x)

N(x)

)
dx

= −1

2

∫
Rd

∫
Rd

K(x, y)N(x)

[
H ′

(
n(t, x)

N(x)

)
− H ′

(
n(t, y)

N(y)

)](
n(t, x)

N(x))
− n(t, y)

N(y))

)
dx dy

� 0.

The aim of this paper is to present and to use this general relative entropy pri
on a family of fragmentation-growth type equations issued from physical, biologica
ecological situations and which take form as a particular case of the combination
two above equations.

In Section 2, we present the general framework and give the three examples w
to deal with, namely the pure fragmentation equation, the cell division equation an
renewal equation with periodic coefficients. We also present the general problematic
the problem of existence of particular relevant solutionsp andψ to the primal and dua
equations; next, the use of the GRE inequality in order to get some insight on the lon
dynamic of the models under consideration. Two kinds of long time behaviors are t
in the following sections: attraction to a steady state or to a periodic solution.

Sections 3, 4 and 5 are then dedicated to study of the three mentioned models
illustrate in these specific cases the use of the GRE inequality.

2. Growth models and first consequences of GRE inequality

From now on, we are interested in growth models which take the form of amass pre-
servingfragmentation equation complemented with a drift term. More precisely, we de
by n = n(t, x) � 0 the density of particles/cells of sizex > 0 at timet � 0 or the density
of individuals of agex � 0 at timet � 0 and we consider that the time dynamic of t
population of particles/cells/individuals is given by the following equation:

{
∂n
∂t

+D0n = Fn on (0,∞) × (0,∞),

boundary condition inx = 0,
(2.1)

whereF is amass conservativefragmentation operator,

(Fn)(t, x) =
∞∫

0

b(t, y, x)n(t, y)dy − n(t, x)B(t, x)

andD0 is a drift term with velocityv(x) � 0,

(D0n)(t, x) = ∂ (
v(x)n(t, x)

) + w(t, x)n(t, x).

∂x
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We also complement the equation by an initial condition, namely:

n(t = 0, x) = n0(x). (2.2)

Notice that when
∫ ·

0
1

v(x)
dx = ∞ the boundary condition atx = 0 in (2.1) is not needed

This is the case of hematopoiesis [1] and also of Example 3 below. Anyway the bou
condition will be made precise for any example treated below. Also, we would like to
clear that all the equations are to be understood in distributional sense.

The fragmentation operatorF models the division of a single particle of sizex into two
or more pieces of sizexk � 0, or in other words, the event

{x} b−→{x1} + · · · + {xk} + · · · , (2.3)

in such a way that the mass is conserved,

x =
∑

k

xk, 0� xk � x.

Thenb(x, y) is the production rate of particles of sizey as the result of the fragmentatio
event (2.3). For consistency with the modelling we assume

b(t, x, y) � 0, b(t, x, y) = 0 for y > x, (2.4)

B(t, x) =
x∫

0

y

x
b(t, x, y)dy. (2.5)

It the fragmentation creates in the average,k0 new particles, with 1< k0 < ∞, then we
have:

y∫
0

b(t, x, y)dy = k0B(t, x). (2.6)

For individuals or cells, in Examples 4 and 5 below, this is the case withk0 = 2. At odds
with this case, we do not need the condition (2.6) in Example 3, wherek0 = ∞ is allowed,
which means that a fragmentation event may produce an infinite number of particles
finite total mass!).

The drift termD0 models the growth (for particles and cells) or the ageing (for indi
uals) which can be schematically represented by:

{x} → {x + v dx}.
For Eq. (2.1), the associated dual equation reads:

− ∂
ψ(t, x) +D∗

0 ψ = F∗ψ, (2.7)

∂t
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with

D∗
0 ψ = −v

∂ψ

∂x
+ w ψ, (F∗ψ)(t, x) =

x∫
0

b(t, x, y)ψ(t, y)dy − B(t, x)ψ(t, x).

(2.8)

We start establishing the GRE principle in the present context.

Theorem 2.1(General Relative Entropy, fragmentation drift equation). For any solutions
n(t, x) andp(t, x) > 0 to (2.1)and any solutionψ(t, x) � 0 to the dual equation(2.7)and
any functionH :R → R there holds:

∂

∂t

[
ψ(t, x)p(t, x)H

(
n(t, x)

p(t, x)

)]
+ ∂

∂x

[
v(t, x)ψ(t, x)p(t, x)H

(
n(t, x)

p(t, x)

)]

+
∞∫

0

[
b(t, x, y)ψ(t, y)p(t, x)H

(
n(t, x)

p(t, x)

)

− b(t, y, x)ψ(t, x)p(t, y)H

(
n(t, y)

p(t, y)

)]
dy

=
∞∫

0

b(t, y, x)ψ(t, x)p(t, y)

[
H

(
n(t, x)

p(t, x)

)
− H

(
n(t, y)

p(t, y)

)

+ H ′
(

n(t, x)

p(t, x)

)[
n(t, y)

p(t, y)
− n(t, x)

p(t, x)

]]
dy.

Following the argument given in the introduction, we consider now the case whenH is
convex and there is enough decay forx large. Again, we can integrate in thex-variable.
Since the second and third terms vanish, (1.3) holds and we can quantify it as

d

dt
Hψ(n|p) = −Dψ(n|p) � 0, (2.9)

with

Dψ(n|p) :=
∞∫

0

∞∫
0

b(t, y, x)ψ(t, x)p(t, y)

×
[
H

(
n(t, x)

p(t, x)

)
− H

(
n(t, y)

p(t, y)

)
+ H ′

(
n(t, x)

p(t, x)

)(
n(t, y)

p(t, y)
− n(t, x)

p(t, x)

)]
dx dy. (2.10)
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This theorem is nothing but a combination of the similar results in the parabolic
scattering cases (Lemmas 1.1 and 1.2) and relies on an easy calculation that we
the reader. We list now the three examples we have in mind.

Example 3 (Pure fragmentation with scaling invariant fragmentation rate). We assume
that B(t, x) = B(x) = xγ , γ > 0, andb(t, x, y) = B(x)β(y/x)/x whereβ is a measure
on [0,1] such that

β � 0,

1∫
0

zβ(dz) = 1,

1∫
0

zm β(dz) < ∞ for somem < 1, (2.11)

andβ satisfies the following positivity condition:

∃β0 > 0, 0< δ1 < δ2 < 1 β(z) � β0 ∀z ∈ [δ1, δ2]. (2.12)

The pure fragmentation model is then obtained forD0 ≡ 0 in (2.1). This equation arise
in physics to describe fragmentation processes [22,7,5,6,16,5]. For this equation th
steady states are the Dirac masses, namelyx n(t, x) = ρ δx=0, and then the GRE principl
is not pertinent. On the other hand, ifn is a solution to the pure fragmentation equati
we may introduce the rescaled densityg defined by:

g(t, x) = e−2t n
(
eγ t − 1, xe−t

)
, (2.13)

which is a solution to the fragmentation equation in self-similar variables (see, for ins
[16])

∂

∂t
g + ∂

∂x
(x g) + g = γF g. (2.14)

This is a mass preserving equation with no detailed balance condition and then th
principle may be used in order to understand in an accurate way the dynamic of th
mentation mechanism. We refer to Section 3 below which deals with this model.

Example 4 (The cell division equation). We consider a population of cells which gro
at constant rate and divide through a binary fragmentation mechanism. We denoten =
n(t, x) the density of cells/organisms with mass or volumex > 0 at timet � 0. The genera
cell division equation (see [23]) reads then

∂

∂t
n(t, x) + ∂

∂x
n(t, x) + B(x)n(t, x) =

∞∫
0

b(y, x)n(t, y)dy (2.15)

which we complement with a flux condition at thex = 0, namely

n(t, x = 0) = 0, t � 0. (2.16)
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In order to take into account that the cell division is a binary and symmetric fragmen
process we assume:

x∫
0

b(x, y)dy = 2B(x) and b(x, y) = b(x, x − y). (2.17)

We can recover the equal mitosis equation as some particular example of this eq
with the following appropriate choices forb:

b(x, y) = 2B(x) δ(y = x/2) (equal mitosis) (2.18

which yields the equation

∂

∂t
n(t, x) + ∂

∂x
n(t, x) + B(x)n(t, x) = 4B(2x)n(t,2x).

This equation is studied in [27] forB(x) close to a constant and especially long ti
convergence to a steady state is proved with an exponential rate. We refer to Se
where we consider this model.

Example 5(Renewal equation with periodic coefficients). In order to illustrate the case o
periodic coefficients, we finally consider a population of individuals with agex � 0 and
which is described by the renewal equation

∂

∂t
n(t, x) + ∂

∂x
n(t, x) + d(t, x)n(t, x) = 0, n(t, x = 0) =

∞∫
0

B(t, y)n(t, y)dy.

(2.19)

Here we assume that there isT > 0 such thatd andB areT -periodic.
Although our method also applies to the general cell-division equation, (2.19) a

us a much simpler proof and also, sometimes, to access explicit formulas that can
as guidelines for our assumptions. Notice that it can also be handled via Volterra in
equations and thus via Laplace transform [17,23] but these methods have not been e
to general cell division equations. Notice that the renewal equation can also be se
particular example of the cell division equation (2.15) making the following choice fob:

b(t, x, y) = B(t, x)
[
δ(y = x) + δ(y = 0)

]
(renewal equation). (2.20)

This choice satisfies the assumptions (2.4)–(2.6) withk0 = 2. Because it rises a Dirac ma
at x = 0 in the right hand side of the cell division equation (2.15), it can be interprete
distribution sense, as a boundary data atx = 0 which is the renewal equation. We refer
Section 5 where we study this model.
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We give now three types of possible applications of the GRE principle: we show a
bounds on any solutionn by comparison top, we also state a contraction principle in t
spaceL1 with weight ψ and finally state a result on the long time behavior. For eac
the three examples, we prove these results under specific assumptions. They im
non-degeneracy of the drift and fragmentation terms, and that

p(t, x) > 0 for x > 0, ψ(t, x) > 0,

∞∫
0

p(t, x)ψ(t, x)dx ≡ 1.

Theorem 2.2 (Existence and a priori bounds). Let ψ > 0 be a solution to the dua
equation(2.7) with initial condition ψ(0, .) = ψ0. For any initial datumn0 such that
n0ψ0 ∈ L1(0,∞), there exists a(unique) solution to Eq.(2.1)such that

∞∫
0

n(t, x)ψ(t, x)dx =
∞∫

0

n0ψ0 dx ∀ t � 0. (2.21)

Moreover, letp > 0 be a solution to(2.1)with initial conditionp(0, .) = p0, for any initial
datumn0 such thatn0 p

1/q−1
0 ψ

1/q

0 ∈ Lq(0,∞), q ∈ (1,∞), (respectively,∃C0, |n0| �
C0p0), the solutionn satisfies:

∞∫
0

|n(t, x)|q
p(t, x)q−1

ψ(t, x)dx �
∞∫

0

|n0(x)|q
p0(x)q−1

ψ0(x)dx

(
respectively,

∣∣n(t, x)
∣∣ � C0p(t, x)

) ∀ t � 0. (2.22)

Theorem 2.3(L1 contraction). Letψ > 0 be a solution to the dual equation(2.7)with ini-
tial conditionψ(0, .) = ψ0. For any initial datumn0,m0 ∈ L1(0,∞;ψ0 dy) the associated
solutionsn andm to (2.1)satisfy:

∞∫
0

∣∣n(t, x) − m(t, x)
∣∣ψ(t, x)dx �

∞∫
0

∣∣n0(x) − m0(x)
∣∣ψ(0, x)dx.

The next question, usual when entropy inequalities are available [13,30], is to
the long time asymptotic of solutions. This is possible under the assumptions of
rem 2.2 and appropriate additional assumptions of positivity of the fragmentation op
F . Introducing the “total mass”ρ � 0 associated to the conserved quantity (see (2.21

∞∫
n(0, y)ψ0(y)dy = ρ

∞∫
p(0, y)ψ0(y)dy,
0 0
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there holds:

∞∫
0

∣∣n(t, x) − ρ p(t, x)
∣∣ψ(t, x)dx −→

t→∞ 0. (2.23)

This result is based on the mixing property of Eq. (2.1). It acts in such a way that the
condition is asymptotically forgotten and the solution only keeps memory of the s
information contained in the conservation law (2.21). The property (2.23) will be pr
in any example under appropriate assumptions of positivity of the fragmentation op
which guarantees the mixing property of the flow. The asymptotic behavior (2.23) i
ticularly relevant when (for instance)p is a stationary solution for coefficients independ
of time or whenp is a periodic solution for time periodic coefficients. The former phen
ena is known as ‘desynchronization’ [10], the later is resynchronization (on a circad
seasonal rhythm, for instance) [20].

In the theory we develop here, the first question one has to answer in order to
pertinent general relative entropy is precisely to find the pertinent particular solutionp. In
the case of Example 3 the model is mass conservative and it is possible to prove ex
of a stationary solution with the help of the Schauder theorem (see, for instance, [
for details), in other words 0 is the first eigenvalue. On the other hand, in the case
models described in Examples 4 and 5, the equations are not conservative and do n
stationary solutions. One has to solve simultaneously the eigenvalue problem assoc
the primal and the dual equations. More precisely, we look for(λ0,p,ψ) such that

{
∂p
∂t

+D0 p + λ0 p = Fp on (0,∞) × (0,∞),

− ∂ψ
∂t

+D∗
0 ψ + λ0 ψ = F∗ψ on (0,∞) × (0,∞),

(2.24)

with appropriate boundary conditions, initial conditions and stationary or periodicity
ditions. Here in very particular cases an explicit computation may be performed (see
but in general existence of(λ0,p,ψ) is obtained by the mean of the Krein–Rutman th
rem.

The second question is to understand how the GRE inequality, based on these
ular solutions may be used in order to get some information on generic solutions.
Theorems 2.2 and 2.3 are standard, the question of long time behavior is more sub
require more attention (and additional assumptions) and will be treated for each ex
separately.

We conclude this section stating some problems of interest which are closely rela
the present work.

(1) Rate of convergence to the steady state, or to periodic solution, in (2.23). See h
[26,27,19].

(2) Dependance ofλ0 with respect to the coefficients involved in the model? As a biolo
cal interpretation, one can expect to observe in nature only those species that ma
λ0 in a given environment.
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(3) Use of the entropy method for nonlinear problems (see [14] for finite-dimens
models).

3. The pure fragmentation equation

In this section we consider the pure fragmentation equation in self-similar vari
(2.14) as motivated in Example 3. We assume thatb fulfills the assumptions (2.11)–(2.12
as stated in the presentation of Example 3 above. Let first consider the dual problem

− ∂

∂t
ψ +D∗

0ψ = γ F∗ ψ.

It has a simple solutionψ(x) = x sinceD∗
0h = x ∂h

∂x
−h andF∗x = 0 by assumption (2.5)

Therefore, using (2.21), we deduce that (2.14) is a mass conservative equation, tha

∞∫
0

x g(t, x)dx ≡ cst ∀ t � 0.

In order to apply the GRE inequality we need next to find particular relevant solutio
Eq. (2.14) which are here stationary solutions. More precisely, we are looking for a s
solutionN to the self-similar profile fragmentation equation,

∂

∂x
(x N) + N = F N, N � 0,

∞∫
0

x N(x)dx = 1. (3.1)

The self-similar profile is given by the following. Here and below we denote:

L̇1
k = {

g ∈ L1
loc(0,∞); xk g(x) ∈ L1}.

Theorem 3.1.With assumptions(2.11)–(2.12), there exists a unique solutionN in L̇1
1 to

Eq. (3.1). MoreoverN ∈ W
1,∞
loc (0,∞), yk N ∈ L∞ ∀ k � 1+ m andN > 0 on (0,∞).

We may now give a consequence of the GRE inequality on the long time behavio

Theorem 3.2.For any g0 ∈ L̇1
m ∩ L̇1

M with M > 1 and ρ := ∫ ∞
0 x g0(x)dx, there exists

a unique solutiong ∈ C([0, T ); L̇1
1) ∩ L1(0, T ; L̇1

γ+M) (∀T > 0) to the fragmentation
equation(2.14), and

∞∫
0

x g(t, x)dx = ρ for all t � 0.

Moreover,g satisfies
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g

(
g(t)

)
t�1 is uniformly bounded iṅL1

k ∀ k � m, (3.2)

lim
t→+∞

∞∫
0

x
∣∣g(t, x) − ρN(x)

∣∣dx = 0. (3.3)

Back to the pure fragmentation equation (2.1), its solution

n(t, x) = (1+ t)2/γ g

(
1

γ
ln(1+ t), (1+ t)1/γ x

)
(3.4)

converges ast → ∞ to a Dirac mass. Then, our theorem gives the precise converg
speed and the profile. Those are determined as

n(t, x) ≈ (1+ t)2/γ N
(
(1+ t)1/γ x

)
whent → ∞.

Proof of Theorem 3.1. We refer to [16] for the existence of solutionN ∈ L̇1
1 to Eq. (3.1)

such thatN ∈ L̇1
k , F N ∈ L̇1

k for anyk � m. Writing for k � 1+ m

∂

∂y

(
yk N

) = ∂

∂y

(
yk−2 y2 N

) = (k − 2) yk−1N + yk−1FN (3.5)

we deduce thatyk N ∈ L∞ for any k � 1 + m. Furthermore, gathering (3.5) withB N ∈
L∞

loc and

(F+N)(x) :=
∞∫

x

(y)γ−1β(x/y)N(y)dy � ‖N x2+γ ‖L∞

∞∫
x

(y)−3 β(x/y)dy

� ‖N x2+γ ‖L∞

1∫
0

z3

x3
β(z) x

dz

z2
= ‖N x2+γ ‖L∞ x−2 ∈ L∞

loc,

we obtain thaty2 N ∈ W
1,∞
loc . That concludes the proof of the regularity estimate.

Finally, there holds:

∂

∂y

(
y2 N(y)eyγ /γ

) = y (F+N)(y)eyγ /γ . (3.6)

SinceN �≡ 0 there existsx0 ∈ (0,∞) such thatN(x0) > 0. On the one hand, integratin
(3.6) between 0 andx, for anyx ∈ (δ2 x0, x0), we have:

x2 N(x)exγ /γ �
∞∫

0

N(y)yγ eyγ /γ

1∫
0

B(z) zezγ /γ 1z�x/y dzdy

� C

(δ1+δ2)/(2δ1)∫
N(y)

1∫
B(z) z1δ1�2δ1δ2/(δ1+δ2) dzdy > 0.
x0 0
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By an iterative argument, we findN > 0 on (0, x0). On the other hand, for anyx > x0,
integrating (3.6) betweenx0 andx and using the fact thatF+N � 0, we find:

N(x) � cstx−2 e−xγ /γ > 0 on(x0,∞),

and that conclude the proof of positivity property onN . �
Proof of Theorem 3.2. From [16] we already know that, with the assumptions m
above, there exists a unique solutiong satisfying the estimate (3.2) and we just have
prove (3.3). This will be achieved in several steps.

Step1. Let us first assume thaty �→ y g2
0(y)N−1(y) ∈ L1. We use Theorem 2.1 wit

H(s) = (s − 1)2 and denote simply byH andD the corresponding entropy and entro
dissipation. Then, thanks to Theorem 2.2, there exists a unique solutiong associated to th
initial datag0 such that

H(g|N) :=
∞∫

0

g2 N−1 y dy � H(g0|N) < ∞ (3.7)

and, using the fact that for anyξ, ξ ′ � 0 there holdsH(ξ) − H(ξ ′) + H ′(ξ ′) (ξ ′ − ξ) =
(ξ − ξ ′)2,

D(g|N) :=
∞∫

0

∞∫
0

b(x, y)N(x)y

(
g(x)

N(x)
− g(y)

N(y)

)2

dx dy ∈ L1
t (0,∞). (3.8)

Consider now a sequence(tn) such thattn → ∞, a timeT > 0 and definegn(t, y) :=
g(t + tn, y). From 0< N ∈ W

1,∞
loc and (3.7), we know that the sequence(gn) is bounded

in L2
loc([0, T ] × (0,∞)) and we may extract a subsequence still denoted by(tn) such

that gn ⇀ ḡ weakly in L2
loc([0, T ] × (0,∞)). On the one hand, for any functionϕ ∈

C1
c (]0,∞[), using Eq. (2.14) and the estimate (3.2) we have,

d

dt

∞∫
0

gn ϕ dx is bounded inL1(0, T ),

from which we deduce that

∞∫
0

gn ϕ dx −→
n→∞

∞∫
0

ḡ ϕ dx in L1(0, T ) ∀ϕ ∈ C1
c

(]0,∞[). (3.9)

On the other hand, we introduce for anyε ∈ (0,1) the truncated dissipation entropy:
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Dε(g|N) :=
1/ε∫
ε

1/ε∫
ε

b(x, y)N(x)y

(
g(x)

N(x)
− g(y)

N(y)

)2

dx dy. (3.10)

Thanks to (3.9) and standard convexity arguments (see [15]), we see thatg �→ D(g|N) is
l.s.c. for the above sense of convergence for(gn) and therefore using (3.8),

T∫
0

Dε(ḡ|N)dt � lim inf
n→∞

T∫
0

Dε(gn|N)dt � lim inf
n→∞

∞∫
tn

D(g|N)ds = 0 ∀ε > 0. (3.11)

We setξ(x) := ḡ(t, x)/N(x) and combine (3.10) and (3.11), then letε → 0. We get:

ξ(y) = ξ(x) for a.e.t, x, y s.t.y/x ∈ [δ1, δ2]. (3.12)

Step2. We prove that(3.12) impliesḡ = ρN . On the one hand, for anyy, z > 0 there
existsn,m ∈ N

∗ s.t.

]δn
1 y, δn

2 y[ ∩ ]δm
1 z, δm

2 z[ �= ∅. (3.13)

Indeed, assuming for instancey < z, we may first findk ∈ N such thatδk+1
2 z � y < δk

2 z.
We next definen ∈ N such that

δr+1+k
2 z < δr

1 δk
2 z for all r = 0, . . . , n − 1, and δn+1+k

2 z � δn
1 δk

2 z.

As a consequence,

δn+1+k
1 z < δn

1δ1+k
2 z � δn

1y < δn
1δk

2z � δn+1+k
2 z

and (3.13) holds withm := n + 1+ k.
On the other hand, we defineK = {x ∈ (0,∞); ξ(y) = ξ(x) for a.e.y ∈ [δ1x, δ2x]}

and fixingx ∈ K we defineA+ = {y ∈ (0,∞); ξ(y) = ξ(x)}. From the definition ofK
andx there holds|A+| > 0. DefineA− := (0,∞)\A+ and assume by contradiction th
|A−| > 0. That means that, there existsy ∈ A+, z ∈ A− such that∀ ε > 0 |B(y, ε)∩A+| >
0, |B(z, ε) ∩ A−| > 0. Thanks to (3.13) we may findε > 0 such that for anyy′ ∈ B(y, ε),
z′ ∈ B(z, ε) there holds

]δn
1 y′, δn

2 y′[ ∩ ]δm
1 z′, δm

2 z′[ �= ∅.

As a consequence, for a.e.y′ ∈ A+ ∩B(y, ε), for a.e.z′ ∈ A− ∩B(z, ε) there holdsξ(y′) =
ξ(z′) and that is absurd. Therefore we have|A−| = 0 so thatξ ≡ ξ(x) a.e. Then, we hav
proved that for somex = x(t) ∈ (0,∞),

g(t, y) = ξ(t, x)N(y) for a.e.(t, y) ∈ (0, T ) × (0,∞)

and the mass condition impliesξ(t, x) = ρ for any t ∈ (0, T ).
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Step3. Combining (3.2) with the results obtained in steps 1 and 2, we have yet p
that

gn(t, .) ⇀ ρ N weakly inL̇1
1 ∩ L2

loc, (3.14)

and we have to prove that this convergence holds in fact in the strong sense.
ε0 ∈ (0,1) such that

1/ε0∫
ε0

zβ(z)dz � 1/2.

For anyε ∈ (0, ε0), there existsηε > 0 such that there holds:

ηε

T∫
0

1/ε∫
ε

(
gn(t, x) − ρ N(x)

)2 dx dt

�
T∫

0

1/ε∫
ε

1/ε∫
ε

b(x, y)N(x)y

[(
g(t, x)

N(x)
− ρ

)2

+
(

ρ − g(t, y)

N(y)

)2]
dx dy dt

=
T∫

0

D2,ε(g|N)dt

+ 2

T∫
0

1/ε∫
ε

1/ε∫
ε

b(x, y)N(x)y

[
g(t, x)

N(x)

g(t, y)

N(y)
+ ρ2 − ρ

g(t, x)

N(x)
− ρ

g(t, y)

N(y)

]
dx dy dt.

Thanks to (3.14)–(3.9) and (3.11) we easily deduce that

ηε

T∫
0

1/ε∫
ε

(
gn(t, x) − ρ N(x)

)2 dx dt → 0 ∀ ε > 0,

and we conclude that (3.3) holds using (3.14) and the contraction principle stated in
rem 2.3 applied ton0 = ρ N andm0 = g(tn + τ, .) for someτ ∈ (0, T ).

Step4. Forg0 ∈ L̇1
m ∩ L̇1

M we consider a sequence(g0,n) such thatH(g0,n|N) < ∞, the
mass associated tog0,n is ρ andg0,n → g0 in L̇1

m ∩ L̇1
M . On the one hand, the solutiongn

associated tog0,n satisfies‖gn −ρ N‖L̇1
1
→ 0. On the other hand, the contraction princip

stated in Theorem 2.3 implies that‖(g − gn)(t)‖L̇1
1
� ‖g0 − g0,n)‖L̇1

1
. As a conclusiong

satisfies the asymptotic property (3.3).�
4. Cell division, existence and steady states

In this Section we consider the cell division equation of example 4 of Section 2
restrict our attention to the case of coefficients independent of time
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b(t, x, y) ≡ b(x, y), B(t, x) = B(x), (4.1)

A classical question is the existence of a global attractive steady state, the so-called
Size Distribution [23], i.e., that is observed in practice. Steady states do not alway
because an exponential growth is expected. Therefore we have to settle this in an eig
problem and we use the notationN(x) = p(t, x)e−λ0t andφ(x) = ψ(t, x)e−λ0t . Then, the
problem is first to find(λ0,N(x),φ(x)) such that

{
∂
∂x

N(x) + (λ0 + B(x))N(x) = ∫ ∞
x

b(y, x)N(y)dy, x � 0,

N(x = 0) = 0, N(x) > 0 for x > 0,
∫

N = 1,
(4.2)

{
∂
∂x

φ(x) − (λ0 + B(x))φ(x) = − ∫ x

0 b(x, y)φ(y)dy, x � 0,

φ(x) > 0,
∫

φN = 1.
(4.3)

Also the precise dynamic of the system is better described after renormalizingn taking
into account the exponential growth. Therefore, we setg(t, x) = n(t, x)e−λ0t and obtain

{
∂
∂t

g + ∂
∂x

g + (λ0 + B(x))g = ∫ ∞
x

b(y, x)g(t, y)dy, x � 0,

g(x = 0) = 0.
(4.4)

The existence of eigenelements(λ0,N,φ) relies on the balance between transport
larger values ofx) and division (that reducesx and increasesn). Such an eigenvalue prob
lem does not always have a solution since we have:

Lemma 4.1.With the assumptions(2.4)–(2.6)with k0 = 2, (2.17)and (4.1), if a solution
to (4.2)exists, then

∞∫
0

B(x)dx � 1/2. (4.5)

Proof. First, we integrate Eq. (4.2) in the size variable all overR+, then using (2.6), we
get

λ0 =
∫

B(x)N(x)dx > 0.

Next, integrating again Eq. (4.2) in the size variable, but between 0 andx, we find

N(x) �
x∫

z=0

∞∫
y=0

b(z, y)N(y)dy dz �
∞∫

0

∞∫
0

b(z, y)N(y)dy dz

= 2

∞∫
B(y)N(y)dy, ∀x � 0,
0
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‖N‖L∞ � 2λ0.

Finally, we come back to the first identity and we obtain

λ0 =
∞∫

0

B(x)N(x)dx �
∞∫

0

B(x)dx‖N‖L∞ � 2λ0

∞∫
0

B(x)dx.

Hence, if there is a solution, then we should have (4.5).�
In view of Lemma 4.1, we consider only a simple case for existence, better cond

can be found in [24]. But optimal conditions are known only in the case of the ren
equation (2.19), a special case (see Example 5, Eq. (2.20)) where we find as a ne
and sufficient condition

∫
B > 1.

Theorem 4.2(First eigenvectors). Assume(2.4)–(2.6)with k0 = 2, (4.1)and

0< Bm = min
x�0

B(x), max
x�0

B(x) = BM < ∞. (4.6)

There exists a unique Lipschitz continuous solution(λ0,N,φ) to (4.2), (4.3)and

Bm � λ0 � BM, (4.7)
∞∫

0

N(x)eµx dx � λ0

λ0 − µ
, sup

x∈(0,∞)

N(x)eµx � λ0 + λ0BM

λ0 − µ
, ∀µ ∈ [0, λ0),

∃C > 0, s.t.0� φ(x) � C(1+ x).

The exponential decay forN is (close to be) sharp with our assumptions since for
renewal equation (2.19), we have exactlyN(x) = λ0 e−λ0x . See [24] for more precise es
mates in this direction.

Theorem 4.3.We make the assumptions of Theorem4.2and

∃C0, s.t.∀x
∣∣g(0, x)

∣∣ � C0N(x). (4.8)

There is a unique solution to(4.4)and for all t > 0,

∣∣g(t, .)
∣∣ � C0N,

∫
g(t, y)φ(y)dy =

∫
g(0, y)φ(y)dy := ρ, (4.9)

∫ ∣∣g(t, y)
∣∣φ(y)dy �

∫ ∣∣g(0, y)
∣∣φ(y)dy (contraction principle). (4.10)
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With the following non-degeneracy condition on the support ofb: there exists aC1

functionΓ : (0,∞) → (0,∞) such that

{(
x,Γ (x)

)
, x � 0

} ⊆ ∆ = Supp
[0,∞[×[0,∞[

b(x, y) and
∂

∂x
Γ (x) �= 1 ∀x �= 0, (4.11)

we have

lim
t→∞

∥∥g(t, .) − ρN
∥∥

Lq(N1−qφ dx)
= 0 ∀q ∈ [1,∞). (4.12)

Remark 4.4.The condition (4.11) is much more general than the non-degeneracy con
(2.12) for scaling invariant fragmentation kernelsb. In this case, the condition (4.11) hol
with Γ (x) = δ1+δ2

2 x but is not enough to prove (3.3) in Theorem 3.2. The condition (4
is also fulfilled for equal mitosisb(x, y) = 2B(x)δy=x/2 while condition (2.12) is of cours
not fulfilled for such a kernel.

The exponential rate of convergence here is known in special cases. For the r
equation (2.19), an abstract argument due to [17] proves the exponential rate (but t
is not explicitly known) forB with compact support. In [26], an explicit rate is given wh
suppB is an interval that containsx = 0 and an a recent improvement is due to [19].
equal mitosis (2.18), an explicit rate is also given in [27] whenB(x) is close to a constan
We now turn to the proof of these two theorems.

Proof of Theorem 4.2. We refer to [27,24] for the method and ideas developed here
we only sketch the main estimates. The rigorous proof goes through an approxim
process which is written in details in the above references. Then, we only need to p
priori estimates that imply compactness of(λ0,N,φ).

Step1. Bounds onλ0. After multiplying Eq. (4.2) by 1 andx and integrating, we obtain

λ0 =
∞∫

0

B(y)N(y)dy and λ0

∞∫
0

yN(y)dy = 1. (4.13)

The upper and lower bounds onλ0 follows from the first identity, the assumption (4.6) a
the normalization ofN in (4.2).

Step2. Bounds onN . We firstly prove that

∞∫
0

b(x, y)eµy dy � (1+ eµx)B(x). (4.14)

To do this, we notice that, because ofy < x in the integrals below (thanks to (2.17)), a
using (2.5),
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∞∫
0

ypb(t, x, y)dy = xp

x∫
0

b(t, x, y)

(
y

x

)p

dy � xpB(t, x), ∀p = 2,3,4, . . . .

Secondly, we deduce

∞∫
0

b(x, y)
(µy)p

p! dy � (µx)p

p! B(x), p � 1,

and thus, using (2.17), the inequality (4.14) holds.
Therefore, multiplying Eq. (4.2) by eµx with µ < λ0 and integrating, we obtain:

∀x N(x)eµx +
x∫

0

[
λ0 − µ + B(z)

]
N(z)eµz dz �

∞∫
0

∞∫
0

b(y, z)eµzN(y)dzdy

�
∞∫

0

[
B(y) + B(y)eµy

]
N(y)dy.

Lettingx → ∞ and using (4.14), we deduce that

∞∫
0

(λ0 − µ)N(z)eµz dz �
∞∫

0

B(y)N(y)dy = λ0.

This is the first bound onN , the second one follows from the same inequality, using
information,

N(x)eµx �
∞∫

0

[
B(y) + B(y)eµy

]
N(y)dy � λ0 + BM

∫
eµyN(y)dy.

Step3. Estimate onφ. We refer to [27] to prove the existence of a constantC such that
φ(y) � C(1+ yk) for somek > 0 in the case of equal mitosis. Here we improve the pr
in order to get the linear growth and treat more general kernelsb.

We follow the proof in [27], using a solution(NL,λL,φL) of the eigenproblem on
bounded interval(0,L) with φL(L) = 0. Then firstly, one can derive, as above, an pr
bounds onNL. Secondly one derives local bounds onφL. We write, integrating Eq. (4.3
on (0, xL),

sup
(0,xL)

φL(y) � φL(xL) + sup
(0,xL)

φL(y)

xL∫ y∫
b(y, y′)dy′ dy,
0 0
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and choosexL = a such that
∫ a

0

∫ y

0 b(y, y′)dy′ dy = 1/2. Then sup(0,a) φL(y) � 2φL(a).
It remains to boundφL(a) which we do using that

φL(a) �
∫ a

0 NL(x)φL(x)e
∫ a
x (λ+B(s))ds dx∫ a

0 NL(x)dx
�

sup0�x�a e
∫ a
x (λ+B(s))ds dx∫ a

0 NL(x)dx
,

that we deduce becauseφL(x)e− ∫ x
0 (λ+B(s))ds is decreasing and finite by the choicea > 0

(therefore
∫ a

0 NL is uniformly positive). Thirdly, and this is the new point here, we fin
supersolution (independent ofL) for the equation onφL. We notice thatv(y) = C(L − y)

is a supersolution of the equation onφL(y) = φL(L − y). IndeedφL(y) satisfies:

∂

∂y
φL(y) + (

λL + B(L − y)
)
φL(y) =

L−y∫
0

b(L − y, y′)φL(L − y′)dy′,

and using
∫ x

0 yb(x, y)dy = B(x)x, we find thatv(y) is a supersolution ifL − y is large
enough, indeed

−C + CλL(L − y) + C

[
B(L − y)(L − y) −

L−y∫
0

b(L − y, y′)y′ dy′
]

� 0,

if L − y � 1/λL. Therefore we have indeedφ(y) � C(1 + y) and Theorem 4.2 i
proved. �
Proof of Theorem 4.3. We first notice that the first inequality in (4.9) follows direc
from the GRE inequality (2.1) with for instanceH(h) = (h − C0)

2+. This is a non-
negative convex function, therefore it gives

∫ ∞
0 NφH(g(t)/N)dx � 0 for all t > 0,

and thusH(g(t)/N) = 0, i.e., g(t)/N � C0. A similar argument proves the inequali
g(t)/N � −C0. The equality in (4.9) follows also directly from the GRE inequality w
H(h) = h. Finally, the contraction principle (4.10) follows from the GRE inequality w
H(h) = |h|. It remains to prove (4.12) which we do in several steps.

Step1. We proceed along the lines of the proof of Theorem 3.2. Arguing as in S
of Theorem 3.2, we see that we can restrict ourselves to consider a smooth initial dg0
such thath0 = g0/N ∈ C1

0.
Step2. We then introduce the sequence of functiongn(t, y) = g(t + tn, y). As in the

Step 1 of Theorem 3.2, we havegn ⇀ g andg/N(t, x) = g/N(t, y) ∀t ∀(x, y) ∈ ∆. There-
fore the functionu := g/N satisfies

u
(
t,Γ (x)

) = u(t, x), ∀t > 0, x � 0. (4.15)

Step3. In the limit, the entropy dissipation (2.10) vanishes in (2.9), and thus this fun
u satisfies:

∂
u + ∂

u = 0. (4.16)

∂t ∂x
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n
Step4. Thanks to Lemma 4.5 below we haveu(t, x) = cst and the mass conditio
allows us to concludeg = ρN .

Step5. We conclude the proof as in Theorem 3.2 using the contraction property.�
Lemma 4.5.Any functionu satisfying(4.16), (4.15)is constant.

Proof. On one hand we have:

(∂tu)(t, x) = (
∂tu

(
t,Γ (x)

)) = (∂tu)
(
t,Γ (x)

)
. (4.17)

On the other hand we have

(∂xu)(t, x) = (
∂xu(t, x)

) = (
∂xu

(
t,Γ (x)

)) = Γ ′(x)(∂xu)
(
t,Γ (x)

)
. (4.18)

We deduce gathering (4.17), (4.18) and using (4.16) that

(∂tu)
(
t,Γ (x)

) + Γ ′(x)(∂x)u
(
t,Γ (x)

) = 0, ∀t > 0, x � 0, (4.19)

and from (4.16) we also have

(∂tu)
(
t,Γ (x)

) + (∂x)u
(
t,Γ (x)

) = 0, ∀t > 0, x � 0. (4.20)

Combining (4.19), (4.20) we get:

(
Γ ′(x) − 1

)
(∂x)u

(
t,Γ (x)

) = 0,

from which we deduce, sinceΓ ′(x) �= 1,

(∂x)u(t, x) = Γ ′(x)(∂x)u
(
t,Γ (x)

) = 0.

Finally using again the transport equation (4.16) we obtain indeed thatu is constant. �

5. Renewal equation and periodic solutions

We now consider the renewal equation withT -periodic death and birth ratesd andB,




∂
∂t

n + ∂
∂x

n + d(t, x)n = 0,

n(t,0) = ∫ ∞
0 B(t, y)n(t, y))dy,

n(t = 0, x) = n0(x)

(5.1)

and we make the following assumptions on the nonnegative functionsd , B,
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sup
t∈(0,T )

∞∫
0

B(· , y)e− ∫ y
0 d(·+y′−y,y′)dy′

dy < ∞,

inf
t∈(0,T )

∞∫
0

B(· , y)e− ∫ y
0 d(·+y′−y,y′)dy′

dy > 1, (5.2)

B(t, x) > 0, (5.3)

d,B ∈ W1,∞. (5.4)

These conditions could be relaxed, to the expense of more steps in the proof. Esp
the positivity ofB on the half-line can be reduced to the positivity on an interval u
a compactness argument. We also refer to [26] for the variant in the proof whenB can
vanish. Finally, similar results as below hold for the general cell division equation, bu
proof goes through discrete approximation that is longer to develop.

As in Section 4 for steady states, the theory uses an eigenvalue problem to fi
periodic solution. Therefore we consider the problem:




∂
∂t

N(t, x) + ∂
∂x

N(t, x) + (λ0 + d(t, x))N(t, x) = 0, t � 0, x � 0,

N(t, x = 0) = ∫ ∞
0 B(t, y)N(t, y)dy, t � 0,

N(t, x) > 0,
∫ T

0

∫ ∞
0 N(t, x)dx dt = 1, N is T -periodic,

(5.5)

{
∂
∂t

φ(t, x) + ∂
∂x

φ(t, x) − (λ0 + d(t, x))φ(t, x) = −B(t, x)φ(t,0), t � 0, x � 0,

φ(t, x) > 0,
∫

N(t, x)φ(t, x)dx = 1, φ is T -periodic.

(5.6)

Following the previous sections, we prove

Theorem 5.1.With the assumptions(5.2)–(5.4), there exists a unique solution(λ0,N,φ)

to the eigenvalue problem(5.5)–(5.6)andN, φ ∈ C([0, T ];W1,∞).

Theorem 5.2 (Attraction to periodic solutions). With the assumptions(5.2)–(5.4), and
n0 ∈ L1(R+, φ(0, x)dx), then the solution to(5.1)satisfies:∫ ∣∣n(t, x)e−λ0t − ρ N(t, x)

∣∣φ(t, x)dx −→
t→∞ 0,

with ρ = ∫
n(0, x)φ(0, x)dx.

The existence of periodic solutions (Theorem 5.1) is not surprising and in spirit
bines compactness arguments with Floquet’s theory for a positive matrix (see [11,
ter 3, Section 5], for instance) although our proof is more direct. The attraction t
periodic solution requires a dissipative mechanism which, in our approach, is expres
the dissipation of entropy.
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Proof of Theorem 5.1. By opposition to the case when the coefficients are indepen
of time, here we do not have explicit solutions at hand. Nevertheless, it can be sol
an eigenvalue problem thanks to Krein–Rutman theorem considering, as it is class
operator on the boundaryx = 0. To do that, we use the explicit solutions to (5.5)–(5.6)

N(t, x) = N (t − x)e− ∫ x
0 (λ0+d)(t+y′−x,y′)dy′

, (5.7)

φ(t, x) =
∞∫

x

B(t + y − x, y)U(t + y − x)e− ∫ y
x (λ0+d(t+y′−x,y′))dy′

dy, (5.8)

and we reduce the problems (5.5) and (5.6) to the integral equations:

N (t) =
∞∫

0

B(t, y)e− ∫ y
0 (λ0+d)(t+y′−y,y′)dy′N (t − y)dy, (5.9)

U(t) =
∞∫

0

B(t + y, y)e− ∫ y
0 (λ0+d(t+y′,y′))dy′U(t + y)dy. (5.10)

Finally, we directly obtain the solutions to (5.5), (5.6) (their properties follow with
any difficulty) from the

Lemma 5.3.With the assumptions(5.2)–(5.4), there is a unique solution(λ0,N ,U) to
(5.9), (5.10)with N andU twoT -periodic functions, andN (t) > 0, U(t) > 0.

Proof. We consider a parameterλ > 0, the Banach spaceX = Cper(0, T ) and the operato
which, toM ∈ X associatesN ∈ X given by

N (t) =
∞∫

0

B(t, y)e− ∫ y
0 (λ+d)(t+y′−y,y′)dy′M(t − y)dy,

and its dual, which, toV ∈ X associatesU ∈ X given by:

U(t) =
∞∫

0

B(t + y, y)e− ∫ y
0 (λ+d(t+y′,y′))dy′V(t + y)dy.

This linear operator is continuous (using the first inequality in (5.2)), strictly pos
(thanks to assumption (5.3)) and compact (it is convolution like). Therefore, using K
Rutman theorem it admits a simple first eigenvalueν(λ) > 0, the corresponding eigenve
tor (positive and normalized with unit mass) is denotedNλ(t) and a dual eigenvector
denoted byUλ(t) > 0. One readily checks that, using the second inequality in (5.2),
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ν(0) � min

∞∫
0

B(· , y)e− ∫ y
0 d(·+y′−y,y′)dy′

dy > 1.

It is also clear thatν(∞) = 0 and thatν′(λ) < 0 (just by the maximum principle). There
fore, there is a uniqueλ0 such thatν(λ0) = 1, and thus a solution to (5.9), (5.10).�
Proof of Theorem 5.2. We do not repeat the details of the proof which were already g
in Sections 3 and 4. From Theorem 2.1, we have the entropy inequality forg = ne−λ0t ,

d

dt
Hφ(g|N) = −Dφ(g|N) � 0, (5.11)

whereHψ(g|N) is defined in (1.3) and

Dφ(g|N) := φ(t,0)

∞∫
0

B(t, x)N(t, x)dx

×
∞∫

0

[
H

( ∞∫
y=0

g(t, y)

N(t, y)
dµt(y)

)
− H

(
g(t, x)

N(t, x)

)]
dµt(x),

dµt(x) := B(t, x)N(t, x)dx
/ ∞∫

0

B(t, x)N(t, x)dx.

We are in the same situation as in the proof of Theorem 3.2 and Theorem 4.3. F
convex functionH(·) = | · |, and applying the GRE inequality tog − ρN , we find that∫ ∣∣n(t, x)e−λ0t − ρN(t, x)

∣∣φ(t, x)dx ↓ L ast → ∞.

It remains to prove thatL = 0. By weak compactness there is a subsequence (but we
again the notation of the full sequence)gk(t, x) = g(t + k, x) which converges. From th
entropy dissipation term, we deduce that the limitḡ satisfies,

ḡ(t, x)

N(t, x)
= C(t),

Thanks to the mass conservation, this implies thatḡ(t, x) = ρN(t, x) and the strong con
vergence holds as proved in Section 3. From this it follows that the limitL = 0. �
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